На что влияет неправильная регулировка клапанов. Современные проблемы науки и образования. Каким двигателям и когда нужна регулировка клапанов

Простые на вид, клапаны двигателя внутреннего сгорания выполняют в нём важнейшую работу: управляют процессами подачи топливно-воздушной смеси и вывода отработавших газов из цилиндра двигателя. От того, насколько своевременно эти процессы будут происходить, зависит эффективность работы двигателя: его мощность, экономичность, токсичность и даже сама возможность работать.

Как должны работать клапаны ДВС

Рабочий цикл четырехтактного двигателя состоит из четырёх ходов: впуск, сжатие, рабочий ход и выпуск. Исходя из назначения этих тактов, можно понять, как должен работать механизм газораспределения: на такте впуска открыт впускной клапан, открывая доступ топливно-воздушной смеси в цилиндр; на такте сжатия оба клапана закрыты (иначе не сожмёшь); во время рабочего хода клапаны также закрыты, чтобы вся энергия расширения горящей смеси была направлена только на перемещение поршня; на ходе выпуска выпускной клапан открыт и отработавшие газы через него дружно покидают цилиндр.

Ровно так оно и было бы, если бы клапаны имели возможность открываться и закрываться мгновенно, пока поршень находится в своей мёртвой точке, верхней или нижней. Чтобы представить, что такое мгновение для периода времени, в течение которого происходит рабочий цикл двигателя, мы должны вспомнить, что современные двигатели легко достигают шести и более тысяч оборотов коленчатого вала за минуту. За один рабочий цикл коленвал совершает два оборота, значит, каждый из клапанов открывается и закрывается три тысячи раз за минуту. А поршень оказывается в своих мёртвых точках шесть тысяч раз! Для сравнения, скорострельность легендарного автомата Калашникова всего шестьсот выстрелов в минуту, ровно в десять раз меньше! В таких условиях даже несколько миллисекунд работы двигателя - это достойный внимания временной период, в течение которого происходят очень важные процессы.

В теории во время тактов сжатия и рабочего хода оба клапана закрыты. На рисунке: I - ход впуска, впускной клапан открыт; II - ход сжатия; III - рабочий ход; IV - ход выпуска, выпускной клапан открыт

И даже если современные клапаны умеют перемещаться гораздо быстрее, чем их предки сто лет назад, то свойства горючих газов, движением которых они управляют, практически не изменились. Они также легко сжимаются при воздействии, и также упрямо продолжают стремиться во все стороны одинаково, подчиняясь закону Паскаля, а значит, не очень спешат переместиться туда, куда их просят. И чтобы обеспечить максимально возможное наполнение цилиндра за такой короткий промежуток времени, впускной клапан начинает открываться раньше, чем поршень завершит ход выпуска. А выпускной начнёт открываться раньше, чем завершится рабочий ход, чтобы находящиеся под давлением в цилиндре горячие газы не создавали излишнего сопротивления движению поршня, когда начнётся такт выпуска.

Моменты времени, когда начинается открытие, длительность их нахождения в открытом и закрытом состояниях, образуют фазы газораспределения двигателя. Управляет движением клапанов распределительный вал, в форме кулачков которого и «зашифрована» информация о фазах газораспределения вашего двигателя. Величины фаз подбираются при проектировании двигателя в зависимости от его конструкции, назначения, условий эксплуатации. В наиболее продвинутых двигателях эти фазы могут изменяться для конкретных условий работы и нагрузок в данный момент времени. В обычных же двигателях единственный эффективный способ изменить фазы газораспределения - это заменить распредвал. Изменение фаз газораспределения посредством установки оригинального распределительного вала - один из способов продвинутого тюнинга двигателя. Соглашаясь на такую процедуру, мы должны понимать, что рост мощности двигателя произойдёт за счёт ухудшения экономичности, снижения ресурса его деталей. Поэтому такую настройку, как правило, применяют на спортивных автомобилях, где ресурс, экономичность и экологичность двигателя имеют второстепенное значение.

В реальном двигателе, когда поршень находится около своих верхней (ВМТ) и нижней (НМТ) мертвых точек, впускной и выпускной клапаны одновременно открыты

Куда установить распредвал

Существуют разные варианты расположения распределительного вала в двигателе и конструкции механизмов, передающих давление от поверхности распредвала к стержню клапана. Однако, рост скорости современных легковых двигателей привёл к тому, что повсеместно в них закрепилась схема с расположением распределительного вала в головке двигателя - верхневальная конструкция. Близость расположения распредвала к клапанам позволяет увеличить жёсткость системы, а значит, повысить точность работы.

Прототип первых «Жигулей» ВАЗ-2101, итальянский Фиат-124, имел добротную и надёжную, но уже несовременную конструкцию двигателя с нижним распределительным валом. Советские инженеры решили, что двигатель нашего нового автомобиля должен идти в ногу со временем, и совместно с итальянцами модернизировали его, переместив распредвал в головку блока.

Зачем нужны зазоры

Закрывается клапан под действием специальной пружины. Чтобы профиль кулачка ни при каких обстоятельствах не мог воспрепятствовать полному закрытию клапана, между ним и толкателем выставляется строго определённый зазор. Причём этот зазор должен также учитывать увеличение длины стержня при нагреве. А нагревается клапан во время работы может очень сильно.

Головка впускного клапана автомобильного двигателя нагревается до температуры 300–400 градусов по Цельсию. А выпускной, который «омывается» горячими отработавшими газами - до 700–900 градусов, становясь при этом тёмно-вишнёвого цвета.

Способы обеспечения теплового зазора

При верхневальной схеме распредвал воздействует на стержень клапана либо напрямую, либо через коромысло. Применение коромысла позволяет уменьшить перепад профиля распредвала относительно величины максимального перемещения клапана при открытии. При непосредственном воздействии распредвала на стержень клапана стержень воспринимает значительную боковую силу, которая приводит к повышенному его износу. Чтобы избежать этого, торец стержня накрывают специальным стаканом, который принимает на себя боковую силу, двигаясь в собственном направляющем гнезде, и передаёт осевую силу на клапан. Между стаканом и кулачком распредвала устанавливают регулировочные шайбы. Если же в конструкции имеются коромысла, то на них устанавливают специальные регулировочные винты с контргайками.

Многие современные двигатели, особенно имеющие более двух клапанов на цилиндр, оснащаются гидравлическими компенсаторами зазоров в клапанах. В этих конструкциях регулировка тепловых зазоров не требуется.

Регулировка клапанов: когда и как

Как правило, зазор проверяется и регулируется при каждом ТО. Процедура выполняется на холодном двигателе. Для выполнения работы вам понадобится щуп и обычные ручные инструменты, в зависимости от применённого на вашем автомобиле крепежа. Для клапанов с регулировочными шайбами пригодится также пинцет, Перед началом обязательно ознакомьтесь с руководством по ремонту вашего автомобиля, где указаны величины зазора, особенности конструкции двигателя и описана последовательность его разборки и сборки. В общем случае порядок выполнения работы следующий:

  • снимите клапанную крышку;
  • отыщите метки на блоке двигателя и коленчатом вале (обычно на шкиве ремня ГРМ);
  • поворачивая коленчатый вал с помощью подходящего ключа (но ни в коем случае не стартером!) в направлении по часовой стрелке, если смотреть с передней части двигателя, совместите метки между собой. В этом положении поршень первого цилиндра находится в верхней мёртвой точке, оба клапана закрыты;
  • проверьте зазор между первым - со стороны шкива - кулачком распредвала и регулировочной шайбой (бойком коромысла);
  • если величина зазора больше требуемой, следует заменить шайбу на другую, большей толщины; если зазор меньше, то соответственно, толщину шайбы нужно уменьшить. Номинальная толщина шайбы, как правило, маркируется на ней самой. Если толщина шайбы неизвестна, то вам понадобится микрометр для правильного выбора новой шайбы. В конструкциях с коромыслом процедура проще, так как требуемого зазора мы достигаем, вворачивая или выворачивая регулировочный винт. После регулировки винтом не забудьте затянуть контргайку.
  • После выполнения регулировки проверку зазора обязательно нужно повторить. Допускаемое отклонение: плюс-минус 0,05 мм.
  • Обращайте внимание на то, что величина зазора для впускного и выпускного клапана, как правило, разная. Связано это с разной температурой нагрева, о чем говорилось выше. Так, для восьмиклапанного двигателя ВАЗ зазор на впускном клапане составляет 0,20 мм, а на выпускном - 0,35 мм.
  • Работу повторите для всех цилиндров, определяя их последовательность и угол поворота коленчатого вала в соответствии с рекомендациями изготовителя двигателя.

Видео: как отрегулировать зазоры на переднеприводных Ладах

В общих чертах конструкция газораспределительного механизма и процедура регулировки зазора в клапанах на дизельном двигателе такая же, как и на бензиновом.

Существует мнение, что после установки на двигатель газобаллонного оборудования необходимо изменять в сторону увеличения тепловой зазор в клапанах. Объясняют это более высокой температурой горения газа. На самом деле, этого не требуется. Особенности воспламенения и сгорания газовой смеси в цилиндре учитываются изменением угла зажигания, а процесс наполнения и отвода газов из цилиндра не отличается от такового при работе двигателя на бензине.

Когда зазор не только видно, но и слышно

Зачастую зазоры в клапанах бывает слышно, особенно в холодную погоду. Это выражается в лёгком металлическом пощелкивании при работе непрогретого двигателя. По мере прогревания звук слабеет. Если он слышен и на прогретом двигателе, то, скорее всего, все или некоторые из зазоров больше нормы. Увеличенный тепловой зазор уменьшает время нахождения клапана в открытом состоянии, что снижает эффективность работы двигателя, он начинает работать с перебоями, плохо запускается, возможно возникновение детонационного сгорания, которое пагубно действует на детали двигателя. Ещё опаснее уменьшенный зазор, потому что он полностью исчезает в прогретом до рабочей температуры двигателе и клапан перестаёт закрываться до конца. В результате также снижаются мощностные и экономические показатели двигателя, но самое неприятное, когда обгорают конические фаски на клапанах и на их сёдлах, а эту проблему простой регулировкой зазора уже не исправить.

Двигатель - сердце автомобиля, поэтому любые признаки ухудшения его работы должны заставить вас насторожиться и, при первом удобном случае заняться его диагностикой. Если упала мощность, вырос расход топлива, если двигатель «троит» или слышны хлопки в выпускной системе - проверьте исправность свечей зажигания и проверьте зазоры в клапанах.

Автомобиль С-класса Ford Focus 2 с завода оснащается оптикой высокого уровня. В зависимости от комплектации за внешнее освещение отвечает рефлектор с галогенной лампой или линза с ксеноном и автоматическим омывателем. Регулировка света фар «Форд-Фокуса 2» требуется достаточно редко из-за качественного внутреннего механизма. Но из-за попадания в большую яму на дороге или небольшую аварию возможно смещение линзы или отражающего элемента. В таком случае лучше провести регулировку.

Как определить, что требуется настройка оптики?

На «Форд-Фокусе 2» требуется в случае недостаточного освещения дорожного полотна в темное время суток. Визуальные признаки сбитой настройки в фаре:

В случае появления перечисленных выше проблем нужно проверить, в какое положение поставлена ручка электрического корректора фар в салоне. При необходимости вернуть регулятор в позицию «0» и убедиться, не устранена ли неисправность. Регулировка фар «Форд-Фокуса 2» (рестайлинг и дорестайлинг) может сбиться случайным нажатием на клавишу регулировки пучка фар из салона. Если настройки корректора верны, то потребуется регулировка механизма фары.

На что влияет регулировка? Сложно ли настроить оптику самостоятельно?

Правильная настройка светового пучка главным образом влияет на безопасность. От этого параметра зависит дальность обзора не только в темное время суток, но и в дождь, туман, снег. Неправильная регулировка может привести к серьезным последствиям, например, если водитель не заметит сломавшийся автомобиль на трассе или сильно ослепит встречного автовладельца.

Регулировка фар «Форд-Фокуса 2» не потребует много времени. Но нужна определенная подготовка автомобиля перед проведением работ:

  • Фары автомобиля должны быть чистые.
  • Следует проверить давление в колесах и накачать до параметров, заявленных на стойке авто или обшивке двери.
  • Запастись необходимыми инструментами: рулетка, отвертка, звездочка-torx, мелок или маркер.
  • Предварительно найти ровную площадку со зданием или стеной.

После несложных приготовлений можно приступать к настройке. Регулировка фар «Форд-Фокуса 2» по времени займет 15-20 минут.

Как самостоятельно отрегулировать фары?

Для правильной настройки головной оптики нужно выполнить шаги:

  • Поставить авто фарами к стене на расстоянии 3 метров.
  • Включить ближний свет фар и замерить высоту границы пучка от земли.
  • Граница линии света должна быть на 35 миллиметров меньше, чем высота от земли до лампочки автомобиля.
  • При замере максимальное значение расстояния центра пучка от обеих фар должно быть равно 1270 миллиметров.
  • Для удобства регулировки следует отметить на стене мелком или маркером небольшие линии, на которые должен падать свет.
  • Открыть капот. Найти сверху фары регулировочные винты, они сделаны под обычную отвертку или звездочку-torx.
  • Винт на боковом краю фары автомобиля отвечает за поворот влево и вправо.
  • Винт, расположенный в центре фары, отвечает за наклоны вверх и вниз.
  • Настроить с помощью винтов пучок света по заранее отмеченным линиям на стене.

Регулировка фар «Форд-Фокуса 2» не требует много времени и специальных знаний. После проведенных работ следует закрыть капот и проехать по плохо освещенным местам. Убедившись в правильной работе световых приборов, настройку можно считать оконченной.

Регулировать самостоятельно или в сервисе

Регулировка фар «Форд-Фокуса 2» в сервисном центре может обойтись в 1000-2000 рублей. Однако проверка стоит намного дешевле - 200-300 рублей. Чтобы сэкономить, можно самостоятельно провести работы по настройке, а в сервисе дополнительно проверить углы головного света на специальном стенде.

Несмотря на простоту, регулировка света головной оптики - это очень важная и ответственная работа, от которой зависит безопасность не только автовладельца, но и других транспортных средств. Именно поэтому после выполнения самостоятельно настройки все-таки нужно заехать на станцию технического обслуживания и сделать экспресс-проверку.

Угол кастера – один из важнейших параметров при настройке автомобиля. От него зависит поведение машины на дороге. Для рядовых автолюбителей не так важно выставить точный угол, им достаточно наличие электроусилителя или гидроусилителя руля .

Для гонщиков на спортивных автомобилях ситуация другая, придется поломать голову над этим вопросом. Существует множество теорий на что влияет угол регулировки кастера на то, как поведет себя машина. Порой очень сложно выбрать оптимальный угол регулировки для нужной устойчивости Вашего авто.

Что такое кастер

Углом кастера называют отклонение угла продольной оси от вертикали. Функция заключается в стабилизации прямолинейного движения автомобиля. Получается самоцентрирующаяся система, которая в разных условиях по-разному может влиять на поворот автомобиля и сам руль. Самоцентрование напрямую зависит на поворачиваемость колес. Чем больше угол кастера, тем лучше центрование, но шире радиус поворота автомобиля.

Важно правильно выставить угол, если Ваш путь лежит по скоростной трассе, без большого количества резких поворотов и неровностей, то следует выставить большой угол, если же предполагается езда по серпантину, то угол должен быть минимальный. Кастер колеса заставляет ехать автомобиль прямо при отпущенном руле. Чем большее отклонение от вертикальной оси, тем устойчивее транспортное средство на дороге. Так же он не дает машине наклоняться и опрокидываться.

Правильно выставленный развал схождение обеспечивает максимальную площадь соприкосновения шины с дорогой. Но при повороте руля покрышка деформируется под действием боковой силы. Кастер наклоняет колеса в сторону поворота руля, тем самым увеличивая эффективность развала. Достигается наибольшая площадь соприкосновения шины с пятном контакта.

Кастер бывает:

  1. Положительный – ось поворота отклонена назад.
  2. Нулевой – ось поворота совпадает с вертикалью.
  3. Отрицательный – ось поворота отклонена вперед.

Как угол кастера влияет на управляемость машины

Представьте ситуацию, Вы едете по ровному асфальту, впереди поворот и на скорости 40 км/ч автомобиль совершает маневр. Машина начинает описывать дугу поворота, как вдруг передняя ось начинает скользить, Вы ослабляете угол поворота руля, но автомобиль все равно выносит на внешнюю часть поворота и ни чего не остается, как увеличить или уменьшить скорость, ловя сцепление шин с дорогой. Так произошло по причине недостаточной поворачиваемости. Передний или задний рулевой привод, в зависимости от того какой у Вас основной, просто не поймал сцепление с дорогой. Причин может быть много:

  • ширина оси колес;
  • давление в шинах;
  • отсутствия дифференциала высокого трения;
  • неправильно распределенный балласт;
  • продольный наклон оси поворота (кастер).

Все это влияет на поведение автомобиля при повороте. Малейшее изменение одного из параметров может существенно сказаться на управляемости всего транспортного средства. Производитель старается найти компромисс между величиной всех параметров автомобиля. И зачастую маневренностью жертвуют в угоду комфортности. Поэтому устанавливаются небольшой угол Аккермана и кастера. Рассчитывая, что для повседневного использования не нужны характеристики гоночного болида, который реагирует на малейший угол поворота.

Небольшое отклонение кастера


На автомобилях устанавливаю положительный угол отклонения в пределах 1-2˚, что обеспечивает более острый угол поворота. Подвеска лучше ловит ухабы и неровности, езда становиться мягче. Однако при выходе из поворота нагрузка перемешается на заднюю ось и передние колеса, с которых ушла нагрузка, хуже держат сцепление с дорогой. Колесо хуже самоцентрируется, приходиться доводить самому.

Наклонный кастер

Увеличив угол кастера до 5-6˚ руль становиться тяжелее, увеличивается информативность, управляемость, обратная связь и улучшается сцепление с дорогой при выходе из поворота. Но ухудшается поворачиваемость колес в начале поворота, ось меньше отклоняются в сторону. Самоцентрирование улучшается, так как колеса сопротивляются центробежной силе и пытаются вернуться в исходное положение.

Регулировка кастера

Кастер задается заводом изготовителем. Он обусловлен конструктивно и геометрией деталей. Если у вас произошло отклонение его, то вероятнее всего был удар, при котором его сместило. И нужно ехать в сервис на диагностику и замену деформированных деталей. В 98% случаев регулировка кастера не предусмотрена, что может являться для некоторых открытием. Кастер лишь дополняет поведенческие характеристики каждого отдельного автомобиля, углы являются индивидуальными.

Примером может служить Mercedes-Benz, у них угол кастера установлен на +10-12˚ при этом, обладают отличной маневренностью, управляемостью и устойчивостью на дороге. Достигается такой эффект за счет изменения развала. При таком наклоне углов развала будет больше, чем при наклоне в 1-2 градус и автомобиль не потеряет в маневренности и сохранит устойчивость. Так цель была достигнута нестандартным путем.

1

В представленной статье рассматривается влияние регулировки привода на работу регулятора тормозных сил (ВАЗ-2108-351205211) переднеприводных автомобилей ВАЗ. Правильно отрегулированный заводом-изготовителем привод в процессе эксплуатации подвергается вибрационным нагрузкам, приводящим к изменению точки крепления привода. Для исследования были взяты регулятор тормозных сил и его механический привод, не имеющие наработки. На стенде снимались выходные параметры – давление тормозной жидкости, создаваемое на выходных отверстиях регулятора тормозных сил, при разных положениях точки крепления привода и двух режимах нагрузки, имитирующие снаряжённый и полный вес автомобиля. На основании полученных данных были построены рабочие характеристики регулятора тормозных сил. По результатам анализа были сделаны выводы о влиянии положения точки крепления привода регулятора тормозных сил на его работоспособность. Для подтверждения полученных лабораторных данных были исследованы механические приводы регулятора тормозных сил эксплуатируемых автомобилей ВАЗ. При анализе полученных данных была определена предельная наработка элементов крепления механического привода регулятора тормозных сил, на основании которой сформулированы рекомендации по техническому воздействию при обслуживании.

механический привод регулятора тормозных сил.

регулятор тормозных сил

контуры тормозной системы

рабочая тормозная система

1. ВАЗ-2110i, -2111i, -2112i. Руководство по эксплуатации, техническому обслуживанию и ремонту. – М.: Издательский Дом Третий Рим, 2008. – 192 с.;

2. Патент на полезную модель №130936 «Стенд для определения статической характеристики регулятора тормозных сил» / Д.Н. Смирнов, С.В. Курочкин, В.А. Немков // Патентообладатель ВлГУ, зарегистрирован 10 августа 2013 г.;

3. Смирнов Д.Н. Исследование износа элементов конструкции регулятора тормозных сил // Электронный научный журнал «Современные проблемы науки и образования». – 2013. -№2. SSN-1817-6321 / http://www..

4. Смирнов Д.Н., Кириллов А.Г. Исследование работоспособности привода регулятора тормозных сил // Актуальные проблемы эксплуатации автотранспортных средств: материалы XIV Международной научно-практической конференции / под ред. А.Г. Кириллова. – Владимир: ВлГУ, 2011. – 334 с. ISBN 978-5-9984-0237-1;

5. Смирнов Д.Н., Немков В.А., Маюнов Е.В. Стенд для определения статической характеристики регулятора тормозных сил // Актуальные проблемы эксплуатации автотранспортных средств: материалы XIV Международной научно-практической конференции / под ред. А.Г. Кириллова. – Владимир: ВлГУ, 2011. – 334 с. ISBN 978-5-9984-0237-1.

Введение. Проводимые авторами исследования работы регулятора тормозных сил (РТС) в условиях эксплуатации позволили установить, что на его работоспособность влияет изменение геометрических параметров элементов РТС. В процессе эксплуатации сопряжённые поверхности элементов конструкции РТС подвергаются механическому и коррозионно-механическому изнашиванию. Чем больше износ элементов, тем выше вероятность отказа регулятора. На работоспособность РТС также оказывает влияние его привод.

Материалы и методы исследования. В конструкции привода РТС имеются четыре сопряжения элементов конструкции , которым в процессе эксплуатации присущи характерные дефекты или износ, приводящие к некорректной работе системы:

  • неправильное взаимоположение торсиона и рычага привода регулятора;
  • износ штифта двуплечего кронштейна рычага привода РТС;
  • неправильная регулировка крепления привода РТС (позиция 4, рис. 1);
  • износ головки штока дифференциального поршня.

Дефекты во всех четырёх сопряжениях формируются параллельно, но проявляться они могут как отдельно друг от друга, так и одновременно. Наиболее распространённым дефектом является неправильная регулировка привода.

Рис. 1. Регулятор тормозных сил с приводом: 1 - пружина рычага; 2 - штифты; 3 - двуплечий кронштейн рычага привода РТС; 4 - крепление привода; 5 - кронштейн крепления регулятора к кузову автомобиля; 6 - упругий рычаг (торсион) привода РТС; 7 - РТС; 8 - рычаг привода регулятора; A, D - входные отверстия РТС; B, C - выходные отверстия РТС

Неправильная регулировка привода возникает при сдвиге влево или вправо относительно РТС двуплечего кронштейна рычага привода регулятора 3 (рис. 1), имеющего овальное отверстие в точке крепления 4 (длина большой оси 20 мм). Данный сдвиг может являться следствием эксплуатации (ослабление крепления при вибрационной нагрузке или постоянной перегрузке автомобиля) или вмешательства некомпетентных лиц.

Рекомендуемая регулировка привода обеспечивается соблюдением зазора между нижней частью рычага 8 привода регулятора и пружиной 1 рычага. Данный зазор по рекомендациям завода-изготовителя должен быть в пределах ∆ = 2…2,1 мм при снаряжённой массе автомобиля.

Результаты исследования и их обсуждения. Рассмотрим рабочие характеристики РТС при различной регулировке привода. Для исследования были взяты регулятор и его привод, которые не эксплуатировались на автомобиле. Выбор нового регулятора основан на отсутствии износа элементов РТС и его привода, что позволяет получить нормативные характеристики РТС.

Для получения рабочих характеристик РТС был использован стенд для определения статической характеристики регулятора тормозных сил .

На рис. 2, а представлены рабочие характеристики РТС при имитации снаряжённого состояния автомобиля в трёх положениях регулировки привода.

При рекомендуемой регулировке привода (линии 1, 2, рис. 2, а) ограничение давления тормозной жидкости происходит при величине p0xср = 3,04 МПа, что находится в допустимых пределах при сравнении с заводскими характеристиками (линии вг и нг, рис. 2, а). Далее продолжается плавное нарастание давления за счёт дросселирования жидкости внутри РТС. В результате при давлении тормозной жидкости на входах A, DРТС p0 = 9,81 МПа, на выходе B - p1 = 4,61 МПа, на выходе C - p2 = 4,90 МПа, что тоже вписывается в допустимый коридор, установленный заводом-изготовителем (линии вг и нг, рис. 2, а). Разница между выходными величинами давления тормозной жидкостиp1 и p2 составляет ∆p =0,29 МПа, что соответствует допустимым пределам заводской характеристики .

При регулировке привода в крайнем левом положении (линии 3, 4, рис. 2, а) отсутствует полное срабатывание РТС, но присутствует момент начала его срабатывания, которое наблюдается при p0xлев = 4,12 МПа. Этот факт объясняется тем, что зафиксированный в крайнем левом положении привод воздействует на шток поршня с большим усилием Pп, которое выше результирующего усилия на головку поршня при максимальном значении p0max (как показали измерения p0max>>9,81 МПа). В конечном итоге при давлении тормозной жидкости на входах A, DРТС p0 = 9,81 МПа на выходе B создастся давление p1 = 6,77 МПа и на выходе C - p2 = 7,45 МПа. Разница между выходными величинами давления тормозной жидкости составляет ∆p = 0,69 МПа, что превышает допустимое значение на 0,29 МПа.

Эксплуатация автомобиля при таких условиях опасна по двум причинам:

§ давление тормозной жидкости в тормозных механизмах задней оси выходит за верхнюю границу коридора рекомендуемых значений, что приведёт при экстренном торможении к первоочередному блокированию колёс задней оси при всех значениях φ;

§ неравномерность тормозного усилия задней оси, вызванная разностью давлений, может привести к потере устойчивости автомобиля при экстренном торможении вне зависимости от состояния покрытия.


Рис. 2. Рабочие характеристики РТС при разной фиксации привода: а) - при снаряжённой массе автомобиля; б) - при полной массе автомобиля;p0 - величина давление тормозной жидкости на входных отверстиях РТС, МПа; p1, p2 - величина давления тормозной жидкости на выходных отверсиях РТС; 1, 2 - правильная фиксация привода; 3, 4 - фиксация привода в крайнем левом положении;5, 6 - фиксация привода в крайнем правом положении; 1, 3, 6 - изменение давления тормозной жидкости на тормозном механизме заднего левого колеса автомобиля; 2, 4, 5 - изменение давление тормозной жидкости на тормозном механизме заднего правого колеса автомобиля; вг, нг - верхняя и нижняя границы допустимых значений рабочих характеристик; ном - номинальное значение рабочей характеристики; p0xср, p0xлев - давление тормозной жидкости, при котором происходит срабатывание РТС, при правильной фиксации привода и фиксации в крайнем левом положении, соответственно

Регулировка привода в крайнем правом положении создаёт зазор ∆ = 6…6,1 мм между нижней частью рычага 8 привода регулятора (рис. 1) и пружиной 1 рычага. Данная величина зазора делает бесполезным механический привод РТС при снаряжённой массе автомобиля, т.к. привод не обеспечивает усилия на головке штока поршня, что и показывает рабочая характеристика (линии 5, 6, рис. 2, а). Точка срабатывания РТС отсутствует для выхода C, а для выхода B она находится в нуле. Рост давления тормозной жидкости p2 на выходе C не наблюдается, т.к. клапан пробки РТС находится в закрытом положении. При входном давлении (отверстия A,D, рис. 1) p0 = 9,81 МПа давление тормозной жидкости на выходе B будет ограничено до p1 = 2,45 МПа. Разница между выходными величинами давления тормозной жидкости p1 и p2 превышает допустимое значение ∆p = 2,06 МПа, установленное заводом-изготовителем.

Эксплуатация автомобиля при регулировке привода РТС в крайнем правом положении опасна по тем же причинам, что и при регулировке в крайнем левом положении.

На рис. 2, б представлены рабочие характеристики РТС в трёх положениях фиксации привода при имитации полной нагрузки автомобиля.

При рекомендуемом положении регулировки привода (линии 1, 2, рис. 2, б) характеристики давлений тормозной жидкости на выходах РТС имеют практически линейный вид. Разница между выходными величинами давления p1 и p2 тормозной жидкости составляет ∆p =0,39 МПа (например, при давлении на входах p0 = 2,94 МПа) - в допустимых пределах . Ограничения давления на выходах B и C не происходит, т.к. при имитации полной загрузки автомобиля механический привод воздействует на шток поршня с усилием, которое выше результирующего усилия на головку штока дифференциального поршня при максимальном значении p0max.

При регулировке привода в крайнем левом положении рабочие характеристики РТС имеют тот же вид (линии 3, 4, рис. 2, б), что и рабочие характеристики при рекомендуемой регулировке привода. Ограничение давления тормозной жидкости на выходах РТС не происходит. В результате при входных величинах давления тормозной жидкости p0 = 9,81 МПа, на выходах РТС будет p1 = 9,81 МПа,p2 = 9,61 МПа. Разница выходных давлений ∆p = 0,20 МПа в допустимых пределах.

При регулировке привода в крайнем правом положении (линии 5, 6, рис. 2, б) рабочие характеристики имеют вид рабочих характеристик, полученных при имитации снаряжённого состояния автомобиля и рекомендуемой регулировке привода (линии 1, 2, рис. 2, а). Но есть одно существенное отличие: ограничение давления тормозной жидкости происходит очень рано, и точка срабатывания может лежать в интервале p0x =0…0,39 МПа. Это приведёт к значительному сокращению ресурсаколодок и шин передних колёс, т.к. при полной нагрузке автомобиля передние тормозные механизмы постоянно будут перегружены при возрастающей тормозной силе.

Для сбора статистических данных, связанных с изменением регулировки привода РТС, были исследованы автомобили, находящиеся в эксплуатации в центральном федеральном округе РФ на автомобильных дорогах обычного типа категории II, III, IV и V. Автомобили имели разный срок эксплуатации, варьирующийся от 3 до 70 тыс. км. Исследованию подвергалось 55 автомобилей, имеющих в тормозном приводе РТС маркировки ВАЗ-2108-351205211.

Анализируя собранные статистические данные о надёжности механического привода и вероятности его отказа по причине изменения кинематики, был получен график зависимости изменения положения регулировки ∆Sкрепления привода от наработки привода РТС (рис. 3).

Рис. 3. График зависимости сдвига крепления механического привода от величины наработки: ∆S - величина изменения положения регулировки крепления привода, мм; L - наработка привода РТС, тыс. км; X - точка начала сдвига; Y - точка критической величины сдвига; 1 - линия, характеризующая максимально допустимую величину смещения крепления привода РТС; уравнение зависимости: ∆S = 0,0021L2 - 0,0675L + 0,2128

В интервале 1 (рис. 3) наработки (29,1% исследованных автомобилей) причиной отказов является нарушение технологии изготовления и сборки. Изменение положения регулировки ∆S крепления привода на интервале 1 отсутствует.

На интервале 2 (рис. 3) наработки L от 29,400 ± 0,220 до 51,143 ± 0,220 тыс. км (41,8% выборки) начинает проявляться изменение положения регулировки ∆S крепления привода в сторону крайнего правого положения. На пробеге L = 51,143 ± 0,220 тыс. км наблюдается величина изменение положения регулировки ∆S= 2,25 мм крепления привода, при этом зазор между нижней частью рычага 8 (рис. 1) привода регулятора и пружиной 1 рычага ∆ =3,5…3,6 мм. При таком зазоре клапан пробки РТС, отвечающий за ограничение давления тормозной жидкости в приводе к заднему правому рабочему цилиндру и имеющий ход 1,5 мм, будет закрыт при снаряжённой массе автомобиля. В результате на колёсах задней оси возникнет разность тормозных сил, что приведёт к потере устойчивости автомобиля при торможении.

На рис. 4 представлена прямая зависимость зазора ∆ от изменения положения регулировки ∆S крепления привода РТС, а на рис. 5 - зависимость динамического коэффициента преобразования Wд РТС от изменения положения регулировки ∆S крепления привода РТС. Величина максимально допустимого изменения положения регулировки ∆S крепления привода РТС в правую сторону, определённая двумя способами, имеет одно значение ∆S = 2,25 мм.

При дальнейшей эксплуатации автомобиля (болееL = 51,143 ± 0,220 тыс. км, интервал 3) возрастает вероятность отказа РТС по причине отсутствия усилия Pп со стороны привода.

Рис. 4. График зависимости зазора ∆ между нижней частью рычага привода регулятора и пружиной рычага от изменения положения крепления ∆S привода РТС; уравнение зависимости: ∆ = 0,6667∆S + 2,1

Рис. 5. График зависимости динамического коэффициента преобразования Wд РТС от изменения положения крепления ∆S привода РТС: 1, 2, 3 - нижняя граница, номинальное значение и верхняя граница динамического коэффициента преобразования РТС соответственно; 4 - изменение динамического коэффициента преобразования от крайней левой фиксации привода к крайней правой; А, Б - максимально допустимые значения сдвига привода РТС в левую и правую сторону соответственно

В ходе исследований наблюдались случаи, не соответствующие естественному эксплуатационному изменению положения крепления привода РТС (5,5% исследуемых автомобилей): 1) на автомобиле, имеющем L = 27,775 тыс. км наработки, изменение положения крепления привода составило 6 мм в сторону крайнего левого положения; 2) на автомобиле, имеющем пробег L = 58,318 тыс. км с начала эксплуатации, изменение положения крепления привода был в сторону крайнего правого положения на 6 мм; 3) на автомобиле, имеющем L = 60,762 тыс. км наработки, изменение положения крепления привода составил 1 мм в сторону крайнего правого положения фиксации привода РТС.

На основании результатов исследования можно рекомендовать включить в регламентные технические воздействия следующие виды работ по приводу РТС:

  • при проведении технического обслуживания (ТО) на пробеге 30 тыс. км уделять повышенное внимание состоянию РТС и его механического привода. Проверить изменение положения крепления привода, корректировать необходимое его положение путём замера зазора ∆ между нижней частью рычага 8 (рис. 1) привода регулятора и пружиной 1 рычага;
  • при проведении ТО на пробеге 45 тыс. км заменить элементы крепления привода: болт М8×50 крепления привода 4 (рис. 1), кронштейн 5 крепления регулятора к кузову. Установить необходимый зазор ∆ между нижней частью рычага 8 (рис. 1) привода регулятора и пружиной 7 рычага;
  • при каждом последующем ТО с периодичностью 15 тыс. км проводить работы по обслуживанию механического привода РТС, описанные в пункте 1, а с периодичностью 45 тыс. км - работы, описанные в пункте 2.

Выводы. Таким образом, положение регулировки привода оказывает существенное влияние на рабочие процессы РТС. Как показали исследования, при полной нагрузке автомобиля изменение положения регулировки привода РТС в меньшей степени влияет на активную безопасность, чем при снаряжённой массе. При снаряжённой массе опасна эксплуатация автомобиля при изменении положения регулировки привода от рекомендуемой, т.к. происходит первоочередное блокирование колёс задней оси автомобиля, и дальнейшая эксплуатация может привести к дорожно-транспортному происшествию. При исследовании выборки автомобилей было выявлено, что изменения в настройках привода РТС начинают возникать при L =29,400± 0,220 тыс. км эксплуатации. В большинстве случаев (70,9% выборки) изменение положения крепления привода происходит в сторону крайнего правого положения. Поэтому необходимо проводить комплекс мероприятий, направленных на обслуживание механического привода РТС при достижении автомобилем пробега 30 тыс. км, а при ТО на пробеге 45 тыс. км необходимо заменить элементы крепления механического привода РТС.

Рецензенты:

Гоц А.Н., д.т.н., профессор кафедры «Тепловые двигатели и энергетические установки» Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ), г. Владимир.

Кульчицкий А.Р., д.т.н., профессор, главный специалист ООО «Завод инновационных продуктов», г. Владимир.

Библиографическая ссылка

Смирнов Д.Н., Кириллов А.Г., Нуждин Р.В. ВЛИЯНИЕ РЕГУЛИРОВКИ ПРИВОДА НА РАБОТУ РЕГУЛЯТОРА ТОРМОЗНЫХ СИЛ // Современные проблемы науки и образования. – 2013. – № 6.;
URL: http://science-education.ru/ru/article/view?id=11523 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Любой двигатель внутреннего сгорания имеет впускной и выпускной механизм (по которым подается новая топливная смесь в цилиндры двигателя, а также отводится отработанные газы). Важнейшим элементом являются клапана (впускные и выпускные), именно от их правильной работы зависит работоспособность всего силового агрегата. Через определенный пробег работа мотора может стать шумной, также пропадает тяга, увеличивается расход топлива, и вы можете слышать от мастеров (да и просто от знающих водителей) – что нужно «регулировать клапана». Что это за процесс? Зачем он делается и почему так необходим? Давайте разбираться, как обычно будет и видео версия …


В самом начале мне хочется сказать, что я сегодня не буду рассказывать про систему ГРМ с , все же это тема для отдельной статьи. Рассмотрим систему с обычными толкателями, которые сейчас очень популярны на многих автомобилях, именно эта система нуждается в регулировке через определенный интервал

Что такое «толкатели»?

Начнем с простого (многие я уверен), не знают что это такое. Для того чтобы верхняя часть клапана, да и кулачек распределительного вала ходили дольше, на них стали одевать так называемые толкатели. Это цилиндр, с одной стороны он имеет дна, оно есть с противоположной стороны (если утрировать, он похож на металлический «стаканчик»).

Полой частью он одевается на клапанную систему с пружиной, а вот дном он упирается в «кулачек» распределительного вала. Так как поверхность толкателя большая, от 25 до 45 мм (у различных производителей по-разному), изнашиваться он будет дольше, чем скажем просто верхняя часть «штока» (у которой диаметр всего 5-7 мм).

Толкатели делятся на два вида:

  • Цельные – их регулировка происходит полностью заменой корпуса
  • Разборные – когда сверху в крышке есть проточка, в которую устанавливается специальная регулировочная шайба. Можно ее заменить, таким образом подобрать величину теплового зазора

Эти элементы невечные, и их (либо шайбы сверху) также нужно заменить через определенный пробег.

Тепловой зазор – что это такое?

В идеале кулачек распределительного вала и толкатель должны быть максимально прижаты друг к другу, чтобы поверхности идеально контактировали. НО все мы знаем, что двигатель состоит из металла (алюминий чугун не важно), также из других металлов состоят и клапана, толкатели и распредвалы. При нагревании металлы имеют обыкновение расширяться (удлиняться).

И уже зазор, который был идеален на холодном двигателе, становится неправильным на горячем! Простыми словами клапана становятся зажатыми (это плохо, про это поговорим ниже).

Из этого следует, что на холодном моторе, нужно оставлять специальные тепловые зазоры с компенсацией на расширение при горячем. Эти значения небольшие и измеряются в микронах специальными щупами. Причем на впуске и выпуске эти значения отличаются

Если тепловой зазор между кулачком распределительного вала и толкателем клапана уменьшается или увеличивается – то это ОЧЕНЬ плохо для работоспособности двигателя и самого механизма ГРМ в целом . Сейчас у каждого производителя существует специальный регламент регулировки этого «теплового зазора» (это и называется «регулировкой клапанов») – обычно он колеблется от 60 до 100 000 км , все зависит от материалов, которые применяются в конструкции. Как я писал выше — регулировка осуществляется путем подбора либо «цельных» толкателей, либо замены «шайб» в верней части.

«Теплонагруженность» впускных и выпускных клапанов

Хочу начать с того, что эти элементы двигателя это очень сильно теплонагруженные детали. Они достаточно миниатюрные, зачастую диаметр штока клапана всего 5 мм, а температура в камере сгорания может достигать 1500 – 2000°С (пусть кратковременно но все же).

Как я писал выше зазоры у впускных и выпускных клапанов различаются, обычно на выпуске они намного больше (примерно на 30%). Для примера (на моторах Корейских авто) «выпускные» имеют тепловой зазор около — 0,2 мм, а на «выпускных» около – 0,3 мм.

Но почему на выпуске зазоры устанавливаются больше? Все дело в том, что выпускные клапана «страдают» больше, чем впускные. Ведь через них отводятся ГОРЯЧИЕ отработанные газы, соответственно разогрев их больше – поэтому расширяются (удлиняются) они также больше.

Почему обязательно нужно регулировать?

Есть всего две причины. Это их «зажатие», когда тепловой зазор пропадает между кулачком распредвала и толкателем. И наоборот увеличение зазора. И тот и другой случай не несут ничего хорошего. Я постараюсь более подробно рассказать все на пальцах

Почему зажимает клапана?

Нужно отметить, что «зажатие» очень часто происходит у тех, кто ездит на газу (газомоторном топливе). Самая широкая часть клапана называется тарелка (у нее есть фаска по краям), именно она находится в камере сгорания одной стороной, другой она прижимается к «седлу» в головке блока (это часть куда заходит клапан, таким образом, герметизируя камеру сгорания).

От больших пробегов начинают изнашиваться «седло», а также фаска на «тарелке». Таким образом «шток» двигается наверх, прижимая «толкатель» к «кулачку» практически вплотную. Именно поэтому может происходить «зажим».

ЭТО ОЧЕНЬ ПЛОХО! Почему? Да все просто – тепловое расширение никто ни куда не делось. Значит, в «зажатом» случае, когда шток будет разогреваться (происходит удлинение), то тарелка будет чуть выходить из седла:

  • Падает компрессия, соответственно падает мощность
  • Нарушается контакт с головкой блока (с седлом) – нет нормального отвода тепла от клапана – головке
  • При воспламенении, часть горящей смеси может проходить мимо клапана сразу в выпускной коллектор, оплавляя либо разрушая «тарелку» и ее фаску

  • Ну и второстепенная причина, эта смесь может негативно воздействовать на .

Нужно помнить что «впускные элементы» охлаждаются вновь поступающей топливной смесью!

А вот отвод тепла «выпускных» зависит от того, как он плотно прижимается к «седлу»!

Увеличение зазора

Бывает и другая ситуация. Она характерна для моторов, работающих на бензине. Наоборот увеличение «теплового зазора». Почему такое происходит и почему это плохо?

Со временем плоскость толкателя, как и поверхность кулачков рапределительного вала изнашиваются – что приводит к увеличению зазора. Если его вовремя не отрегулировать, то он еще более увеличивается от ударных нагрузок. Мотор начинает работать шумно, даже на «горячую».

Уменьшается мощность двигателя из-за нарушений фаз газораспределения. Если сказать «простым языком» впускные клапана открываются чуть позже, что не позволяет нормально наполнить камеру сгорания, «выпускные» также открываются позже, что не дает нормально отойти отработанным газам.