Положительный момент силы по часовой. Правила знаков для поперечной силы и изгибающего момента. Алгоритм решения задачи


Теоретическая механика. Статика :

Система сходящихся сил
Определение и теорема о трех силах
Графическое определение равнодействующей сходящихся сил
Аналитическое задание силы
Аналитическое определение равнодействующей сходящихся сил
Условия и уравнения равновесия системы сходящихся сил
Решение задач
★ Равновесие под действием сходящейся системы сил

Теория пар сил

Пара сил и ее свойства
Теоремы об эквивалентности пар
Сложение пар сил
Равновесие систем пар

Приведение плоской системы сил
Лемма Пуансо
Теорема о приведении плоской системы сил
Частные случаи приведения плоской системы сил
Уравновешенная система сил

Определение опорных реакций плоских стержневых систем
★ Равновесие под действием системы параллельных сил на плоскости
Система параллельных сил
Произвольная плоская система сил
Произвольная плоская система сил. РГР 1
★ Равновесие плоской произвольной системы сил
Расчет составных систем
Расчет составных систем. РГР 2
★ Равновесие системы тел 1
★ Равновесие системы тел 2
★ Равновесие системы тел 3
Графическое определение опорных реакций

subjects:termeh:statics:момент_силы_относительно_центра

Рассмотрим тело, которое закреплено в центре О и может поворачиваться вокруг оси, проходящей через точку О и перпендикулярной к плоскости чертежа. Приложим в точке А этого тела силу P и выясним, чем определяется вращательное действие этой силы (Рис.1 ).

Очевидно, что воздействие силы на тело будет зависеть не только от ее величины, но и от того, как она направлена, и в конечном итоге будет определяться ее моментом относительно центра О .

Определение 1. Моментом силы Р относительно центра О называется взятое со знаком $\pm$ произведение модуля силы на ее плечо – то есть длину перпендикуляра, опущенного из моментной точки на линию действия силы.

Правило знаков: момент силы считается положительным, если сила стремится повернуть тело против хода часовой стрелки и отрицательным, если она вращает тело по ходу часовой стрелки.

В соответствии с данным определением момент силы численно равен удвоенной площади треугольника OAB, построенного на векторе силы P с вершиной в моментной точке: $M_0(P) = P\cdot d = 2S\Delta_{OAB}$ .

Отметим, что момент силы относительно точки О равен нулю, если линия действия силы проходит через моментную точку .

Рассмотренное определение момента силы подходит только для плоской системы сил. В общем случае для однозначного описания вращательного действия силы введем следующее определение.

Определение 2. Вектор-моментом силы Р относительно центра О называется вектор, который:

    приложен в моментной точке О перпендикулярно к плоскости треугольника, построенного на векторе силы с вершиной в моментной точке ;

    направлен по правилу право винта ;

    равен по модулю моменту силы Р относительно центра О ( Рис.1а ).

Правило правого винта , известное также из курса физики как правило буравчика , означает, что если смотреть навстречу вектор-моменту $\vec{М_0}(\vec{P})$ , мы увидим вращение силой $\vec{P}$ плоскости своего действия, происходящим против хода часовой стрелки .

Обозначим через $\vec{r}$ радиус-вектор точки приложения силы $\vec{P}$ и докажем, что справедлива следующая

Теорема 1. Вектор-момент силы $\vec{P}$ относительно центра О равен векторному произведению радиус-вектора $\vec{r}$ и вектора силы $\vec{P}$ :

$$\vec{M_0}(\vec{P}) = (\vec{r} \times \vec{P})$$

Напомним, что векторным произведением векторов $\vec{a}\text{ и }\vec{b}$ называется вектор $\vec{c}$ , который (Рис.2б ):

    перпендикулярен к векторам $\vec{a}\text{ и }\vec{b}$ ;

    образует с ними правую тройку векторов, то есть, направлен так, что, смотря навстречу этому вектору, мы увидим поворот от вектора $\vec{a}$ к вектору $\vec{b}$ на наименьший угол происходящим против хода часовой стрелки;

    равен по модулю удвоенной площади треугольника, построенного на этих векторах:

$$|\vec{c}| = |\vec{a} \times \vec{b}| = |\vec{a}|\cdot|\vec{b}|\cdot\sin(\vec{a},\,\vec{b})$$

Для доказательства теоремы отметим, во-первых, что вектор, равный векторному произведению векторов $\vec{r}\text{ и }\vec{P}$ будет коллинеарным вектору $\vec{M_0}(\vec{P})$.

Чтобы убедиться в этом, достаточно отложить эти векторы от одной точки (Рис.1в ). Итак, $(\vec{r} \times \vec{P}) \uparrow \uparrow \vec{M_0}(\vec{P})$.

Во-вторых, модуль векторного произведения этих векторов будет равен:

$$|\vec{r} \times \vec{P}| = |\vec{r}|\cdot|\vec{P}|\cdot\sin(\vec{r},\,\vec{P}) = P \cdot d =|\vec{M_0}(\vec{P})|$$

Откуда и следует соотношение теоремы.

Следствием этой теоремы является:

Теорема Вариньона (о моменте равнодействующей сходящихся сил). Вектор- момент равнодействующей системы сходящихся сил относительно произвольного центра О равен геометрической сумме вектор-моментов всех сил системы относительно этого центра:

$$\vec{M_0}(\vec{R}) = \sum_{i=1}^{i=n}\vec{M_{0\,\,i}}(\vec{P_i})$$

В самом деле, момент равнодействующей, с учетом теоремы 1 и аналитического определения равнодействующей сходящихся сил , будет равен:

$$ \vec{M_0}(\vec{R})= \vec{R}\times\vec{r} \,\,\,\;\;\text{ , т.к. } \vec{M_0}(\vec{P}) = (\vec{r} \times \vec{P}) \\ \vec{R}\times\vec{r}= \vec{r}\times\sum_{i=1}^{i=n}\vec{P_i} \,\,\,\;\;\text{ , т.к. } (\vec{P_1}, \vec{P_2}, \dots, \vec{P_n}) \sim \vec{R} = \sum_{i=1}^{i=n} \vec{P_i} \\ \vec{r}\times\sum_{i=1}^{i=n}\vec{P_i} = \sum_{i=1}^{i=n}(\vec{r}\times\vec{P_i}) = \sum_{i=1}^{i=n}\vec{M_{0\,\,i}}(\vec{P_i}) $$

Для плоской системы сходящихся сил геометрическая сумма в теореме Вариньона переходит в алгебраическую:

$$M_0(R)=\sum_{i=1}^{i=n}M_{0\,\,i}(\vec{P_i})$$

Примечание

    В учебной литературе термин «момент» применяют для обозначения как момента силы, так и ее вектор-момента.

subjects/termeh/statics/момент_силы_относительно_центра.txt · Последние изменения: 2013/07/19 19:53 - ¶

Итак, для равновесия тела, закрепленного на оси, существен не сам модуль силы, а произведение модуля силы на расстояние от оси до линии, вдоль которой действует сила (рис. 115; предполагается, что сила лежит в плоскости, перпендикулярной к оси вращения). Это произведение называется моментом силы относительно оси или просто моментом силы. Расстояние называется плечом силы. Обозначив момент силы буквой , получим

Условимся считать момент силы положительным, если эта сила, действуя в отдельности, вращала бы тело по часовой стрелке, и отрицательным в противном случае (при этом нужно заранее условиться, с какой стороны мы будем смотреть на тело). Например, силам и на рис. 116 нужно приписать положительный момент, а силе - отрицательный.

Рис. 115. Момент силы равен произведению ее модуля на плечо

Рис. 116. Моменты сил и положительны, момент силы отрицателен

Рис. 117. Момент силы равен произведению модуля составляющей силы на модуль радиус-вектора

Моменту силы можно дать еще и другое определение. Проведем из точки , лежащей на оси в той же плоскости, что и сила, в точку приложения силы направленный отрезок (рис. 117). Этот отрезок называется радиус-вектором точки приложения силы. Модуль вектора равен расстоянию от оси до точки приложения силы. Теперь построим составляющую силы , перпендикулярную к радиус-вектору . Обозначим эту составляющую через . Из рисунка видно, что , a . Перемножив оба выражения, получим, что .

Таким образом, момент силы можно представить в виде

где - модуль составляющей силы , перпендикулярной к радиус-вектору точки приложения силы, - модуль радиус-вектора. Отметим, что произведение численно равно площади параллелограмма, построенного на векторах и (рис. 117). На рис. 118 показаны силы, моменты которых относительно оси одинаковы. Из рис. 119 видно, что перенесение точки приложения силы вдоль ее направления не меняет ее момента. Если направление силы проходит через ось вращения, то плечо силы равно нулю; следовательно, равен нулю и момент силы. Мы видели, что в этом случае сила не вызывает вращения тела: сила, момент которой относительно данной оси равен нулю, не вызывает вращения вокруг этой оси.

Рис. 118. Силы и имеют одинаковые моменты относительно оси

Рис. 119. Равные силы с одинаковым плечом имеют равные моменты относительно оси

Пользуясь понятием момента силы, мы можем по-новому сформулировать условия равновесия тела, закрепленного на оси и находящегося под действием двух сил. В условии равновесия, выражаемом формулой (76.1), и есть не что иное, как плечи соответствующих сил. Следовательно, это условие состоит в равенстве абсолютных значений моментов обеих сил. Кроме того, чтобы не возникало вращение, направления моментов должны быть противоположными, т. е. моменты должны отличаться знаком. Таким образом, для равновесия тела, закрепленного на оси, алгебраическая сумма моментов действующих на него сил должна быть равна нулю.

Так как момент силы определяется произведением модуля силы на плечо, то единицу момента силы мы получим, взяв равную единице силу, плечо которой также равно единице. Следовательно, в СИ единицей момента силы является момент силы, равной одному ньютону и действующей на плече один метр. Она называется ньютон-метром (Н·м).

Если на тело, закрепленное на оси, действует много сил, то, как показывает опыт, условие равновесия остается тем же, что и для случая двух сил: для равновесия тела, закрепленного на оси, алгебраическая сумма моментов всех сил, действующих на тело, должна быть равна нулю. Результирующим моментом нескольких моментов, действующих на тело (составляющих моментов), называют алгебраическую сумму составляющих моментов. Под действием результирующего момента тело будет вращаться вокруг оси так же, как оно вращалось бы при одновременном действии всех составляющих моментов. В частности, если результирующий момент равен нулю, то тело, закрепленное на оси, либо покоится, либо вращается равномерно.

Момент силы относительно точки О - это вектор, модуль которого равен произведению модуля силы на плечо - кратчайшее расстояние от точки О до линии действия силы. Направление вектора момента силы перпендикулярно плоскости, проходящей через точку и линию действия силы, так, что глядя по направлению вектора момента, вращение, совершаемое силой вокруг точки О, происходит по часовой стрелке.

Если известен радиус-вектор точки приложения силы относительно точки О, то момент этой силы относительно О выражается следующим образом:

Действительно, модуль этого векторного произведения:

. (1.9)

В соответствии с рисунком , поэтому:

Вектор , как и результат векторного произведения, перпендикулярен векторами, которые принадлежат плоскости Π. Направление векторатаково, что глядя по направлению этого вектора, кратчайшее вращение откпроисходит по часовой стрелке. Другими словами, вектордостраивает систему векторов () до правой тройки.

Зная координаты точки приложения силы в системе координат, начало которой совпадает с точкой О, и проекцию силы на эти оси координат, момент силы может быть определен следующим образом:

. (1.11)

Момент силы относительно оси

Проекция момента силы относительно точки на некоторую ось, проходящую через эту точку, называется моментом силы относительно оси.

Момент силы относительно оси вычисляется как момент проекции силы на плоскость Π, перпендикулярную оси, относительно точки пересечения оси с плоскостью Π:

Знак момента определяется направлением вращения, которое стремится придать телу сила F⃗ Π. Если, глядя по направлению оси Oz сила вращает тело по часовой стрелке, то момент берется со знаком ``плюс"", иначе - ``минус"".

1.2 Постановка задачи.

Определение реакций опор и шарнира С.

1.3 Алгоритм решения задачи.

Разделим конструкцию на части и рассмотрим равновесие каждой из конструкции.

Рассмотрим равновесие всей конструкции в целом. (рис.1.1)

Составим 3 уравнения равновесия для всей конструкции в целом:

Рассмотрим равновесие правой части конструкции.(рис 1.2)

Составим 3 уравнения равновесия для правой части конструкции.

Которая равна произведению силы на ее плечо.

Момент силы вычисляют при помощи формулы:

где F - сила, l — плечо силы.

Плечо силы - это самое короткое расстояние от линии действия силы до оси вращения тела. На рисунке ниже изображено твердое тело, которое может вращаться вокруг оси. Ось вращения этого тела является перпендикулярной к плоскости рисунка и проходит через точку, которая обозначена как буква О. Пле-чом силы F t здесь оказывается расстояние l , от оси вращения до линии действия силы. Определяют его таким образом. Первым шагом проводят линию действия силы, далее из т. О, через которую проходит ось вращения тела, опускают на линию действия силы перпендикуляр. Длина этого перпендикуляра оказывается плечом данной силы.

Момент силы характеризует вращающее действие силы . Это действие зависит как от силы, так и от плеча. Чем больше плечо, тем меньшую силу необходимо приложить, чтобы получить желаемый результат, то есть один и тот же момент силы (см. рис. выше). Именно поэтому открыть дверь, толкая ее возле петель, намного сложнее, чем берясь за ручку, а гайку отвернуть намного легче длинным, чем коротким гаечным ключом.

За единицу момента силы в СИ принимается момент силы в 1 Н , плечо которой равно 1м — ньютон-метр (Н · м).

Правило моментов.

Твердое тело, которое может вращаться вокруг неподвижной оси, находится в равновесии, если момент силы М 1 вращающей его по часовой стрелке, равняется моменту силы М 2 , которая вращает его против часовой стрелки:

Правило моментов есть следствие одной из теорем механики , которая была сформулирована французским ученым П. Вариньоном в 1687 г.

Пара сил.

Если на тело действуют 2 равные и противоположно направленные силы, которые не лежат на одной прямой, то такое тело не находится в равновесии, так как результирующий момент этих сил относительно любой оси не равняется нулю, так как обе силы имеют моменты, направленные в одну сторону. Две такие силы, одновременно действующие на тело, называют парой сил . Если тело закреплено на оси, то под действием пары сил оно будет вращаться. Если пара сил приложена «свободному телу, то оно будет вращаться вокруг оси. проходящей через центр тяжести тела, рисунке б .

Момент пары сил одинаков относительно любой оси, перпендикулярной к плоскости пары. Суммарный момент М пары всегда равен произведению одной из сил F на расстояние l между силами, которое называется плечом пары , независимо от того, на какие отрезки l , и разделяет положение оси плечо пары:

Момент нескольких сил, равнодействующая которых равна нулю, будет одинаковым относи-тельно всех осей, параллельных друг другу, поэтому действие всех этих сил на тело можно заме нить действием одной пары сил с тем же моментом.