Самые большие объекты в мире. Самый большой шарик в мире Фотографии самых больших шаровых молний

Я решил несколько убавить пыл и всё-таки успокоить только начинающих астролюбителей. На самом деле не всё так ужасно. Пример тому сегодняшняя статья, в которой речь пойдёт о шаровых и рассеяных звёздных скоплениях .

Шаровые звёздные скопления я очень люблю наблюдать в телескоп. Кажущийся яркий шар на больших увеличениях начинает отчётливо распадаться на звёзды. Из звёзд могут вырисовываться даже некоторые фигуры или ветви, или быть может кто-то сможет частично в определённой области их сосчитать. В общем и целом этот тип дипскай объектов в телескоп не сильно отличается от энциклопедический фотографий. С рассеянными звёздными скоплениями несколько другая картина. Связано это в первую очередь с тем, что многие из них вырисовывают какую-то необычную фигуру - предметы или контур животного, на фотографии яркие звёзды могут напоминать Сову (как ) или ещё что, но когда смотрите в телескоп или даже оптический искатель (при 9-кратном увеличении) увиденное практически ничем не удивляет. Или по крайней мере нужно долго всматриваться, чтоб увидеть контур того или иного зверя.

Предупреждаю и заочно спрашиваю разрешение на публикацию не своих фотографий сделанных нашими ребятами - хорошими любителями астрономии. Если я где-то позволил себе лишнее - дайте знать письмом на почту [email protected] . Разберёмся.

Начну, пожалуй, с самого лакомого куска или самого яркого, самого большого и самого интересного «шаровика» северного полушария неба - это Большое скопление Геркулеса (M 13 ) в созвездии .

Ожидание

Реальность

Скопление это доступно в телескопы любой апертуры. На фотографии выше показан «шаровик» в (примерно) 200 мм телескоп и увеличение 45-50 крат. Прекрасный кадр, есть что рассмотреть и над чем поразмыслить.

Ожидание

Реальность

Думается мне, что фотография выше сделана в 150 мм телескоп при 45-50 кратном увеличении. Как видите, «шаровик» меньше, но тоже представляет кое-что из себя.

Одно из самых насыщенных и компактных шаровых звёздных скоплений лежит в созвездии и доступно для наблюдения в осенние месяцы - это M 2 . По подсчётам содержит около 150 тысяч звёзд и диаметром около 175 световых лет.

Ожидание

Реальность

Не стоит рано радоваться, фотография выше сделана в 300 мм (!) телескоп. Моё личное мнение, что M 13 в Геркулесе выглядит чётче и ярче. M 2 проигрывает также и по линейным размерам. Вот вам и самое насыщенное… и контрастное.

Дожидаемся апреля, наводим телескоп на созвездие Гончие Псы и находим следующий, действительно, классный «шаровик» - M 3 . Говорят, что M 3 одно из самых больших скоплений по количеству звёзд в нём, что-то около 500 тысяч. Наверное, ждёте, что увидите нечто невероятное?! Правильно делаете.

Ожидание

Реальность

Именно это и ожидали увидеть? Как бы не так. И снова я уточняю, что на фотографии выше запечатлён шаровик в мощный профессиональный телескоп с диаметром главного зеркала около 250 мм. Не стоит пытаться в 113-150 мм телескопы увидеть также. Нет, всё будет ещё меньше, гораздо менее насыщенное, но не менее прекрасное. Едем дальше.

Последний «шаровик» на сегодня расположен в созвездии Пегас - M 15 - это ещё одно популярное и доступное скопление в самые любительские телескопы. Конец лета - начало осени лучшее время для наблюдения его в телескоп и даже бинокль. Найти на небе легко.

Ожидание

Реальность

Светосильный мощный телескоп даст вам картинку похожую на изображение выше. Бинокль вам подарит туманное небольшое пятнышко, которое вы спутать с рядом стоящими звёздами не сможете.

Думаю представление о внешнем виде шаровых скоплений в телескоп вы получили. Напоследок парочка рассеяных звёздных скоплений. Для них рекомендация одна - не использовать большие увеличения при наблюдении. ТОП один скопление северного полушария - это скопление Плеяды или M 45 . Отлично видно невооружённым глазом в виде ковша (не путать с созвездиями Малой и ). Желательно наблюдать его в 12-15-кратный бинокль. Хотя, если хотите увидеть отражательную туманность на заднем фоне звёзд - бинокля будет недостаточно (сомневаюсь, что вообще чего-то будет достаточно, кроме фотоаппарата и большой выдержки), но тем не менее.

Ожидание

Реальность

Семь сестёр, так ещё называют Плеяды, одно из ближайших скоплений к нашей Солнечной системе. Общее число звёзд скопления примерно 3000 (более точное число - 1000).

Эту статью закрывает воистину привлекательный объект - или скопление Сова (иногда можно встретить название скопление Стрекоза ) - в 9-кратный искатель телескопа прекрасно выделяется на фоне остальных звёзд и, зная примерные контуры совы (в начале статьи есть изображение), можно с уверенностью увидеть и распознать её. Конечно, число 9 - это не максимальное и даже не рекомендуемое увеличение для Совы, например, в 15-кратный бинокль рассеянное скопление выглядит не хуже и даже лучше и привлекательнее. О эти две яркие звезды, которые так похожи на глаза! Смотрим и умиляемся.

Ожидание

Реальность

Надеюсь, даже уверен, что настоящие любители астрономии ничуть не расстроились и не удивились увиденному под надписью «Реальность», а даже наоборот, вдохновились и зарядились положительными эмоциями. Космос по-настоящему красив и изящен. И мы его любим таким, какой он есть!

P. S. Статья исключительно позитивная и ни в коем случае не настраивает новичков против наблюдений, как раз наоборот, даёт толчок, как из увиденного «размытого пятна» или пары ярких звёзд можно извлечь столько полезной информации.

Все статьи серии «Ожидание и Реальность» .

Представляем вам подборку из снимков, сделанных с помощью орбитального телескопа Хаббл. Он находится на орбите нашей планеты уже более двадцати лет и продолжает по сей день открывать нам тайны космоса.

(Всего 30 фото)

Известная как NGC 5194, эта большая галактика с хорошо развитой спиральной структурой, возможно, была первой обнаруженной спиральной туманностью. Хорошо видно, что ее спиральные рукава и пылевые полосы проходят перед галактикой-спутником – NGC 5195 (слева). Эта пара находится на расстоянии около 31 миллиона световых лет и официально принадлежит маленькому созвездию Гончих Псов.

2. Спиральная галактика M33

Спиральная галактика M33 — средняя по размерам галактика из Местной группы. M33 называется также галактикой в Треугольнике по имени созвездия, в котором она находится. Примерно в 4 раза меньше (по радиусу), чем наша Галактика Млечный Путь и галактика Андромеды (M31), M33 гораздо больше многих карликовых галактик. Из-за того, что галактика M33 близка к M31, некоторые думают, что она является спутником этой более массивной галактики. M33 недалеко от Млечного Пути, ее угловые размеры более чем в два раза превышают размеры полной Луны, т.е. она прекрасно видна в хороший бинокль.

3. Квинтет Стефана

Группа галактик – квинтет Стефана. Однако только четыре галактики из группы, расположенные в трехстах миллионах световых лет от нас, участвуют в космическом танце, то сближаясь, то удаляясь друг от друга. Лишнего найти довольно просто. Четыре взаимодействующие галактики – NGC 7319, NGC 7318A, NGC 7318B и NGC 7317 – имеют желтоватую окраску и искривленные петли и хвосты, форма которых обусловлена влиянием разрушительных приливных гравитационных сил. Голубоватая галактика NGC 7320, расположенная на картинке вверху слева, находится гораздо ближе остальных, всего в 40 миллионах световых лет от нас.

4. Галактика Андромеды

Галактика Андромеды — это самая близкая к нашему Млечному Пути из гигантских галактик. Скорее всего наша Галактика выглядит примерно так же, как галактика Андромеды. Эти две галактики доминируют в Местной группе галактик. Сотни миллиардов звезд, составляющих галактику Андромеды, вместе дают видимое диффузное свечение. Отдельные звезды на изображении являются в действительности звездами нашей Галактики, расположенными гораздо ближе удаленного объекта. Галактику Андромеды часто называют M31, так как это 31-й объект в каталоге диффузных небесных объектов Шарля Мессье.

5. Туманность Лагуна

В яркой туманности Лагуна находится множество различных астрономических объектов. К особенно интересным объектам относятся яркое рассеянное звездное скопление и несколько активных областей звездообразования. При визуальном наблюдении свет от скопления теряется на фоне общего красного свечения, вызываемого излучением водорода, то время как темные волокна возникают из-за поглощения света плотными слоями пыли.

6. Туманность Кошачий глаз (NGC 6543)

Туманность Кошачий глаз (NGC 6543) — это одна из самых известных планетарных туманностей на небе. Ее запоминающиеся симметричные формы видны в центральной части этого эффектного изображения в искусственных цветах, специально обработанного для того, чтобы показать огромное, но очень слабое гало из газообразного вещества, имеющего диаметр около трех световых лет, которое окружает яркую, знакомую планетарную туманность.

7. Небольшое созвездие Хамелеона

Небольшое созвездие Хамелеона расположено вблизи южного полюса Мира. Картинка раскрывает удивительные черты скромного созвездия, в котором обнаруживаются множество пылевых туманностей и разноцветных звезд. По полю разбросаны голубые отражательные туманности.

8. Туманность Sh2-136

Космические пылевые облака, слабо светящиеся отраженным звездным светом. Далеко от знакомых нам мест на планете Земля, они прячутся на краю комплекса молекулярных облаков Ореол Цефея, удаленного от нас на 1200 световых лет. Туманность Sh2-136, находящаяся около центра поля, ярче других призрачных видений. Ее размер - более двух световых лет, и она видна даже в инфракрасном свете.

9. Туманность Конская голова

Тёмная пылевая туманность Конская голова и светящаяся Туманность Ориона контрастируют на небе. Они находятся на расстоянии 1500 световых лет от нас в направлении самого узнаваемого небесного созвездия. А на сегодняшней замечательной составной фотографии туманности занимают противоположные углы. Знакомая всем туманность Конская голова - это маленькое тёмное облачко в форме головы лошади, вырисовывающееся на фоне красного светящегося газа в левом нижнем углу картинки.

10. Крабовидная туманность

Эта путаница осталась после взрыва звезды. Крабовидная туманность является результатом взрыва сверхновой, который наблюдали в 1054 году нашей эры. Остаток сверхновой наполнен таинственными волокнами. Волокна не просто сложные на взгляд.Протяженность Крабовидной туманности составляет десять световых лет. В самом центре туманности находится пульсар - нейтронная звезда с массой, равной массе Солнца, которая умещается в области размером с небольшой городок.

11. Мираж от гравитационной линзы

Это мираж от гравитационной линзы. Изображённая на этой фотографии яркая красная галактика (LRG) исказила своей гравитацией свет от более удалённой голубой галактики. Чаще всего подобное искажение света приводит к появлению двух изображений далёкой галактики, однако в случае очень точного наложения галактики и гравитационной линзы изображения сливаются в подкову - почти замкнутое кольцо. Этот эффект был предсказан Альбертом Эйнштейном ещё 70 лет назад.

12. Звезда V838 Mon

По неизвестным причинам в январе 2002 года внешняя оболочка звезды V838 Mon внезапно расширилась, сделав эту звезду самой яркой во всём Млечном Пути. Затем она снова стала слабой, также внезапно. Астрономы раньше никогда не видели подобную звёздную вспышку.

13. Рождение планет

Как формируются планеты? Чтобы попытаться выяснить это, космический телескоп Хаббла получил задание пристально посмотреть на одну из самых интересных из всех туманностей на небе – Большую туманность Ориона. Туманность Ориона можно увидеть невооруженным глазом около пояса созвездия Ориона. Врезки на этом фото показывают многочисленные проплиды, многие из них – это звездные ясли, в которых, вероятно, находятся формирующиеся планетные системы.

14. Звездное скопление R136

В центре области звездообразования 30 Золотой Рыбы находится гигантское скопление самых больших, горячих и массивных среди всех известных нам звезд. Эти звезды образуют скопление R136, запечатленное на этом изображении, полученном в видимом свете уже на модернизированном космическом телескопе Хаббл.

Блестящая NGC 253 является одной из самых ярких спиральных галактик, которые мы видим, и в то же время одной из самых запыленных. Некоторые называют ее «галактика Серебрянный доллар», потому что в небольшой телескоп она имеет соответствующую форму. Другие называют ее просто «галактика в Скульпторе», потому что она находится в пределах южного созвездия Скульптор. Эта пылевая галактика находится на расстоянии 10 миллионов световых лет от нас.

16. Галактика M83

Галактика M83 одна из самых близких к нам спиральных галактик. С расстояния, которое нас с ней разделяет, равного 15 миллионам световых лет, она выглядит совершенно обычной. Однако, если посмотреть поподробнее на центр M83 с помощью самых больших телескопов, эта область предстанет перед нами бурным и шумным местом.

17. Туманность Кольцо

Она действительно похожа на кольцо на небе. Поэтому еще сотни лет назад астрономы назвали эту туманность согласно ее необычной форме. Туманность Кольцо также имеет обозначения M57 и NGC 6720. Туманность Кольцо относят к классу планетарных туманностей, это газовые облака, которые выбрасывают звезды похожие на Солнце в конце своей жизни. Ее размер превышает диаметр. Это один из ранних снимков Хаббла.

18. Столб и джеты в туманности Киля

Этот космический газопылевой столб составляет в ширину два световых года. Структура находится в одной из самых крупных областей звездообразования нашей Галактики, туманности Киля, которая видна на южном небе и удалена от нас на 7500 световых лет.

19. Центр шарового скопления Омега Центавра

В центре шарового скопления Омега Центавра звезды упакованы в десять тысяч раз плотнее, чем звезды в окрестности Солнца. На изображении видно множество слабых желто-белых звезд, меньше нашего Солнца, несколько оранжевых красных гигантов, а также случайных голубых звезд. Если вдруг две звезды сталкиваются, то может образоваться одна более массивная звезда, либо они образуют новую двойную систему.

20. Гигантское скопление искажает и расщепляет изображение галактики

Многие из них – это изображения одной-единственной необычной, похожей на бусы, голубой кольцеобразной галактики, которая волей случая оказалась расположена за гигантским скоплением галактик. Согласно последним исследованиям, всего на картинке можно обнаружить не менее 330 изображений отдельных далеких галактик. Эта великолепная фотография скопления галактик CL0024+1654 была получена космическим телескопом им. Хаббла в ноябре 2004 года.

21. Трехраздельная туманность

Прекрасная разноцветная Трехраздельная туманность позволяет исследовать космические контрасты. Известная также как M20, она находится на расстоянии около 5 тысяч световых лет в богатом туманностями созвездии Стрельца. Размер туманности – около 40 световых лет.

22. Центавр А

Фантастическая куча молодых голубых звёздных скоплений, гигантские светящиеся газовые облака и тёмные пылевые прожилки окружают центральную область активной галактики Центавр А. Центавр A находится близко от Земли, на расстоянии 10 миллионов световых лет

23. Туманность Бабочка

Ярким скоплениям и туманностям на ночном небе планеты Земля часто дают имена по названиям цветов или насекомых, и туманность NGC 6302 не является исключением. Центральная звезда этой планетарной туманности исключительно горячая: температура ее поверхности составляет около 250 тысяч градусов Цельсия.

24. Сверхновая звезда

Изображение сверхновой звезды, вспыхнувшей в 1994 году на окраине спиральной галактики.

25. Две сталкивающие галактики со слившимися спиральными рукавами

На этом замечательном космическом портрете изображены две сталкивающие галактики со слившимися спиральными рукавами. Выше и левее большой спиральной галактики из пары NGC 6050 можно увидеть третью галактику, которая также, вероятно, участвует во взаимодействии. Все эти галактики находятся на расстоянии около 450 миллионов световых лет от нас в скоплении галактик в Геркулесе. На таком расстоянии изображение охватывает область размером более 150 тысяч световых лет. И хотя этот вид кажется весьма необычным, сейчас учёные знают, что столкновения и последующие слияния галактик не редкость.

26. Спиральная галактика NGC 3521

Спиральная галактика NGC 3521 находится на расстоянии всего лишь 35 миллионов световых лет от нас в направлении на созвездие Льва. Галактика, простирающаяся на 50 000 световых лет, обладает такими особенностями, как рваные спиральные рукава неправильной формы, украшенные пылью, розоватые области звездообразования и скопления молодых голубоватых звёзд.

27. Детали структуры джета

Несмотря на то, что этот необычный выброс был впервые замечен в начале двадцатого века, его происхождение все еще является предметом обсуждений. Показанная выше картинка, полученная в 1998 году космическим телескопом им.Хаббла, четко демонстрирует детали структуры джета. В наиболее популярной гипотезе предполагается, что источником выброса явился разогретый газ, вращающийся вокруг массивной черной дыры в центре галактики.

28. Галактика Сомбреро

Вид галактики M104 напоминает шляпу, поэтому ее и назвали галактикой Сомбреро. На картинке видны отчетливые темные полосы пыли и яркое гало из звезд и шаровых скоплений. Причины, по которым галактика Сомбреро похожа на шляпу – необычно большой центральный звездный балдж и плотные темные полосы пыли, находящиеся в диске галактики, который мы видим почти с ребра.

29. M17: вид крупным планом

Сформированные звездными ветрами и излучением, эти фантастические, похожие на волны образования находятся в туманности M17 (Туманность Омега) и входят в область звездообразования. Туманность Омега находится в богатом туманностями созвездии Стрельца и удалена на расстояние 5500 световых лет. Клочковатые сгущения плотного и холодного газа и пыли освещены излучением звезд, находящихся на изображении вверху справа, в будущем они могут стать местами звездообразования.

30. Туманность IRAS 05437+2502

Что освещает туманность IRAS 05437+2502? Пока точного ответа нет. Особенно загадочным представляется яркая дуга в форме перевернутой буквы V, которая очерчивает верхний край похожих на горы облаков межзвездной пыли, находящихся около центра картинки. В общем, эта напоминающая призрак туманность включает небольшую область звездообразования, заполненную темной пылью.Она была впервые замечена на снимках, полученных спутником IRAS в инфракрасном свете в 1983 году. Здесь показано замечательное, недавно опубликованное изображение, полученное космическим телескопом им.Хаббла. Хотя на нем и видно много новых деталей, причину возникновения яркой, четкой дуги установить не удалось.

Откуда берется шаровая молния и что она такое? Вопрос этот задают себе ученые много десятков лет подряд, и пока четкого ответа нет. Устойчивый плазменный шар, возникающий в результате мощного разряда высокой частоты. Другая гипотеза - микрометеориты из антивещества.

Всего же существует более 400 недоказанных гипотез.

…Между веществом и антивеществом может возникнуть барьер с шаровой поверхностью. Мощное гамма-излучение будет раздувать этот шар изнутри, и препятствовать проникновению вещества к пришлому антивеществу, и тогда мы увидим светящийся пульсирующий шар, который будет парить над Землей. Эта точка зрения вроде бы получила подтверждение. Двое английских ученых методично досматривали небо при помощи детекторов гамма-излучения. И зарегистрировали четыре раза аномально высокий уровень гамма-излучения в ожидаемой области энергии.

Первый документально подтвержденный случай появления шаровой молнии имел место в 1638 г. в Англии, в одной из церквей графства Девон. В результате бесчинств огромного огненного шара погибли 4 человека, ранения получили около 60. Впоследствии периодически появлялись новые сообщения о подобных явлениях, но их было немного, поскольку очевидцы считали шаровую молнию иллюзией или обманом зрения.

Первое обобщение случаев уникального природного явления произведено французом Ф. Араго в середине XIX века, в его статистике собрано около 30 свидетельств. Возрастающее количество подобных встреч позволило получить, на основе описаний очевидцев, некоторые характеристики, присущие небесной гостье. Молния шаровая – явление электрического характера, огненный шар, передвигающийся в воздухе в непредсказуемом направлении, светящийся, но не излучающий тепло. На этом общие свойства заканчиваются и начинаются частности, характерные для каждого из случаев. Это объясняется тем, что природа шаровой молнии до конца не изучена, поскольку до сих пор не было возможности исследовать это явление в лабораторных условиях или воссоздать модель для изучения. В некоторых случаях диаметр огненного шара равнялся нескольким сантиметрам, иногда достигал полуметра.

Молния шаровая на протяжении нескольких сотен лет была объектом изучения многих ученых, в числе которых были Н. Тесла, Г. И. Бабат, П. Л. Капица, Б. Смирнов, И. П. Стаханов и другие. Научные деятели выдвинули разные теории возникновения шаровой молнии, которых насчитывается свыше 200. Согласно одной из версий, электромагнитная волна, образующаяся между землей и облаками, в определенный момент достигает критической амплитуды и образует шаровидный разряд газа. Иная версия заключается в том, что молния шаровая состоит из плазмы высокой плотности и содержит собственное микроволновое поле излучения. Некоторые ученые считают, что явление огненного шара — это результат фокусировки космических лучей облаками. Большинство случаев данного явления зафиксировано перед грозой и во время грозы, поэтому самой актуальной считается гипотеза возникновения энергетически благоприятной среды для появления различных плазменных образований, одним из которых и является молния. Мнения специалистов сходятся в том, что при встрече с небесной гостьей нужно придерживаться определенных правил поведения. Главное – не делать резких движений, не убегать, постараться свести к минимуму колебания воздуха.

Их “поведение” непредсказуемо, траектория и скорость полета не поддается никакому объяснению. Они, словно наделенные разумом, могут огибать стоящие перед ними препятствия - деревья, здания и сооружения, а могут и “врезаться” в них. После этого столкновения могут возникать пожары.

Часто шаровые молнии залетают в жилища людей. Через открытые форточки и двери, дымоходы, трубы. Но иногда даже сквозь закрытое окно! Имеется немало свидетельств, как ШМ расплавляла оконное стекло, оставляя после себя идеально ровное круглое отверстие.

По словам очевидцев, огненные шары появлялись из розетки! “Живут” они от одной до 12 минут. Они могут просто мгновенно исчезать, не оставляя после себя никаких следов, но могут и взрываться. Последнее особенно опасно. Следствием этих взрывов могут быть смертельные ожоги. Также замечено, что после взрыва в воздухе остается довольно стойкий, очень неприятный запах серы.

Шаровые молнии бывают разных цветов - от белого до черного, от желтого до голубого. При передвижении они часто гудят, как гудят линии электропередач высокого напряжения.

Большой загадкой остается, что влияет на траекторию ее движения. Это точно не ветер, поскольку она может двигаться и против него. Это не разница в атмосферном явлении. Это не люди и не другие живые организмы, так как иногда она может мирно облетать их стороной, а иногда “врезается” в них, что приводит к смерти.

Шаровая молния - свидетельство нашего весьма неважного знания такого, казалось бы, обыденного и уже изученного явления, как электричество. Ни одна из выдвинутых ранее гипотез пока не объяснила всех ее причуд. То, что предлагается в этой статье, может быть, даже и не гипотеза, а лишь попытка описать явление физическим способом, не прибегая к экзотике, вроде антиматерии. Первое и основное предположение: шаровая молния - это разряд обычной молнии, не достигший Земли. Точнее: шаровая и линейная молнии - это один процесс, но в двух различных режимах - быстром и медленном.

При переходе с медленного режима на быстрый процесс становится взрывным - шаровая молния переходит в линейную. Возможен и обратный переход линейной молнии в шаровую; каким-то таинственным, а может быть, случайным образом этот переход сумел осуществить талантливый физик Рихман, современник и друг Ломоносова. За свою удачу он заплатил жизнью: полученная им шаровая молния убила своего создателя.

Шаровая молния и невидимая атмосферная зарядовая трасса, связывающая ее с облаком, находятся в особом состоянии «эльмы». Эльма в отличие от плазмы - низкотемпературный электризованный воздух - устойчива, остывает и растекается очень медленно. Это объясняется свойствами пограничного слоя между эльмой и обычным воздухом. Здесь заряды существуют в виде отрицательных ионов, громоздких и малоподвижных. Расчеты показывают, что растекаются эльмы за целых 6,5 минуты, а пополняются они регулярно через каждую тридцатую долю секунды. Именно через такой интервал времени проходит электромагнитный импульс в трассе разряда, пополняющий энергией Колобок.

Поэтому длительность существования шаровой молнии в принципе неограниченна. Процесс должен прекратиться только тогда, когда будет исчерпан заряд облака, точнее, тот «эффективный заряд», который облако в состоянии передать трассе. Именно так и можно объяснить фантастическую энергию и относительную устойчивость шаровой молнии: она существует за счет притока энергии извне. Так нейтринные фантомы в фантастическом романе Лема «Солярис», обладая материальностью обычных людей и невероятной силой, могли существовать лишь при поступлении колоссальной энергии из живого Океана.

Электрическое поле в шаровой молнии по величине близко к уровню пробоя в диэлектрике, имя которому воздух. В таком поле возбуждаются оптические уровни атомов, вот почему шаровая молния светится. По идее, более частыми должны быть слабые, несветящиеся, а значит, и невидимые шаровые молнии.

Процесс в атмосфере развивается в режиме шаровой или линейной молнии в зависимости от конкретных условий в трассе. Ничего невероятного, редкого в этой двойственности нет. Вспомним обычное горение. Оно возможно в режиме медленного распространения пламени, что не исключает и режима быстро движущейся детонационной волны.

…Молния спускается с неба. Еще не ясно, какой ей быть, шаровой или обычной. Она жадно высасывает заряд из облака, соответственно уменьшается поле в трассе. Если до попадания в Землю поле в трассе упадет ниже критической величины, процесс перейдет в режим шаровой молнии, трасса станет невидимой, и мы заметим, что на Землю опускается шаровая молния.

Внешнее поле при этом много меньше собственного поля шаровой молнии и не влияет на ее движение. Именно поэтому яркая молния движется хаотично. Между вспышками шаровая молния светится слабее, ее заряд мал. Движение направляется теперь внешним полем и поэтому прямолинейно. Шаровая молния может переноситься ветром. И ясно почему. Ведь отрицательные ионы, из которых она состоит, это те же молекулы воздуха, только с прилипшими к ним электронами.

Просто объясняется отскакивание шаровой молнии от околоземного «батутного» слоя воздуха. Когда шаровая молния приближается к Земле, она индуцирует в почве заряд, начинает выделять много энергии, разогревается, расширяется и быстро поднимается под действием архимедовой силы.

Шаровая молния плюс поверхность Земли образуют электрический конденсатор. Известно, что конденсатор и диэлектрик взаимно притягиваются. Поэтому шаровая молния стремится расположиться над диэлектрическими телами, а значит, предпочитает находиться над деревянными мостками, либо над бочонком с водой. Связанное с шаровой молнией длинноволновое радиоизлучение создается всей трассой шаровой молнии.

Шипение шаровой молнии вызвано вспышками электромагнитной активности. Эти вспышки следуют с частотой около 30 герц. Порог слышимости человеческого уха - 16 герц.

Шаровая молния окружена собственным электромагнитным полем. Пролетая мимо электрической лампочки, она может индуктивно нагреть и пережечь ее спираль. Попав в проводку осветительной, радиотрансляционной или телефонной сети, она замыкает всю свою трассу на эту сеть. Поэтому во время грозы сети желательно держать заземленными, скажем, через разрядные промежутки.

Шаровая молния, «распластавшись» над бочонком с водой, вместе с зарядами, индуцированными в земле, составляет конденсатор с диэлектриком. Обычная вода - диэлектрик не идеальный, она обладает значительной электропроводностью. Внутри такого конденсатора начинает течь ток. Вода нагревается джоулевым теплом. Хорошо известен «опыт с бочонком», когда шаровая молния нагрела до кипения около 18 литров воды. По теоретической оценке, средняя мощность шаровой молнии при ее свободном парении в воздухе равна примерно 3 киловаттам.

В исключительных случаях, например в искусственных условиях, внутри шаровой молнии может возникать электрический пробой. И тогда в ней появляется плазма! Энергии при этом выделяется очень много, искусственная шаровая молния может светить ярче Солнца. Но обычно мощность шаровых молний сравнительно невелика - она находится в состоянии эльмы. По-видимому, переход искусственной шаровой молнии из состояния эльмы в состояние плазмы в принципе возможен.

Зная природу электрического Колобка, можно заставить его работать. Искусственная шаровая молния может сильно превзойти по мощности природную. Прочертив в атмосфере сфокусированным лазерным лучом ионизованный след вдоль заданной траектории, мы сможем направить шаровую молнию куда надо. Изменим теперь питающее напряжение, переведем шаровую молнию в режим линейной. Гигантские искры послушно устремятся по выбранной нами траектории, дробя скалы, валя деревья.

Над аэродромом - гроза. Аэровокзал парализован: запрещена посадка и взлет самолетов… Но вот на пульте управления грозорассеивающей системой нажата пусковая кнопка. С башни вблизи аэродрома к облакам взметнулась огненная стрела. Это поднявшаяся над башней искусственная управляемая шаровая молния перешла на режим линейной молнии и, устремившись в грозовую тучу, вошла в нее. Трасса молнии соединила тучу с Землей, и электрический заряд тучи разрядился на Землю. Процесс может быть повторен несколько раз. Грозы больше не будет, облака разрядились. Самолеты могут снова садиться и взлетать.

В Заполярье можно будет зажечь искусственное солнце. С двухсотметровой башни поднимается вверх трехсотметровая зарядовая трасса искусственной шаровой молнии. Шаровая молния включается на плазменный режим и светит ярко с полукилометровой высоты над городом.

Для хорошей освещенности в круге радиусом 5 километров достаточно шаровой молнии, излучающей мощность в несколько сот мегаватт. В искусственном плазменном режиме такая мощность - разрешимая проблема.

Электрический Колобок, столько лет уклонявшийся от близкого знакомства с учеными, не уйдет: рано или поздно его приручат, и он научится приносить людям пользу. Б. Козлов.

1. Что такое шаровая молния, до сей поры достоверно неизвестно. Физики пока еще не научились воспроизводить настоящую шаровую молнию в лабораторных условиях. Что-то конечно, получают, но вот насколько это «что-то» схоже с настоящей шаровой молнией – ученые не знают.

2. Когда отсутствуют экспериментальные данные, ученые обращаются к статистике – к наблюдениям, свидетельствам очевидцев, редким фотографиям. На самом деле редким: если в мире существует не менее ста тысяч фотографий обычной молнии, то снимков шаровой молнии гораздо меньше – всего шесть-восемь десятков.

3. Цвет шаровой молнии бывает разным: и красным, и ослепительно белым, и синим, и даже черным. Свидетели видели шаровые молнии всех оттенков зеленого и оранжевого цвета.

4. Судя по названию, все молнии должны иметь форму шара, но нет, наблюдались и грушевидные, и яйцеобразные. Особо удачливым наблюдателям являлась молния в виде конуса, кольца, цилиндра и даже в виде медузы. Кто-то видел за молнией белый хвост.

5. Согласно наблюдениям ученых и свидетельствам очевидцев шаровая молния может появиться в доме через окно, дверь, печь, даже просто возникнуть как бы из ниоткуда. А еще она может «выдуться» из электрической розетки. На открытом воздухе шаровая молния может появиться из дерева и столба, спуститься из облаков или родиться от обычной молнии.

6. Обычно шаровая молния невелика – сантиметров пятнадцать в диаметре или с футбольный мяч, но встречаются и пятиметровые гиганты. Живет шаровая молния недолго – обычно не более получаса, двигается горизонтально, иногда вращаясь, со скоростью несколько метров в секунду, иной раз зависает в воздухе неподвижно.

7. Шаровая молния светит, как стоваттная лампочка, иногда трещит или пищит и обычно наводит радиопомехи. Порою пахнет – окисью азота или адским запахом серы. Если повезет, она тихо растворится в воздухе, но чаще взрывается, разрушая и оплавляя предметы и испаряя воду.

8. «…Красно-вишнёвое пятно видно на лбу, а вышла из него громовая электрическая сила из ног в доски. Ноги и пальцы сини, башмак разорван, а не прожжён…». Так описывал смерть своего соратника и друга Рихмана великий русский ученый Михаил Васильевич Ломоносов. Он еще волновался, «чтобы сей случай не был истолкован противу приращений наук», и был прав в своих опасениях: в России временно запретили исследования электричества.

9. В 2010 году австрийские ученые Йозеф Пир и Александр Кендль из Университета Инсбрука предположили, что свидетельства о шаровых молниях можно интерпретировать как проявление фосфенов, то есть зрительных ощущений без воздействия на глаз света. Их расчеты показывают, что магнитные поля определенных молний с повторяющимися разрядами индуцируют электрические поля в нейроны зрительной коры. Таким образом, шаровые молнии являются галлюцинациями.

Теория была опубликована в научном журнале Physics Letters A. Теперь уже сторонники существования шаровых молний должны зарегистрировать шаровую молнию научной аппаратурой, и таким образом опровергнуть теорию австрийских ученых.

10. В 1761 году шаровая молния проникла в церковь венской академической коллегии, сорвала позолоту с карниза алтарной колонны и отложила ее на серебряной кропильнице. Людям приходится куда тяжелее: в лучшем случае шаровая молния обожжет. Но может и убить – как Георга Рихмана. Вот вам и галлюцинация!

Шаровая молния представляет собой светящийся сгусток очень горячего газа, который изредка может появляться в грозовых погодных условиях. Есть очень много свидетельств людей, которые все же видели или же считают, что реально видели шаровые молнии.

Шаровая молния: фото очевидцев смогут дать некоторое представление об этих явлениях. Конечно же, нужно помнить, что до конца такое явление еще не было понято физикой. Но не стоит к нему относиться как к чему-то сверхнеобычному, сверхъестественному. До конца указанное явление еще не изучено, но ученые продолжают активно его исследовать.

Шаровая молния - явление очень красивое само по себе.

Не многие его видели в реальности.

Шаровая молния может возникнуть в любой точке земли.

Конечно же, необходимы определенные условия для возникновения шаровой молнии.

Чаще всего шаровые молнии возникают во время грозы.

Объяснений этому явлению существует не так уж и много.

Некоторые из этих теорий все же имеют право на существование.

Не многие видели шаровую молнию в реальности.

Однако, многие имеют представление, как она на самом деле выглядит.

Фото очевидцев шаровых молний не так уж и много.

Однако все они просто-таки поражают своим величеством.

О шаровых молниях знают издавна.

Это очень уникальное явление.

Цвет шара может колебаться.

Существуют как белые, так и черные шары.

Невероятные факты


Самое большое мире фото

Самая большая фотография на данный момент - это 320-ти гигапиксельная панорама Лондона , которая была собрана из 48 640 отдельных изображений. Все изображения были сняты четырьмя фотоаппаратами Canon EOS 7D и собраны, чтобы создать это 360-градусное творение. Если бы эта была физическая фотография, то она была бы размером с Букингемский дворец. Стоит отметить, что фотография была снята с крыши BT Tower.

Самый большой корабль в мире

Самый большой корабль, п ревышающий размеры Эмпайр-стейт-билдинг, был спущен на воду в Южной Корее. The Prelude имеет длину 488 метров и ширину 74 метра. При полной загрузке, корабль весит около 600 000 тонн.

Самый большой лайнер

Вместе со своим братом близнецом, круизный лайнер Oasis of the Seas является пока самым крупным пассажирским судном на планете. Его длина составляет 360 метров, а его брат близнец Allure of the Seas длиннее всего на 5 см.

Самое большое озеро в мире

Каспийское море является самым большим озером на нашей планете. Оно находится на стыке Европы и Азии. На сегодняшний день площадь Каспийского моря - около 371 000 квадратных метров.

Самая большая река

По размерам бассейна, а также по полноводности и длине речной системы Амазонка является самой большой рекой на Земле. Река имеет длину 6992,06 км. В 2011 году Амазонку признали природным чудом света.

Самый большой самолет в мире

На данный момент самым большим самолетом по праву считается Ан-225 "Мрия". Этот транспортный реактивный самолет был разработан ОКБ им. О. К. Антонова. Его спроектировали и построили в СССР на Киевском Механическом Заводе в период между 1984 и 1988 годами. Сегодня летает лишь один экземпляр, который находится в эксплуатации у компании Antonov Airlines.

Самая большая машина в мире (самый большой экскаватор)

Экскаватор Bagger 288 был построен в 1978 году немецкой фирмой Krupp для предприятия Rheinbraun. Размеры этой машины превышают размеры гусеничного транспортера НАСА, который используется для перевозки шаттлов и ракет Аполлон на пусковую площадку. Bagger 288 используется для добычи полезных ископаемых и рытья больших траншей. Каждый день он способен добывать по 230 тонн угля.

Самый большой шар

В 2002 году команда инженеров NASA разработала самый большой в мире воздушный шар, объем которого составляет 1,7 миллиона куб. м. Весит вся конструкция 690 килограммов. Его запустили в рамках программы LEE (Low Energy Electrons), и шар смог подняться на высоту 49 километров. Исследования показали, что данный шар может быть использован для доставки аппаратуры на рекордную высоту.

Самая большая книга в мире

Размеры самой большой книги составляют 5 м x 8,06 м, а весит она примерно 1 500 кг. В ней содержатся 429 страниц и создана она была Mshahed International Group, в Дубае, ОАЭ 27 февраля 2012. Более 50 человек участвовало в создании книги, которую назвали "This is Muhammad" ("Это Мухаммед").

Самый большой экран

Самый большой экран на Земле можно увидеть в Казани. Большие плазменные панели были установлены на стадионе "Казан - Арена", а общая площадь экрана составляет 3 622 квадратных метра.

Самый большой магазин

В Книгу Рекордов Гиннесса в номинации "Самый большой магазин в мире" занесли универмаг Shinsegae. Он был построен в городе Пусан, Южная Корея. Стоит отметить, что Пусан является вторым по величине городом Южной Корее и самым большим морским портом на Земле. Площадь универмага Shinsegae составляет 293 905 квадратных метров. Открытие произошло в 2009 году - именно тогда магазин побил рекорд 100 000 квадратных метров, ранее принадлежавший универмагу Macy"s в Нью-Йорке.

Самый большой стадион

На данный момент из огромного количества стадионов, построенных для различных спортивных мероприятий, лидирует "Стадион Первого Мая" в Пхеньяне (КНДР). Этот стадион способен вместить 150 000 зрителей. Был он построен в далеком 1989 году, для проведения XIII фестиваля молодежи и студентов. Стоит отметить особенность конструкции данного стадиона - 16 арок, которые образуют кольцо. Благодаря этим аркам форма стадиона напоминает цветок магнолии. Несмотря на то, что на этом стадионе играет сборная КНДР по футболу, в основном он используется для проведения массового праздника "Ариран".

Самый большой аквапарк

Tropical Islands является самым крупным Парком для водных развлечений. Находится он в Хальбе в земле Бранденбург, Германия. Ранее, здание аквапарка использовалось, как ангар для дирижаблей. Стоит также отметить, что данное строение является самым крупным самонесущим залом мира. В день комплекс может принять до 6 000 человек. В нем работает около 500 человек.

Самый большой океанариум

В Сингапуре можно посетить Парк "Морская жизнь" (Marine Life Park). Построенный на острове Сентоса, этот океанариум является самым большим в мире. Открытие произошло 22 ноября 2012 года. Парк из 2-х частей: океанариума S.E.A Aquarium и парка водных развлечений Adventure Cove Waterpark. В первом вы сможете увидеть более 100 000 морских животных 800 видов, живущих в большом аквариуме, наполненном 45 000 000 литрами морской воды.

Самый большой музей

Можно долго спорить, какой же музей является самым крупным, но большинство мнений сходятся на музее Лувр (Musеe du Louvre), который в 2012 году посетили 9 720 260 людей. Его площадь 160 106 квадратных метров. На площади 58 470 кв. метров располагаются экспозиции.

Самая большая библиотека

Библиотека Конгресса (The Library of Congress) является самой большой в мире. Эта национальная библиотека США находится в Вашингтоне и является научной библиотекой Конгресса Соединенных Штатов. Ее пользуются представители правительственных органов, исследовательских учреждений, научные работники, частные фирмы, а так же промышленные компании и школы.

Самый большой аэропорт

Книга рекордов Гиннесса отмечает, что по площади самый крупный аэропорт в мире - это Международный аэропорт Король Фахд (King Fahd International Airport (KFIA). Он находится в 25-ти километрах от города Даммам (Саудовская Аравия). Его площадь составляет 780 квадратных км.

Что касается пассажирского трафика и количества взлетов-посадок, на данный момент Международный аэропорт Хартсфилд-Джексон Атланта является самым загруженным на Земле аэропортом. Он имеет несколько названий: Аэропорт Атланта, Аэропорт Хартсфилд, Хартсфилд-Джексон и находится он в 11 км от центрального делового района города Атланта, в штате Джорджия, США.

Самая большая гробница

Гробница 16-го императора Японии Нинтоку (или О-садзаки), является одной из трех самых крупных гробниц в мире, наряду с пирамидой Хеопса и с гробницей Цинь Шихуан-ди, правителя царства Цинь (с 246 г. до н. э.), который остановил многовековую эпоху Воюющих Царств. Гробница Японского императора находится в Сакаи близ Осаки и является крупнейшим кофуном в Японии (кофун - древний могильный курган в стране восходящего солнца). Возраст гробницы 1 600 лет, и при виде сверху она похоже на замочную скважину. Занимает она площадь в 464 124 квадратных метра.

Самое большое здание

Boeing 747, 767, 777 и 787 Dreamliner являются одними из самых крупных авиалайнеров в мире, а собираются они на заводе Boeing Everett Factory, недалеко от города Эверетт, штат Вашингтон. Объем завода более 13 миллионов кубических метров, а его площадь почти 400 000 квадратных метров, что делает Boeing Everett Factory самым крупным зданием в мире.