Схема заряда литиевых аккумуляторов с защитой. Зарядное устройство Li-ion аккумуляторов. Возможно ли сделать зарядное устройство самому и насколько это безопасно

Защита литий-ионных аккумуляторов (Li-ion). Я думаю, что многие из вас знают, что, например, внутри аккумулятора от мобильного телефона имеется ещё и схема защиты (контроллер защиты), которая следит за тем, чтобы аккумулятор (ячейка, банка, итд…) не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания. Когда аккумулятор исчерпывает свой срок службы, из него можно достать плату контроллера защиты, а сам аккумулятор выбросить. Плата защиты может пригодиться для ремонта другого аккумулятора, для защиты банки (у которой нету схем защиты), либо же просто можно подключить плату к блоку питания, и поэкспериментировать с ней.

У меня имелось много плат защиты от пришедших в негодность аккумуляторов. Но поиск в инете по маркировкам микросхем ничего не давал, словно микросхемы засекречены. В инете находилась документация только на сборки полевых транзисторов, которые имеются в составе плат защиты. Давайте посмотрим на устройство типичной схемы защиты литий-ионного аккумулятора. Ниже представлена плата контроллера защиты, собранная на микросхеме контроллера с обозначением VC87, и транзисторной сборке 8814 ():

На фото мы видим: 1 - контроллер защиты (сердце всей схемы), 2 - сборка из двух полевых транзисторов (о них напишу ниже), 3 - резистор задающий ток срабатывания защиты (например при КЗ), 4 - конденсатор по питанию, 5 - резистор (на питание микросхемы-контроллера), 6 - терморезистор (стоит на некоторых платах, для контроля температуры аккумулятора).

Вот ещё один вариант контроллера (на этой плате терморезистор отсутствует), собран он на микросхеме с обозначением G2JH, и на транзисторной сборке 8205A ():

Два полевых транзистора нужны для того, чтобы можно было отдельно управлять защитой при заряде (Charge) и защитой при разряде (Discharge) аккумулятора. Даташиты на транзисторы находились практически всегда, а вот на микросхемы контроллеров - ни в какую!! И на днях вдруг я наткнулся на один интересный даташит на какой-то контроллер защиты литий-ионного аккумулятора ().

И тут, откуда не возьмись, явилось чудо - сравнив схему из даташита со своими платами защиты, я понял: Схемы совпадают, это одно и то же, микросхемы-клоны! Прочитав даташит, можно применять подобные контроллеры в своих самоделках, а поменяв номинал резистора, можно увеличить допустимый ток, который может отдать контроллер до срабатывания защиты.

Устанавливаются в ноутбуки, сотовые аппараты и другую бытовую технику. Они называются источником энергии, от которого работает вся электроника. Во время эксплуатации им требуется зарядка от специальных устройств, для обеспечения работы электротехники. Можно ли использовать аккумуляторы для зарядки, сделанные своими руками? Отчет на этот вопрос рассмотрим ниже.

Впервые купив мобильный телефон, многие задумываются как зарядить его первый раз. Бытует мнение, что для хорошей и долгой эксплуатации, следует 3 раза полностью разрядить и зарядить устройство. Но современные технологии опровергают данное утверждение. Процесс полного разряда li ion вредит устройству, именно поэтому покупая сотовый телефон, мы часто видим заряженную технику на 2/3 от емкости.

Чтобы избежать поломки не допускайте полной разрядки. Чем больше ионов лития находится на электроде, тем меньше срок эксплуатации и быстрее изнашивается li ion блок.

Рассмотрим некоторые правила зарядки li ion, для долгосрочного использования.

  1. Следите за процентом заряда. Полная разрядка может привести к сбою работы, вплоть до полного вывода из строя.
  2. Литиевым накопителям энергии необходимо более высокое напряжение на элемент, подзаряжающееся по принципу “постоянный ток/постоянное напряжение”.
  3. Подключение к зарядному устройству должно производиться при температуре от 0 до +60 градусов. Если температура понизиться до отрицательной, то блок автоматически перестанет заряжаться.
  4. Отличается высокой чувствительностью к скачку напряжений, будет U больше 4,2 В, то устройство может выйти из строя. Современные инженеры вставляют в накопитель энергии электронную плату, которая предохраняет li ion от перегрева. Так же можно использовать специальные зарядные устройства акб, которые при полном заряде приостанавливают подачу тока.
  5. Правильной выбирайте подачу максимального тока, который отвечает за время полного заряда. Чем больше проходимый ток, тем быстрее заряжается устройство.
  6. Если блок питания не требует постоянной эксплуатации, то заряжайте его на 60-70 процентов. Иначе, можно быстро понизить мощность прибора, что приведет к быстрому разряду.
  7. После окончания заряда надо определять процент емкости и следует отключить от блока питания.

Контроллер и его функции

Контроллер – аппарат, регулирующий уровень тока и напряжения от источника, защищая блок питания от преждевременного повреждения.

Контроллер состоит из печатной платы защиты BMS и небольшого аккумуляторного элемента. В конструкции основой служит микросхема. Для управления над защитой при зарядке или разрядки используются полевые микротранзисторы.

Схема контроллера для зарядки li ion блоков питания представлена на рисунке

Data-lazy-type="image" data-src="http://chistyjdom.ru/wp-content/uploads/2018/03/li1.jpg" alt="123" width="700" height="307">

Основными функциями контроллера являются:

  • Функция контроллера состоит в защите аккумуляторного элемента в зарядке не выше 4,2 В. Иначе произойдет перезаряд и превышение может вывести элемент из строя.
  • Контролер заряда и разряда справляется с защитой от короткого замыкания. Для защиты от перенапряжения устанавливается терморезистор (T). Контроллер отвечает за функцию разрядки аккумуляторного элемента. При снижении напряжения отключается блок от тока.
  • Своевременно останавливайте расход энергии, чтобы не допускать разряд до критического уровня. Контроллер спасет от гибели блок энергии, и предостережет от покупки новой. Хорошая новая модель для постоянного использования обойдется в 15-20 тысяч рублей. Поэтому стоит задуматься об установке контроллера в схему.
  • Фиксируется показатели давления и температуры при остановке заряда.

Но не все виды контроллеров обладают абсолютно всеми вышеперечисленными функциями.

Имея специальное образование, то в схеме можно обойтись и без контроллера, но надо уметь пользоваться амперметром и вольтметром. На клеммах напряжение должно быть не менее максимума заряда, то блок заряжен на 70%.

Защищенные и незащищенные li ion батареи

Защищенный аккумулятор – это накопитель питания в оболочке с маленькой платой. Отличается тем, что есть защита от перегревов и перенапряжения, а так же короткого замыкания.

К корпусу незащищенного li ion приваривается защитная электро плата. После этого упаковывается в оболочку. Все параметры должны указываться на оболочке.

Покупая защищенную модель аккумулятора учитывайте то, что из-за наличия внешней оболочки размеры немного увеличены в сравнении ранее упомянутых. Высота больше на 3-5 мм, а диаметр до 1 мм.

Преимущества li ion блоков:

  • Если, правильно эксплуатировать, то энергия снижается медленно.
  • Высокая энерго плотность, в маленьких размерах скрывается большая энергоемкость.
  • Высокое напряжение, должно принимать значение не менее 3,6 В.
  • Сохраняет работоспособность при увеличенном количестве цикла заряде и разряде.
  • Небольшая потеря емкости после большого количества циклов разрядки.

Незащищенный аккумулятор – накопитель энергии, скрывающийся под оболочкой незащищенного. Если снять внешнюю оболочку, то под не будет незащищенный аккумулятор. На внешней упаковке должны указываться параметры аккумулятора, скрытого под оболочкой.

Схема устройства для зарядки

В любой схеме должен применяться балансир и плата контроллера для заряда li ion аккумуляторов. Они предостерегают его от порчи зарядного устройства.

Работа данной схемы основывается на работе T1 средней мощности и регулируемом стабилизаторе напряжения. Рассмотрим:

Data-lazy-type="image" data-src="http://chistyjdom.ru/wp-content/uploads/2018/03/li2.jpg" alt="123" width="578" height="246">

При выборе транзистора учитывается нужный зарядный ток. Для зарядки батареи небольшой емкости можно использовать иностранные или отечественные NPN. Установите его на радиатор, если у вас высокое входное напряжение.

Регулирующим элементом является T1. Ток заряда ограничивается резистором (R2). Используйте мощность R2 равным 1 Вт. Остальные могут иметь мощность меньше.

LED1 – это светодиод, отвечающий за сигнализацию о заряде li ion. При включении аккумулятора, и диод индикатора загорается ярко, сигнализируя о разряженном состоянии. А после полного заряжения прекращает светиться индикатор разряда. Несмотря на прекращение свечения лампочки, батарея продолжает заряжаться током менее 50ма. Для предупреждения перезаряда, после окончания зарядки следует отключать аккумулятор от заряда.

LED2 – второй светодиод, использующийся в схеме для более точного контроля.

Выбор конструкции зависит от того для какой цели используются блоки. Для самостоятельного сбора конструкции следует иметь под рукой следующие детали:

  1. Ограничитель тока.
  2. Защита от подключения разных полюсов.
  3. Автоматика. Устройство начинает работать, когда на самом деле требуется потребность в этом.

Схема предназначена для подзарядки одного накопителя энергии, чтобы использовать ее для другого типа зарядки следует поменять выход и ток зарядки.

Следует помнить, что все li ion блоки питания отличаются по своим типоразмерам. Самой популярной являются 18650. Балансир незаменимый помощник в цепи. Он справляется с такой задачей, чтобы не допустить повышение напряжение выше допустимого предела.

Возможно ли сделать зарядное устройство самому и насколько это безопасно?

Собрать зарядку для li ion устройства можно своими руками. Для того, чтобы собрать простое зарядное устройство li ion нужно иметь определенный опыт и навыки. Теоретически самоделку можно сделать в домашних условиях. Практически это почти невозможная задача. Не всегда устройство правильно заряжается от зарядки, и тогда прибор будет бесполезным. Но перед тем как делать его, прочтите несколько правил:

  1. Литиевые аккумуляторы не терпят перезарядки. Максимальное заряженное напряжение должно быть не больше 4,2 В. Для каждого вида есть свой установленный порог, который не стоит превышать.
  2. Проверьте все детали, которыми будете пользоваться. А главное проверить точность измерения мощности, например вольтметром, чтобы не допустить ошибку. Проверьте: происхождение банок, максимально допустимую мощность, заряд. Поэтому следует снизить порог, чтобы эксплуатировать устройство безопасно.

Если не придерживаться некоторых правил, то может произойти перегрев, вздутие деталей, выделение газа с неприятным запахом, взрыв устройства или возгорание.

Фирменные АКБ комплектуются специальными схемками, обеспечивающие защиту от перенапряжения, которая не допускает превышение ранее заявленного предела.

Схема зарядного устройства представлена на рисунке:

Data-lazy-type="image" data-src="http://chistyjdom.ru/wp-content/uploads/2018/03/li3.jpg" alt="123" width="700" height="257">

Для правильного использования задается выходное напряжение зарядного устройства U=4,2 В без подключения батареи для зарядки.

Индикатором работы будет диод, он подсвечивается если разряжен подключенный аккумулятор, и погасает когда аккумулятор заряжен.

Сбор зарядки:

  • подберите корпус соответствующего размера;
  • закрепите блок питания и элементы, как на выше указанной схеме.вырежьте латунные полоски и прикрепите их на гнезда;
  • установите расстояние между контактами и АКБ;
  • прикрепите переключатель, который в последствии сможет менять полярность на гнездах;
  • но если необходимости в нем нет, то можно исключить этот пункт;
  • проверьте литий ионный аккумулятор при отсутствии напряжение, то вольтметр не будет показывать значения. Это означает схема собрана неправильно, поэтому если у вас нет специального образования, то лучше не экспериментировать с самостоятельным сбором аккумулятора.

Много раз на mySKU описывались модули зарядки литий-ионных аккумуляторов на базе контроллера TP4056. Применений множество - от переделки игрушек до бытовых поделок. Народный модуль TP4056 со встроенной защитой на базе DW01A прекрасен всем, только нижний порог срабатывания защиты по напряжению 2,5±0,1 В, т.е. 2,4 В в худшем случае. Для большинства современных аккумуляторов это подходит, т.к. у них порог 2,5 В. А что делать, если у вас мешок аккумуляторов с нижним порогом 2,75 В? Можно плюнуть и использовать их с таким модулем. Просто увеличивается риск того, что после разряда аккумулятор выйдет из строя. А можно использовать дополнительную плату защиты, нижний порог напряжения у которой соответствует аккумуляторам. Именно о такой плате я сегодня расскажу.

Понимаю, что большинству эта тема не интересна, но пусть будет для истории, т.к. иногда вопрос поднимается.

Если вы используете аккумуляторы со встроенной защитой, то эта плата вам не нужна, вы можете спокойно использовать «народный» модуль на базе TP4056 без защиты. Если вы используете аккумуляторы без защиты с минимальным напряжением 2,5 В, то вы можете спокойно использоваться «народный» модуль на базе TP4056 с защитой.

Модулей на базе TP4056 с порогом 2,75 В я в продаже не нашёл. Начал искал отдельные модули защиты - выбор большой, есть очень дешёвые, но большинство из них сделаны на том же контроллере DW01A. Модуль из обзора - это самое дешёвое, что я смог найти. 275 рублей за 5 штук.

Модуль крошечный, 39,5 x 4,5 x 2 мм.




Контактные площадки стандартные для защиты одной ячейки: B+, B- для подключения аккумулятора и P+, P- для подключения ЗУ и нагрузки.

Официальные технические характеристики:

Модуль сделана на базе контроллера . Версия BM112-LFEA. Техническим характеристикам соответствует. В роли транзистора выступает двойной N-канальный MOSFET транзистор .

Схема подключения простая:


Для активации модуля защиты достаточно подать питание на P+, P-. Конечно, TP4056 подключать не обязательно, аккумулятор с модулем защиты может спокойно жить своей жизнью (как обычный аккумулятор с защитой).

Практический тест

Это не лабораторный тест, погрешности могут быть большими, но общую картину продемонстрирует.

Я буду использовать преобразователь в качестве регулируемого БП, тестер EBD-USB и боевой аккумулятор TrustFire для проверки защиты от КЗ.

Минимальное напряжение:


Уменьшаю напряжение с помощью потенциометра. Защита срабатывает при напряжении 2,7 В. Это не заявленные 2,88 В, но, учитывая возможную погрешность, для аккумуляторов с нижним порогом напряжения 2,75 В подходит.

Максимальная рабочая сила тока:


Максимальная рабочая сила тока составляет 3,6 А. При превышении срабатывает защита. Время срабатывания зависит от нагрева транзистора. Если он горячий, то срабатывает сразу при установке 3,7 А. Если холодный, то через 30 секунд. При токе 4 А защита срабатывает практически сразу в любом случае. Т.е. заявленных 4 А нет, но 3,6 А тоже хорошо.

Температура модуля:


За 5 минут работы при максимальной силе тока транзистор нагрелся до 60 ºC, т.е. лучше не примыкать модуль вплотную к аккумулятору (без прокладки) при монтаже.

Сброс защиты происходит через некоторое время или можно подать напряжение с ЗУ для принудительного сброса.

Защита от КЗ есть… одноразовая:). Подключил свой боевой TrustFire к модулю защиты и замкнул контакты P+, P- через мультиметр. На мультиметре успел мелькнуть ток 14 А, «пшик» произошёл сразу. Сгорел транзистор на плате защиты. При этом плата защиты ток потребителю больше не пропускала, но и не работала по сути больше.

Первым делом встроил один модуль в кейс для установки аккумуляторов 18650 (USB коннектор там просто для удобства, без преобразователя). Обычно я и дети используем его для поделок с помощью мини-дрели.

Заключение

Модули защиты отличные. Заявленные характеристики почти соответствуют реальным. Огорчает только цена, но дешевле для аккумуляторов с порогом 2,75 В я не нашёл. Планирую купить +77 Добавить в избранное Обзор понравился +49 +103

На сегодняшний день литий ионные аккумуляторы являются самыми эффективными аккумуляторами. Они компактные, имеют большую энергоемкость, лишены эффекта памяти. При всех достоинствах у них имеется один существенный недостаток, их работу и процесс заряда нужно тщательно контролировать. Если аккумулятор разрядится ниже некоторого предела или перезарядить, он быстро теряет свои свойства, вздуться и даже взорваться. Тоже самое и в случае перегрузки и коротких замыканиях - нагрев, образование газов и в итоге взрыв.

Некоторые литий ионных аккумуляторы снабжены предохранительным клапаном, который не даст аккумулятору взорваться, но большая часть мощных полимерных аккумуляторов таких клапанов не имеют.

Другими словами, при эксплуатации литий ионных аккумуляторов требуется система их защиты.

Многие наверняка заметили маленькие платы в аккумуляторах мобильных телефонов, вот как раз эта плата и является защитой. Защищает она от глубкого разряда, от перезаряда и от коротких замыканий или перегрузок по току.


Схема этой защиты очень простая, на плате находиться пара микросхем с мелочевкой.

За всеми процессами следит микросхема DW01. Вторая микросхема - это сборка из двух полевых транзисторов. Первый транзистор контролирует процесс разряда, второй отвечает за заряд батареи.

Во время разряда микросхема следит за падением напряжения на переходах полевых ключей, если оно доходит до критической величины (150-200мВ), микросхема закрывает транзисторы, отключая батарею от нагрузки. Работа схемы восстанавливается менее чем за секунду после того, после снятия нагрузки.

Падение напряжение на переходах транзисторов микросхема отслеживает через второй вывод.

В зависимости от емкости аккумулятора эти контроллеры могут кардинально отличаться внешним видом, током короткого замыкания и топологией схемы, но функция у них всегда одинаковая - защищать аккумулятор от перезаряда, глубокого разряда и перегрузки по току. Многие контроллеры также обеспечивают защиту от перегрева банки, контроль температуры осуществляется термодатчиком.

У меня скопилось очень много плат защиты от аккумуляторов мобильных телефонов и как раз для одного моего проекта в котором задействован литий ионный аккумулятор понадобилась система защиты. Проблема в том, что эти платы рассчитаны на максимальный ток в 1Ампер, а мне нужна была плата с током минимум 6-7 Ампер. Платы с нужным для моих целей током стоят меньше пол доллара, но ждать месяц-другой я не мог. Осмотрев китайские платы на алиэкспресс я понял, что они не многим отличаются от моих. Схематика та же, только ток защиты побольше за счёт параллельного включения силовых транзисторов.

При параллельном соединении полевых транзисторов, сопротивление их каналов будет значительно меньше, поэтому падение напряжения на них будет меньше, а ток срабатывания защиты будет больше. Параллельное соединение ключей даст возможность коммутировать большие токи, чем больше ключей, тем больше общий ток коммутации.


В схеме применены стандартные сборки из двух полевиков в одном корпусе. Их часто применяют на платах защиты аккумуляторов смартфонов и не только.

Сборки 8205А имеют очень много аналогов, как и микросхемы контроля DW01.

После сборки платы я протестировал её. Получилось именно то, что мне нужно для проекта:

  • Плата заряжает аккумулятор до напряжения 4,2В и отключает его от зарядного устройства;
  • При разряде аккумулятора ниже 2,5В аккумулятор отключился от нагрузки;
  • При токах выше 12-13 Ампер аккумулятор отключается.

Литий ионные аккумуляторы имеют малый саморазряд, но аккумулятор дополненный такой платой будет разряжаться быстрее, чем аккумулятор без защиты. Ток потребления схемы защиты мизерный, и составляет около 2,5 МИКРОампер.

Подробнее о работе платы защиты

{youtube}lXKELGFo79o {/youtube}

Собираем мощную плату контроля

{youtube} _w-AUCG4k_0 {/youtube}

Плата защиты для одной банки LI-ION http://ali.pub/28463y

Плата защиты для двух банок

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует . Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки - сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде - это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют .

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого .

Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Сама микросхема DW01 - шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 - это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 - датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А - это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241 .

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

LV51140T

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T .

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы - вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки - порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

SA57608

Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608 .

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

SA57608 потребляет достаточно большой ток в спящем режиме - порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor - контроллер заряда-разряда на микросхеме LC05111CMT .

Решение интересно тем, что ключевые MOSFET"ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет ~11 миллиом (0.011 Ом). Максимальный ток заряда/разряда - 10А. Максимальное напряжение между выводами S1 и S2 - 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2.6x4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты - в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда - это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV - постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество "заливаемой" в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу - при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.