Мотор с переменной степенью сжатия. Первый в мире серийный двс с изменяемой степенью сжатия. Мал, да удал

Двигатель VC-T. Изображение: Nissan

Японский автопроизводитель Nissan Motor представил новый тип бензинового двигателя внутреннего сгорания , который по некоторым параметрам превосходит продвинутые современные дизельные двигатели.

Новый двигатель Variable Compression-Turbo (VC-T) способен при необходимости изменять степень сжатия газообразной горючей смеси, то есть изменять шаг хода поршней в цилиндрах ДВС. Этот параметр обычно является фиксированным. Судя по всему, VC-T станет первым в мире ДВС с изменяемой степенью сжатия смеси.

Степень сжатия - отношение объёма надпоршневого пространства цилиндра двигателя внутреннего сгорания при положении поршня в нижней мёртвой точке (полный объём цилиндра) к объёму надпоршневого пространства цилиндра при положении поршня в верхней мёртвой точке, то есть к объёму камеры сгорания.

Повышение степени сжатия в общем случае повышает его мощность и увеличивает КПД двигателя, то есть способствует снижению расхода топлива.

В обычных бензиновых двигателях степень сжатия обычно составляет от 8:1 до 10:1, а в спортивных машинах и гоночных болидах может достигать 12:1 или больше. При повышении степени сжатия двигатель нуждается в топливе с бóльшим октановым числом.


Двигатель VC-T. Изображение: Nissan

На иллюстрации показана разница в шаге поршней на разной степени сжатия: 14:1 (слева) и 8:1 (справа). В частности, демонстрируется механизм изменения степени сжатия от 14:1 к 8:1. Он происходит таким образом.

  1. В случае необходимости изменить степень сжатия активируется модуль Harmonic Drive и сдвигает рычаг актуатора.
  2. Рычаг актуатора поворачивает приводной вал (Control Shaft на схеме).
  3. Когда приводной вал поворачивается, он изменяет угол наклона многорычажной подвески (Multi-link на схеме)
  4. Многорычажная подвеска определяет высоту, на которую каждый поршень способен подняться в своём цилиндре. Таким образом, изменяется степень сжатия. Нижняя мёртвая точка поршня, судя по всему, остаётся прежней.
Конструкция запатентована Nissan (патент США № 6,505,582 от 14 июня 2003 года).

Изменение степени сжатия в ДВС можно в каком-то смысле сравнить с изменением угла атаки в винтах регулируемого шага - концепции, которая много десятилетий применяется в воздушных и гребных винтах. Изменяемый шаг винта позволяет поддерживать эффективность движителя близкой к оптимальной вне зависимости от скорости движения носителя в потоке.

Технология изменения степени сжатия ДВС даёт возможность сохранить мощность двигателя при соблюдении строгих нормативов к экономичности двигателя. Вероятно, это вообще самый реальный способ соблюсти эти нормативы. «Все сейчас работают над изменяемой степень сжатия и другими технологиями, чтобы значительно улучшить экономичность бензиновых двигателей, - говорит Джеймс Чао (James Chao), управляющий директор по Азиатско-Тихоокеанскому региону и консультант IHS, - По крайней мере последние двадцать лет или около того». Стоит упомянуть, что в 2000 году компания Saab показывала прототип такого двигателя Saab Variable Compression (SVC) для Saab 9-5, за который удостоилась ряда наград на технических выставках. Затем шведскую фирму купил концерн General Motors и прекратил работу над прототипом.


Двигатель Saab Variable Compression (SVC). Фото: Reedhawk

Двигатель VC-T обещают вывести на рынок в 2017 году с автомобилями марки Infiniti QX50. Официальная презентация назначена на 29 сентября на Парижском автосалоне. Этот двухлитровый четырёхцилиндровый двигатель будет обладать примерно такой же мощностью и крутящим моментом, что и 3,5-литровый двигатель V6, место которого займёт, но обеспечит экономию топлива 27%, по сравнению с ним.

Инженеры Nissan говорят также, что VC-T будет дешевле, чем современные продвинутые дизельные двигатели с турбонаддувом, и будет полностью соответствовать современным нормам на выбросы оксида азота и других выхлопных газов - такие правила действуют в Евросоюзе и некоторых других странах.

После Infiniti новыми двигателями планируется оснащать другие автомобили Nissan и, возможно, партнёрской компании Renault.


Двигатель VC-T. Изображение: Nissan

Можно предположить, что усложнённая конструкция ДВС в первое время вряд ли будет отличаться надёжностью. Есть смысл выждать несколько лет, прежде чем покупать автомобиль с двигателем VC-T, если только вы не хотите участвовать в тестировании экспериментальной технологии.

Тесно связана с к.п.д. В бензиновых двигателях степень сжатия ограничивается областью детонационного сгорания. Эти ограничения имеют особое значение для работы двигателя на полных нагрузках, в то время как на частичных нагрузках высокая степень сжатия не вызывает опасности детонации. Для увеличения мощности двигателя и повышения экономичности желательно снижать степень сжатия, однако если степень сжатия будет малой для всех диапазонов работы двигателя, это приведет к снижению мощности и увеличению расхода топлива на частичных нагрузках. При этом значения степени сжатия, как правило, выбираются намного ниже тех величин, при которых достигаются наиболее экономичные показатели работы двигателей. Заведомо ухудшая экономичность двигателей, это особенно сильно проявляется при работе на частичных нагрузках. Между тем, снижение наполнения цилиндров горючей смесью, увеличение относительного количества остаточных газов, уменьшение температуры деталей и т.п. создают возможности для повышения степени сжатия при частичных нагрузках с целью повышения экономичности двигателя и увеличения его мощности. Чтобы решить такую компромиссную задачу, разрабатываются варианты двигателей с изменяющейся степенью сжатия.

Повсеместное применение в конструкциях двигателей сделало направление этой работы еще более актуальным. Дело в том, что при наддуве значительно увеличиваются механические и тепловые нагрузки на детали двигателя, в связи с чем их приходится усиливать, повышая массу всего двигателя в целом. При этом, как правило, срок службы деталей, работающих при более нагруженном режиме, сокращается, а надежность двигателя снижается. В случае перехода на переменную степень сжатия рабочий процесс в двигателе при наддуве можно организовать так, что за счет соответствующего снижения степени сжатия при любых давлениях наддува максимальные давления рабочего цикла (т.е. эффективность работы) будут оставаться неизменными или будут изменяться незначительно. При этом, несмотря на увеличение полезной работы за цикл, а, следовательно, и мощности двигателя, максимальные нагрузки на его детали могут не увеличиваться, что позволяет форсировать двигатели без внедрения изменений в их конструкцию.

Очень существенным для нормального протекания процесса сгорания в двигателе с изменяющейся степенью сжатия является правильный выбор формы камеры сгорания, обеспечивающей наиболее короткий путь распространения пламени. Изменение фронта распространения пламени должно быть очень оперативным, чтобы учитывать различные режимы работы двигателя при эксплуатации автомобиля. Учитывая применение дополнительных деталей в кривошипно-шатунном механизме, необходимо также разрабатывать системы с малым коэффициентом трения, чтобы не потерять преимуществ при применении изменяющейся степени сжатия.

Один из наиболее распространенных вариантов двигателя с изменяющейся степенью сжатия показан на рисунке.

Рис. Схема двигателя с изменяющейся степенью сжатия:
1 – шатун; 2 – поршень; 3 – эксцентриковый вал; 4 - дополнительный шатун; 5 – шатунная шейка коленчатого вала; 6 – коромысло

На частичных нагрузках дополнительный 4 занимает крайнее нижнее положение и поднимает зону рабочего хода поршня. Степень сжатия при этом максимальна. При высоких нагрузках эксцентрик на валу 3 поднимает ось верхней головки дополнительного шатуна 4. При этом увеличивается надпоршневой зазор и уменьшается степень сжатия.

В 2000 году в Женеве был представлен экспериментальный бензиновый двигатель фирмы SAAB с изменяемой степенью сжатия. Его уникальные особенности позволяют достигать мощности в 225 л.с. при рабочем объеме в 1,6 л. и сохранять расход топлива сравнимого с вдвое меньшим двигателем. Возможность бесшагового изменения рабочего объема позволяет двигателю работать на бензине, дизельном топливе или на спирте.

Цилиндры двигателя и головка блока выполнены как моноблок, т. е. единым блоком, а не раздельно как у обычных двигателей. Отдельный блок представляет собой также блок-картер и шатунно-поршневая группа. Моноблок может перемещаться в блок-картере. Левая сторона моноблока при этом опирается на расположенную в блоке ось 1, служащую шарниром, правая сторона может приподниматься или опускаться при помощи шатуна 3 управляемого эксцентриковым валом 4. Для герметизации моноблока и блок-картера предусмотрен гофрированный резиновый чехол 2.

Рис. Двигатель с изменяющейся степенью сжатия SAAB:
1 – ось; 2 – резиновый чехол; 3 – шатун; 4 – эксцентриковый вал.

Степень сжатия изменяется при наклоне моноблока относительно блок-картера посредством гидропривода при неизменном ходе поршня. Отклонение моноблока от вертикали приводит к увеличению объема камеры сгорания, что вызывает снижение степени сжатия.

При уменьшении угла наклона степень сжатия повышается. Максимальная величина отклонения моноблока от вертикальной оси – 4%.

На минимальной частоте вращения коленчатого вал и сбросе подачи топлива, а также при малых нагрузках, моноблок занимает самое нижнее положение, в котором объем камеры сгорания минимален (степень сжатия – 14). Система наддува отключается, и воздух поступает в двигатель напрямую.

Под нагрузкой, за счет поворота эксцентрикового вала, шатун отклоняет моноблок в сторону, и объем камеры сгорания увеличивается (степень сжатия – 8). При этом сцепление подключает нагнетатель, и воздух начинает поступать в двигатель под избыточным давлением.

Рис. Изменение подачи воздуха в двигатель SAAB при различных режимах:
1 – дроссельная заслонка; 2 – перепускной клапан; 3 – сцепление; а – на малой частоте вращения коленчатого вала; б – на нагрузочных режимах

Оптимальная степень сжатия рассчитывается блоком управления электронной системы с учетом частоты вращения коленчатого вала, степени нагрузки, вида топлива и др. параметров.

В связи с необходимостью быстрого реагирования на изменение степени сжатия в данном двигателе пришлось отказаться от турбокомпрессора в пользу механического наддува с промежуточным охлаждением воздуха с максимальным давлением наддува 2,8 кгс/см2.

Расход топлива для разработанного двигателя на 30% меньше, чем у обычного двигателя такого же объема, а показатели по токсичности отработавших газов соответствуют действующим нормам.

Французская фирма МСЕ-5 Development, разработала для концерна «Пежо-Ситроен», двигатель с изменяемой степенью сжатия VCR (Variable Compression Ratio). В этом решении применена оригинальная кинематика кривошипно-шатунного механизма.

В данной конструкции передача движения от шатуна на поршни осуществляется через двойной зубчатый сектор 5. С правой стороны двигателя расположена опорная зубчатая рейка 7, на которую опирается сектор 5. Такое зацепление обеспечивает строго возвратно-поступательное движение поршня цилиндра, который соединен с зубчатой рейкой 4. Рейка 7 соединена с поршнем 6 управляющего гидроцилиндра.

В зависимости от режима работы двигателя по сигналу блока управления двигателем изменяется положение поршня 6 управляющего цилиндра, связанного с рейкой 7. Смещение рейки управления 7 вверх или вниз изменяет положение ВМТ и НМТ поршня двигателя, а вместе с ними и степени сжатия от 7:1 до 20:1 за 0,1 с. В случае необходимости имеется возможность изменения степени сжатия для каждого цилиндра в отдельности.

Рис. Двигатель с изменяемой степенью сжатия VCR:
1 – коленчатый вал; 2 – шатун; 3 – зубчатый опорный ролик; 4 – зубчатая рейка поршня; 5 – зубчатый сектор; 6 – поршень управляющего цилиндра; 7 – опорная зубчатая рейка управления.

Уникальная технология изменения степени сжатия представляет настоящий прорыв в моторостроении – 2-литровый VC-Turbo постоянно меняет характеристики, настраивая степень сжатия на оптимальную мощностную отдачу и максимальную топливную эффективность. По тяговым характеристикам этот 2-литровый бензиновый турбомотор вполне сравним с передовыми турбодизельными двигателями того же рабочего объема.

Двигатель VC-Turbo постоянно и совершенно незаметно для водителя изменяет степень сжатия с помощью системы рычагов, которые поднимают или опускают верхнюю мертвую точку (ВМТ) поршней, тем самым позволяя добиться наилучших характеристик мощности и экономичности.

Высокая степень сжатия в принципе делает работу двигателя более эффективной, однако в определенных режимах появляется риск взрывного сгорания (детонации). С другой стороны, низкая степень сжатия позволяет избежать детонации и развивать высокую мощность и крутящий момент. Во время движения степень сжатия двигателя VC-Turbo меняется от 8:1 (для максимальной динамики) до 14:1 (при минимальном расходе топлива), подчеркивая ориентированную на водителя философию INFINITI.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

Уникальное сочетание динамики и экономичности превращает VC-Turbo в реальную альтернативу современным турбодизелям, не на словах, а на деле опровергая мнение, что только гибридные и дизельные силовые агрегаты могут обеспечить высокие показатели крутящего момента и экономичность. VC-Turbo развивает 268 л.с. (200 кВт) при 5600 об/мин и 380 Нм при 4400 об/мин, что является лучшим сочетанием мощности и тяги среди четырехцилиндровых двигателей. Удельная мощность VC-Turbo выше, чем у многих турбомоторов конкурентов и вплотную приближается к показателям некоторых бензиновых V6. Однопоточный турбонагнетатель гарантирует моментальный отклик двигателя на увеличение подачи топлива.

Новый INFINITI QX50 с двигателем VC-Turbo – это самый эффективный автомобиль в своем классе с непревзойденной экономичностью. Версия с передними ведущими колесами расходует всего 8,7 л/100 км в комбинированном цикле измерений, что на 35% лучше показателей QX50 предыдущего поколения с двигателем V6. Полноприводная версия премиального кроссовера с усредненным расходом 9,0 л/100 км на 30% эффективнее предшественника.

Среди других очевидных преимуществ конструкции нового мотора – компактные размеры и сниженная масса. Блок и головка цилиндров отлиты из легкого алюминиевого сплава, а компоненты системы регулировки степени сжатия изготовлены из высокоуглеродистой стали. В результате по сравнению с 3,5-литровым двигателем INFINITI серии VQ новый VC-Turbo весит легче на 18 кг, а кроме того занимает меньше пространства в моторном отсеке.

За изменение степени сжатия в двигателе VC-Turbo отвечают система рычагов, электромотор и уникальный волновой понижающий редуктор. Электромотор через редуктор соединен с управляющим рычагом. Редуктор вращается, поворачивая управляющий вал в блоке цилиндров, а тот в свою очередь изменяет положение коромысел, через которые поршни приводят коленвал. Наклон коромысел меняет положение верхней мертвой точки поршней, а вместе с ним и степень сжатия. Эксцентриковый управляющий вал регулирует степень сжатия одновременно во всех цилиндрах. В результате варьируется не только степень сжатия, но и рабочий объем двигателя в диапазоне от 1997 см3 (8:1) до 1970 см3 (14:1).

Двигатель VC-Turbo также незаметно для пользователя переключается между стандартным рабочим циклом Отто и циклом Аткинсона, еще сильнее увеличивая мощность и эффективность. Цикл Аткинсона традиционно используется для повышения эффективности гибридных силовых установок. При работе ДВС по циклу Аткинсона впускные клапаны перекрываются, позволяя рабочей смеси в цилиндрах сильнее расширяться, сгорая с большей эффективностью. Двигатель INFINITI работает по циклу Аткинсона при высоких показателях степени сжатия, когда из-за более длинного хода поршней впускные клапаны на короткое время остаются открытыми уже в фазе сжатия.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

Когда степень сжатия VC-Turbo уменьшается, двигатель возвращается к обычному режиму работы (цикл Отто), с четко разделенными фазами выпуска, сжатия, сгорания и выпуска – таким образом, достигается более высокая мощность силового агрегата.

Помимо изменяемой степени сжатия в двигателе VC-Turbo применяется и ряд других передовых технологий INFINITI. Оптимальный баланс между эффективностью и мощностью обеспечивает как система распределенного впрыска (MPI), так и непосредственного (GDI):

  • GDI повышает эффективность сгорания топлива, предотвращая детонацию в двигателе при высоких степенях сжатия
  • MPI, в свою очередь, заранее подготавливает топливную смесь, обеспечивая ее полное сгорание в цилиндрах при низких нагрузках

При определенных оборотах двигатель самостоятельно переключается с одной системы впрыска на другую, а при максимальных нагрузках они могут работать и одновременно.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

Однопоточный турбонагнетатель повышает мощность и эффективность двигателя, обеспечивая быстрые отклики на педаль газа на любых оборотах и при любой степени сжатия. Благодаря турбонаддуву по отдаче мотор сравним с шестицилиндровым атмосферным двигателем. Однопоточный нагнетатель отличается компактностью, а также сниженными потерями тепловой энергии и давления выхлопных газов.

Интегрированный в алюминиевую головку блока выпускной коллектор также повышает эффективность работы двигателя и определяет его компактные размеры. Подобное решение позволило инженерам INFINITI разместить каталитический нейтрализатор сразу за турбиной, сократив таким образом путь выхлопных газов. Благодаря этому нейтрализатор быстрее прогревается после запуска двигателя и раньше выходит на рабочий режим.

Variable compression ratio technology represents a breakthrough in powertrain development. The QX50, powered by the VC-Turbo, is the first production vehicle ever to give drivers an engine that transforms on demand, setting a new benchmark for powertrain capability and refinement. This uncommonly smooth engine offers customers power and performance, as well as efficiency and economy.

Давление наддува регулируется электронно-управляемым клапаном (wastegate), который с высокой точностью контролирует поток выхлопных газов, проходящих через турбину. Это гарантирует высокую мощность и экономичность, а также помогает сократить уровень вредных выбросов.

Благодаря системе изменения степени сжатия отлично сбалансированный двигатель VC-Turbo обходится без уравновешивающих валов, обычно необходимых четырехцилиндровым моторам. VC-Turbo работает более плавно, нежели обычные рядные аналоги, а уровень шума и вибраций сравним с показателями традиционных V6. Это стало возможным, в том числе и благодаря компоновке с дополнительными коромыслами, в которой шатуны при рабочем ходе поршней почти вертикальны (в отличие от традиционного кривошипно-шатунного механизма, где они движутся из стороны в сторону). В итоге происходит идеальное возвратно-поступательное движение, не требующее уравновешивающих валов. Именно поэтому, несмотря на применение системы изменения степени сжатия, мотор VC-Turbo такой же компактный, как традиционный 2-литровый четырехцилиндровый двигатель.

Особенно нужно отметить и крайне низкий уровень вибраций нового двигателя. На заводских испытаниях, в ходе которых специалисты INFINITI сравнивали характеристики VC-Turbo с четырехцилиндровыми моторами конкурентов, революционный двигатель продемонстрировал значительно меньший уровень шума – почти как у 6-цилиндровых агрегатов.

В этом есть заслуга и применяемого INFINITI «зеркального» покрытия стенок цилиндров – оно на 44% уменьшает трение, позволяя двигателю работать ровнее. Покрытие наносится методом плазменного напыления, затем закаливается и хонингуется для создания ультра-гладкой поверхности.

Новый INFINITI QX50 c 2-литровым мотором VC-Turbo – первый в мире автомобиль, оснащенный системой активного подавления вибраций Active Torque Rod (ATR). Новый QX50 – единственный автомобиль в классе, оснащенный подобной технологией. Интегрированная в верхнюю опору двигателя, через которую на кузов обычно передается большая часть шума и вибраций, ATR оснащена датчиком ускорений, фиксирующим колебания. Система генерирует возвратно-поступательные вибрации в противофазе, позволяя четырехцилиндровому агрегату оставаться таким же тихим и плавным, как и моторы V6, и на 9 Дб уменьшает шум двигателя по сравнению с предыдущим QX50. В итоге VC-Turbo – один из самых тихих и уравновешенных двигателей в сегменте премиальных внедорожников.

Первые в мире активные опоры INFINITI установил на дизельный двигатель еще в 1998 году, подтверждая инновационность бренда в области силовых агрегатов. Систему ATR инженеры INFINITI разрабатывали с 2009-го по 2017 год, особое внимание уделив уменьшению размеров и массы – на первых прототипах главной проблемой считались габариты вибромотора. Однако, разработка более компактных возвратно-поступательных актуаторов позволила установить ATR в корпус меньшего размера, в полной мере сохранив способность системы максимально эффективно гасить вибрации.

На тему:

  • Британцы определили дату конца эры ДВС
  • Специалисты компании H2 рассказали об эффективности…

За более чем столетний жизненный путь двигатель внутреннего сгорания (ДВС) настолько преобразился, что от родоначальника остался только принцип действия. Почти все этапы модернизации были направлены на повышение коэффициента полезного действия (КПД) двигателя. Показатель КПД можно назвать универсальным. В нем скрыты многие характеристики - расход топлива, мощность, крутящий момент, состав выхлопных газов и т.д. Широкое применение новых технических идей - впрыск топлива, электронные системы зажигания и управления двигателем, 4, 5 и даже 6 клапанов на цилиндр - сыграло положительную роль в повышении КПД двигателей.

Тем не менее, как показал Женевский автосалон, до завершения процесса модернизации ДВС еще далеко. На этом популярном международном автошоу компания SAAB представила результат своего 15-летнего труда - опытный образец нового двигателя с изменяемой степенью сжатия - SAAB Variable Compression (SVC), ставший сенсацией в мире моторов.

Технология SVC и ряд других передовых и нетрадиционных с точки зрения существующих понятий о ДВС технических решений позволили снабдить новинку фантастическими характеристиками. Так, пятицилиндровый двигатель объемом всего 1,6 л, созданный для обычных серийных машин, развивает немыслимую мощность 225 л.с. и крутящий момент 305 Нм. Превосходными оказались и другие, особенно важные сегодня, характеристики - расход топлива при средних нагрузках снижен на целых 30%, на столько же уменьшен показатель выбросов СО2. Что касается СО, СН и NОx и т.д., то они, по утверждению создателей, соответствуют всем существующим и планируемым на ближайшее будущее нормам токсичности. В дополнение к этому переменная степень сжатия дает двигателю SVC возможность работать на различных марках бензина - от А-76 до Аи-98 - практически без ухудшения характеристик и исключая появление детонации.

Безусловно, существенная заслуга таких характеристик - в технологии SVC, т.е. в возможности изменять степень сжатия. Но перед тем, как познакомиться с устройством механизма, позволившим изменять эту величину, вспомним некоторые истины из теории конструкции ДВС.

Степень сжатия

Степень сжатия - это отношение суммы объемов цилиндра и камеры сгорания к объему камеры сгорания. С увеличением степени сжатия в камере сгорания повышаются давление и температура, что создает более благоприятные условия для воспламенения и сгорания горючей смеси и повышает эффективность использования энергии топлива, т.е. КПД. Чем степень сжатия выше, тем КПД больше.

Проблем с созданием бензиновых моторов с высокой степенью сжатия нет и не было. А не делают их по следующей причине. При такте сжатия у таких двигателей давление в цилиндрах повышается до очень больших величин. Это, естественно, вызывает повышение температуры в камере сгорания и создает благоприятные условия для появления детонации. А детонация, как мы знаем (см. стр. 26) - явление опасное. Во всех созданных до этого времени двигателях степень сжатия была постоянной и определялась в зависимости от давления и температурного режима в камере сгорания при максимальной нагрузке, когда расход топлива и воздуха максимальны. Работает двигатель в таком режиме не всегда, можно сказать, даже очень редко. На трассе или в городе, когда скорость практически постоянна, мотор работает при малых или средних нагрузках. В такой ситуации для более эффективного использования энергии топлива неплохо бы иметь и большую степень сжатия. Эту проблему решили инженеры SAAB - создатели технологии SVC.

Технология SVC

Прежде всего необходимо отметить, что в новом двигателе вместо традиционной головки блока и гильз цилиндров, которые отливались непосредственно в блоке или запрессовывались, имеется одна моноголовка, объединившая головку блока и гильзы цилиндров. Для изменения степени сжатия, а точнее, объема камеры сгорания моноголовка сделана подвижной. С одной стороны она посажена на вал, выполняющий функцию опоры, а с другой - опирается и приводится в движение отдельным кривошипно-шатунным механизмом. Радиус кривошипа обеспечивает смещение головки относительно вертикальной оси на 40. Этого вполне достаточно, чтобы изменять объем камеры для получения степени сжатия от 8:1 до 14:1.

Необходимую степень сжатия определяет электронная система управления двигателем SAAB Trionic, которая следит за нагрузкой, скоростью, качеством топлива и на основании этого управляет гидроприводом кривошипа. Так, при максимальной нагрузке устанавливается степень сжатия 8:1, а при минимальной - 14:1. Объединение гильз цилиндров с их головкой, кроме всего прочего позволило инженерам SAAB придать каналам рубашки охлаждения более совершенную форму, что повысило эффективность процесса отвода тепла от стенок камеры сгорания и гильз цилиндров.

Подвижность гильз цилиндров и их головки потребовали внесения изменений в конструкцию блока двигателя. Плоскость стыка блока и головки стала ниже на 20 см. Что касается герметичности стыка, то она обеспечивается резиновой гофрированной прокладкой, которая сверху защищена от повреждений металлическим кожухом.

Мал, да удал

Для многих может стать непонятным, как в двигатель с таким небольшим объемом «зарядили» больше двухсот «лошадей» - ведь такая мощность может отрицательно сказаться на его ресурсе. Создавая двигатель SVC, инженеры руководствовались совсем другими задачами. Доведение моторесурса до требуемых норм - дело технологов. Что касается малого объема двигателя, то сделано в полном соответствии с теорией ДВС. Исходя из ее законов наиболее благоприятный режим работы двигателя с точки зрения повышения КПД - при большой нагрузке (на повышенных оборотах), когда дроссельная заслонка полностью открыта. В этом случае он максимально использует энергию топлива. А так как двигатели с меньшим рабочим объемом работают в основном при максимальных нагрузках, то и КПД у них выше.

Секрет превосходства малолитражных двигателей по показателю КПД объясняется отсутствием так называемых насосных потерь. Возникают они при небольших нагрузках, когда двигатель работает на малых оборотах и дроссельная заслонка лишь немного приоткрыта. В этом случае при такте впуска в цилиндрах создается большое разряжение - вакуум, оказывающий сопротивление движению поршня вниз и соответственно снижающий КПД. При полностью открытой дроссельной заслонке таких потерь нет, так как воздух поступает в цилиндры практически беспрепятственно.

Чтобы избежать насосных потерь на все 100%, в новом двигателе инженеры SAAB также использовали «наддув» воздуха под высоким давлением - 2,8 атм., с помощью механического нагнетателя - компрессора. Предпочтение компрессору было отдано по нескольким причинам: во-первых, ни один турбонагнетатель не способен создать такое давление наддува; во-вторых, реакция компрессора на изменение нагрузки практически мгновенная, т.е. нет замедления, характерного для турбонаддува. Наполнение цилиндров свежим зарядом в двигателе SAAB улучшили и с помощью популярного сегодня современного газораспределительного механизма, в котором на каждый цилиндр приходится по четыре клапана, и благодаря применению промежуточного охладителя воздуха (Intercooler).

Опытный образец двигателя SVC, по оценке немецкой компании по разработке моторов FEV Motorentechnie в Aachen, является вполне работоспособным. Но несмотря на положительную оценку, в серийное производство он будет запущен спустя некоторое время - после его доработки и доводки под запросы покупателей.

Важным техническим показателем современного ДВС является степень сжатия, которая представляет собой отношение объема рабочего цилиндра, когда поршень находится в, так называемой, нижней мертвой точке (НМТ) к объему камеры сгорания.

Рост степени сжатия позволяет создавать наиболее подходящие условия для воспламенения ТВС (топливо-воздушной смеси) в камере сгорания, и как результат - более рационального использования выделяемой при этом энергии.

Особенности системы изменения сжатия

Степень сжатия изменяется в зависимости от типа используемого топлива и рабочих режимов двигателя. Подобные изменения учитываются и применяются системой изменения степени сжатия.

В бензиновых ДВС данный показатель ограничивается исключительно той областью, в которой происходит детонация ТВС . При малых нагрузках увеличение сжатия не приводит к процессу детонации, а вот при усиленных нагрузках детонация может достигнуть критической точки.

Двигатель с системой сжатия МСЕ-5

ДВС, оснащенный подобной системой, имеет достаточно сложную конструкцию, которая предполагает изменение характеристики рабочего хода поршней в цилиндрах.

Секатор зубчатый вступает во взаимодействие с рабочим поршнем и поршнем управления. Коромысло соединяется через рычаг с коленвалом.

Секатор движется под воздействием поршня управления. Камера над поршнем начинает заполняться маслом, объем которого строго контролируется специальным клапаном.

При перемещении секатора происходит изменение положении ВМТ поршня, и как следствие - изменение рабочего объема камеры сгорания при значительном интервале сжатия.

В настоящее время двигатель МСЕ-5 еще не пущен в серийное производство, но имеет неплохие перспективы развития в будущем.

Новую концепцию ДВС, оснащенного современной системой сжатия представила компания Lotus Cars. Это уникальный двухтактный двигатель, получивший название Omnivore, который позволяет использовать различные виды топлива - бензин, дизель, спирт, этанол и др.

Верхняя часть камеры оснащена шайбой, перемещение которой приводит к изменению объема камеры. Это позволяет обеспечить наивысшую степень сжатия - 40 к 1.

Несмотря на свою эффективность, подобная система сжатия в настоящее время не позволяет добиться хороших показателей относительно экономичного расхода топлива и экологичности двухтактного двигателя.