Явление ядерного магнитного резонанса его применение. Ядерно-магнитный резонанс (ЯМР) – самый безопасный диагностический метод. Подготовка к исследованию

  1. Суть явления

    Прежде всего, надо заметить, что хотя в названии этого явления присутствует слово «ядерный», к ядерной физике ЯМР никакого отношения не имеет и с радиоактивностью никак не связан. Если говорить о строгом описании, то без законов квантовой механики никак не обойтись. Согласно этим законам, энергия взаимодействия магнитного ядра с внешним магнитным полем может принимать только несколько дискретных значений. Если облучать магнитные ядра переменным магнитным полем, частота которого соответствует разнице между этими дискретными энергетическими уровнями, выраженной в частотных единицах, то магнитные ядра начинают переходить с одного уровня на другой, при этом поглощая энергию переменного поля. В этом и состоит явление магнитного резонанса. Это объяснение формально правильное, но не очень наглядное. Есть другое объяснение, без квантовой механики. Магнитное ядро можно представить как электрически заряженный шарик, вращающийся вокруг своей оси (хотя, строго говоря, это не так). Согласно законам электродинамики, вращение заряда приводит к появлению магнитного поля, т. е. магнитного момента ядра, который направлен вдоль оси вращения. Если этот магнитный момент поместить в постоянное внешнее поле, то вектор этого момента начинает прецессировать, т. е. вращаться вокруг направления внешнего поля. Таким же образом прецессирует (вращается) вокруг вертикали ось юлы, если ее раскрутить не строго вертикально, а под некоторым углом. В этом случае роль магнитного поля играет сила гравитации.

    Частота прецессии определяется как свойствами ядра, так и силой магнитного поля: чем сильнее поле, тем выше частота. Затем, если кроме постоянного внешнего магнитного поля на ядро будет воздействовать переменное магнитное поле, то ядро начинает взаимодействовать с этим полем - оно как бы сильнее раскачивает ядро, амплитуда прецессии увеличивается, и ядро поглощает энергию переменного поля. Однако это будет происходить только при условии резонанса, т. е. совпадения частоты прецессии и частоты внешнего переменного поля. Это похоже на классический пример из школьной физики - марширующие по мосту солдаты. Если частота шага совпадает с частотой собственных колебаний моста, то мост раскачивается всё сильнее и сильнее. Экспериментально это явление проявляется в зависимости поглощения переменного поля от его частоты. В момент резонанса поглощение резко возрастает, а простейший спектр магнитного резонанса выглядит вот так:

  2. Фурье-спектроскопия

    Первые ЯМР-спектрометры работали именно так, как описано выше - образец помещался в постоянное магнитное поле, и на него непрерывно подавалось радиочастотное излучение. Затем плавно менялась либо частота переменного поля, либо напряженность постоянного магнитного поля. Поглощение энергии переменного поля регистрировалось радиочастотным мостом, сигнал от которого выводился на самописец или осциллограф. Но этот способ регистрации сигнала уже давно не применяется. В современных ЯМР-спектрометрах спектр записывается с помощью импульсов. Магнитные моменты ядер возбуждаются коротким мощным импульсом, после которого регистрируется сигнал, наводимый в РЧ-катушке свободно прецессирующими магнитными моментами. Этот сигнал постепенно спадает к нулю по мере возвращения магнитных моментов в состояние равновесия (этот процесс называется магнитной релаксацией). Спектр ЯМР получается из этого сигнала с помощью Фурье-преобразования. Это стандартная математическая процедура, позволяющая раскладывать любой сигнал на частотные гармоники и таким образом получать частотный спектр этого сигнала. Этот способ записи спектра позволяет значительно понизить уровень шумов и проводить эксперименты намного быстрее.

    Один возбуждающий импульс для записи спектра - это самый простейший ЯМР-эксперимент. Однако таких импульсов, разной длительности, амплитуды, с разными задержками между ними и т. п., в эксперименте может быть много, в зависимости от того, какие именно манипуляции исследователю надо провести с системой ядерных магнитных моментов. Тем не менее, практически все эти импульсные последовательности оканчиваются одним и тем же - записью сигнала свободной прецессии с последующим Фурье-преобразованием.

  3. Магнитные взаимодействия в веществе

    Сам по себе магнитный резонанс остался бы не более чем занятным физическим явлением, если бы не магнитные взаимодействия ядер друг с другом и с электронной оболочкой молекулы. Эти взаимодействия влияют на параметры резонанса, и с их помощью методом ЯМР можно получать разнообразную информацию о свойствах молекул - их ориентации, пространственной структуре (конформации), межмолекулярных взаимодействиях, химическом обмене, вращательной и трансляционной динамике. Благодаря этому ЯМР превратился в очень мощный инструмент исследования веществ на молекулярном уровне, который широко применяется не только в физике, но главным образом в химии и молекулярной биологии. В качестве примера одного из таких взаимодействий можно привести так называемый химический сдвиг. Суть его в следующем: электронная оболочка молекулы откликается на внешнее магнитное поле и старается его экранировать - частичное экранирование магнитного поля происходит во всех диамагнитных веществах. Это означает, что магнитное поле в молекуле будет отличаться от внешнего магнитного поля на очень небольшую величину, которая и называется химическим сдвигом. Однако свойства электронной оболочки в разных частях молекулы разные, и химический сдвиг тоже разный. Соответственно, условия резонанса для ядер в разных частях молекулы тоже будут отличаться. Это позволяет различать в спектре химически неэквивалентные ядра. Например, если мы возьмем спектр ядер водорода (протонов) чистой воды, то в нем будет только одна линия, поскольку оба протона в молекуле H 2 O совершенно одинаковы. Но для метилового спирта СН 3 ОН в спектре будет уже две линии (если пренебречь другими магнитными взаимодействиями), поскольку тут есть два типа протонов - протоны метильной группы СН 3 и протон, связанный с атомом кислорода. По мере усложнения молекул число линий будет увеличиваться, и если мы возьмем такую большую и сложную молекулу, как белок, то в этом случае спектр будет выглядеть примерно так:

  4. Магнитные ядра

    ЯМР можно наблюдать на разных ядрах, но надо сказать, что далеко не все ядра имеют магнитный момент. Часто бывает так, что некоторые изотопы имеют магнитный момент, а другие изотопы того же самого ядра - нет. Всего существует более сотни изотопов различных химических элементов, имеющих магнитные ядра, однако в исследованиях обычно используется не более 1520 магнитных ядер, всё остальное - экзотика. Для каждого ядра есть свое характерное соотношение магнитного поля и частоты прецессии, называемое гиромагнитным отношением. Для всех ядер эти отношения известны. По ним можно подобрать частоту, на которой при данном магнитном поле будет наблюдаться сигнал от нужных исследователю ядер.

    Самые важные для ЯМР ядра - это протоны. Их больше всего в природе, и они имеют очень высокую чувствительность. Для химии и биологии очень важны ядра углерода, азота и кислорода, но с ними ученым не очень повезло: наиболее распространенные изотопы углерода и кислорода, 12 С и 16 О, магнитного момента не имеют, у природного изотопа азота 14 N момент есть, но он по ряду причин для экспериментов очень неудобен. Есть изотопы 13 С, 15 N и 17 О, которые подходят для ЯМР-экспериментов, но их природное содержание очень низкое, а чувствительность очень маленькая по сравнению с протонами. Поэтому часто для ЯМР-исследований готовят специальные изотопно-обогащенные образцы, в которых природный изотоп того или иного ядра замещен на тот, который нужен для экспериментов. В большинстве случаев эта процедура весьма непростая и недешевая, но иногда это единственная возможность получить необходимую информацию.

  5. Электронный парамагнитный и квадрупольный резонанс

    Говоря про ЯМР, нельзя не упомянуть о двух других родственных физических явлениях - электронном парамагнитном резонансе (ЭПР) и ядерном квадрупольном резонансе (ЯКР). ЭПР по своей сути подобен ЯМР, разница заключается в том, что резонанс наблюдается на магнитных моментах не атомных ядер, а электронной оболочки атома. ЭПР может наблюдаться только в тех молекулах или химических группах, электронная оболочка которых содержит так называемый неспаренный электрон, тогда оболочка имеет ненулевой магнитный момент. Такие вещества называются парамагнетиками. ЭПР, как и ЯМР, также применяется для исследований различных структурно-динамических свойств веществ на молекулярном уровне, но его область использования существенно уже. Это связано в основном с тем, что большинство молекул, особенно в живой природе, не содержит неспаренных электронов. В некоторых случаях можно использовать так называемый парамагнитный зонд, т. е. химическую группу с неспаренным электроном, которая связывается с исследуемой молекулой. Но такой подход имеет очевидные недостатки, которые ограничивают возможности этого метода. Кроме того, в ЭПР нет такого высокого спектрального разрешения (т. е. возможности отличить в спектре одну линию от другой), как в ЯМР.

    Объяснить «на пальцах» природу ЯКР труднее всего. Некоторые ядра обладают так называемым электрическим квадрупольным моментом. Этот момент характеризует отклонение распределения электрического заряда ядра от сферической симметрии. Взаимодействие этого момента с градиентом электрического поля, создаваемого кристаллической структурой вещества, приводит к расщеплению энергетических уровней ядра. В этом случае можно наблюдать резонанс на частоте, соответствующей переходам между этими уровнями. В отличие от ЯМР и ЭПР, для ЯКР не нужно внешнего магнитного поля, поскольку расщепление уровней происходит без него. ЯКР также используется для исследования веществ, но область его применения еще уже, чем у ЭПР.

  6. Преимущества и недостатки ЯМР

    ЯМР - самый мощный и информативный метод исследования молекул. Строго говоря, это не один метод, это большое число разнообразных типов экспериментов, т. е. импульсных последовательностей. Хотя все они основаны на явлении ЯМР, но каждый из этих экспериментов предназначен для получения какой-то конкретной специфической информации. Число этих экспериментов измеряется многими десятками, если не сотнями. Теоретически ЯМР может если не всё, то почти всё, что могут все остальные экспериментальные методы исследования структуры и динамики молекул, хотя практически это выполнимо, конечно, далеко не всегда. Одно из основных достоинств ЯМР в том, что, с одной стороны, его природные зонды, т. е. магнитные ядра, распределены по всей молекуле, а с другой стороны, он позволяет отличить эти ядра друг от друга и получать пространственно-селективные данные о свойствах молекулы. Почти все остальные методы дают информацию либо усредненную по всей молекуле, либо только о какой-то одной ее части.

    Основных недостатков у ЯМР два. Во-первых, это низкая чувствительность по сравнению с большинством других экспериментальных методов (оптическая спектроскопия, флюоресценция, ЭПР и т. п.). Это приводит к тому, что для усреднения шумов сигнал нужно накапливать долгое время. В некоторых случаях ЯМР-эксперимент может проводиться в течение даже нескольких недель. Во-вторых, это его дороговизна. ЯМР-спектрометры - одни из самых дорогих научных приборов, их стоимость измеряется как минимум сотнями тысяч долларов, а самые дорогие спектрометры стоят несколько миллионов. Далеко не все лаборатории, особенно в России, могут позволить себе иметь такое научное оборудование.

  7. Магниты для ЯМР-спектрометров

    Одна из самых важных и дорогих частей спектрометра - магнит, создающий постоянное магнитное поле. Чем сильнее поле, тем выше чувствительность и спектральное разрешение, поэтому ученые и инженеры постоянно пытаются получить как можно более высокие поля. Магнитное поле создается электрическим током в соленоиде - чем сильнее ток, тем больше поле. Однако бесконечно увеличивать силу тока нельзя, при очень большом токе провод соленоида просто начнет плавиться. Поэтому уже очень давно для высокопольных ЯМР-спектрометров используются сверхпроводящие магниты, т. е. магниты, в которых провод соленоида находится в сверхпроводящем состоянии. В этом случае электрическое сопротивление провода равно нулю, и выделения энергии не происходит при любой величине тока. Сверхпроводящее состояние можно получить только при очень низких температурах, всего нескольких градусов Кельвина, - это температура жидкого гелия. (Высокотемпературная сверхпроводимость - до сих пор удел только чисто фундаментальных исследований.) Именно с поддержанием такой низкой температуры и связаны все технические сложности конструирования и производства магнитов, которые обуславливают их дороговизну. Сверхпроводящий магнит построен по принципу термоса-матрешки. Соленоид находится в центре, в вакуумной камере. Его окружает оболочка, в которой находится жидкий гелий. Эта оболочка через вакуумную прослойку окружена оболочкой из жидкого азота. Температура жидкого азота - минус 196 градусов по Цельсию, азот нужен для того, чтобы гелий испарялся как можно медленнее. Наконец, азотная оболочка изолируется от комнатной температуры внешней вакуумной прослойкой. Такая система способна сохранять нужную температуру сверхпроводящего магнита очень долго, хотя для этого нужно регулярно подливать в магнит жидкие азот и гелий. Преимущество таких магнитов кроме возможности получать высокие магнитные поля также и в том, что они не потребляют энергии: после запуска магнита ток бегает по сверхпроводящим проводам практически без каких-либо потерь в течение многих лет.

  8. Томография

    В обычных ЯМР-спектрометрах магнитное поле стараются сделать как можно более однородным, это нужно для улучшения спектрального разрешения. Но если магнитное поле внутри образца, наоборот, сделать очень неоднородным, это открывает принципиально новые возможности для использования ЯМР. Неоднородность поля создается так называемыми градиентными катушками, которые работают в паре с основным магнитом. В этом случае величина магнитного поля в разных частях образца будет разная, а это значит, что сигнал ЯМР можно наблюдать не от всего образца, как в обычном спектрометре, а только от его узкого слоя, для которого соблюдаются резонансные условия, т. е. нужное соотношение магнитного поля и частоты. Меняя величину магнитного поля (или, что по сути то же самое, частоту наблюдения сигнала), можно менять слой, который будет давать сигнал. Таким образом можно «просканировать» образец по всему объему и «увидеть» его внутреннюю трехмерную структуру, не разрушая образец каким-либо механическим способом. К настоящему времени разработано большое число методик, позволяющих измерять различные параметры ЯМР (спектральные характеристики, времена магнитной релаксации, скорость самодиффузии и некоторые другие) с пространственным разрешением внутри образца. Самое интересное и важное, с практической точки зрения, применение ЯМР-томографии нашлось в медицине. В этом случае исследуемым «образцом» является человеческое тело. ЯМР-томография является одним из самых эффективных и безопасных (но также и дорогих) диагностических средств в различных областях медицины, от онкологии до акушерства. Любопытно заметить, что в названии этого метода медики не употребляют слово «ядерный», потому что некоторые пациенты связывают его с ядерными реакциями и атомной бомбой.

  9. История открытия

    Годом открытия ЯМР считается 1945-й, когда американцы Феликс Блох из Стэнфорда и независимо от него Эдвард Парселл и Роберт Паунд из Гарварда впервые наблюдали сигнал ЯМР на протонах. К тому времени уже было много известно о природе ядерного магнетизма, сам эффект ЯМР был теоретически предсказан, и было сделано несколько попыток его экспериментального наблюдения. Важно отметить, что годом раньше в Советском Союзе, в Казани, Евгением Завойским было открыто явление ЭПР. Сейчас уже хорошо известно, что Завойский также наблюдал и сигнал ЯМР, это было перед войной, в 1941 году. Однако в его распоряжении был магнит низкого качества с плохой однородностью поля, результаты были плохо воспроизводимыми и потому так и остались неопубликованными. Справедливости ради надо заметить, что Завойский был не единственным, кто наблюдал ЯМР до его «официального» открытия. В частности, американский физик Исидор Раби (лауреат Нобелевской премии 1944 года за исследование магнитных свойств ядер в атомных и молекулярных пучках) в конце 30-х годов также наблюдал ЯМР, но счел это аппаратурным артефактом. Так или иначе, но за нашей страной остается приоритет в экспериментальном обнаружении магнитного резонанса. Хотя сам Завойский вскоре после войны стал заниматься другими проблемами, его открытие для развития науки в Казани сыграло огромную роль. Казань до сих пор остается одним из ведущих мировых научных центров по ЭПР-спектроскопии.

  10. Нобелевские премии в области магнитного резонанса

    В первой половине XX века было присуждено несколько Нобелевских премий ученым, без работ которых открытие ЯМР не могло бы состояться. Среди них можно назвать Петера Зеемана, Отто Штерна, Исидора Раби, Вольфганга Паули. Но непосредственно связанных с ЯМР Нобелевских премий было четыре. В 1952 году премию получили Феликс Блох и Эдвард Парселл за открытие ЯМР. Это единственная «ЯМР-ная» Нобелевская премия по физике. В 1991 году премию по химии получил швейцарец Ричард Эрнст, работавший в знаменитой Швейцарской высшей технической школе в Цюрихе. Он был удостоен ее за развитие методов многомерной ЯМР-спектроскопии, которые позволили кардинально увеличить информативность ЯМР-экспериментов. В 2002 году лауреатом премии, также по химии, стал Курт Вютрих, работавший с Эрнстом в соседних зданиях в той же Технической школе. Он получил премию за разработку методов определения трехмерной структуры белков в растворе. До этого единственным методом, позволяющим определять пространственную конформацию больших биомакромолекул, был только рентгеноструктурный анализ. Наконец, в 2003 году премию по медицине за изобретение ЯМР-томографии получили американец Поль Лаутербур и англичанин Петер Мансфилд. Советский первооткрыватель ЭПР Е. К. Завойский Нобелевской премии, увы, не получил.

Ядерный магнитный резонанс

Я́дерный магни́тный резона́нс (ЯМР ) - резонансное поглощение или излучение электромагнитной энергии веществом, содержащимядра с ненулевым спином во внешнем магнитном поле, на частоте ν (называемой частотой ЯМР), обусловленное переориентацией магнитных моментов ядер. Явление ядерного магнитного резонанса было открыто в 1938 году Исааком Раби в молекулярных пучках, за что он был удостоен нобелевской премии 1944 года . В 1946 году Феликс Блох и Эдвард Миллз Парселл получили ядерный магнитный резонанс в жидкостях и твердых телах (нобелевская премия 1952 года). .

Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.

Мат.описание Магнитный момент ядра мю=у*lгдеl- спин яра; у- постоянная планка Частота, на которой наблюдается ЯМР

Химическая поляризация ядер

При протекании некоторых химических реакций в магнитном поле в спектрах ЯМР продуктов реакции обнаруживается либо аномально большое поглощение, либо радиоизлучение. Этот факт свидетельствует о неравновесном заселении ядерных зеемановских уровней в молекулах продуктов реакции. Избыточная заселённость нижнего уровня сопровождается аномальным поглощением. Инверсная заселённость (верхний уровень заселён больше нижнего) приводит к радиоизлучению. Данное явление называется химической поляризацией ядер

В ЯМР используется для усиления ядерной намагниченности Ларморовские частоты некоторых атомных ядер

ядро

Ларморовская частота в МГц при 0,5 Тесла

Ларморовская частота в МГц при 1 Тесла

Ларморовская частота в МГц при 7,05 Тесла

1 H (Водород )

²D (Дейтерий )

13 C (Углерод )

23 Na (Натрий )

39 K (Калий )

Частота для резонанса протонов находится в диапазоне коротких волн (длина волн около 7 м) .

Применение ЯМР

Спектроскопия

ЯМР-спектроскопия

Приборы

Сердцем спектрометра ЯМР является мощный магнит. В эксперименте, впервые осуществленном на практике Пёрселлом, образец, помещенный в стеклянную ампулу диаметром около 5 мм, заключается между полюсами сильного электромагнита. Затем, для улучшения однородности магнитного поля, ампула начинает вращаться, а магнитное поле, действующее на нее, постепенно усиливают. В качестве источника излучения используется радиочастотный генератор высокой добротности. Под действием усиливающегося магнитного поля начинают резонировать ядра, на которые настроен спектрометр. При этом экранированные ядра резонируют на частоте чуть меньшей, чем ядра, лишенные электронных оболочек. Поглощение энергии фиксируется радиочастотным мостом и затем записывается самописцем. Частоту увеличивают до тех пор, пока она не достигнет некого предела, выше которого резонанс невозможен.

Так как идущие от моста токи весьма малы, снятием одного спектра не ограничиваются, а делают несколько десятков проходов. Все полученные сигналы суммируются на итоговом графике, качество которого зависит от отношения сигнал/шум прибора.

В данном методе образец подвергается радиочастотному облучению неизменной частоты, в то время как сила магнитного поля изменяется, поэтому его еще называют методом непрерывного облучения (CW, continous wave).

Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот (300, 400, 500 и более МГц). Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии (PW), основанной на фурье-преобразованияхполученного сигнала. В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

В отличие от CW-метода, в импульсном варианте возбуждение ядер осуществляют не «постоянной волной», а с помощью короткого импульса, продолжительностью несколько микросекунд. Амплитуды частотных компонент импульса уменьшаются с увеличением расстояния от ν 0 . Но так как желательно, чтобы все ядра облучались одинаково, необходимо использовать «жесткие импульсы», то есть короткие импульсы большой мощности. Продолжительность импульса выбирают так, чтобы ширина частотной полосы была больше ширины спектра на один-два порядка. Мощность достигает нескольких тысяч ватт.

В результате импульсной спектроскопии получают не обычный спектр с видимыми пиками резонанса, а изображение затухающих резонансных колебаний, в котором смешаны все сигналы от всех резонирующих ядер - так называемый «спад свободной индукции» (FID, free induction decay ). Для преобразования данного спектра используют математические методы, так называемое фурье-преобразование, по которому любая функция может быть представлена в виде суммы множества гармонических колебаний.

Спектры ЯМР

Спектр 1 H 4-этоксибензальдегида. В слабом поле (синглет ~9,25 м.д) сигнал протона альдегидной группы, в сильном (триплет ~1,85-2 м.д.) - протонов метила этоксильной группы.

Для качественного анализа c помощью ЯМР используют анализ спектров, основанный на таких замечательных свойствах данного метода:

    сигналы ядер атомов, входящих в определенные функциональные группы, лежат в строго определенных участках спектра;

    интегральная площадь, ограниченная пиком, строго пропорциональна количеству резонирующих атомов;

    ядра, лежащие через 1-4 связи, способны давать мультиплетные сигналы в результате т. н. расщепления друг на друге.

Положение сигнала в спектрах ЯМР характеризуют химическим сдвигом их относительно эталонного сигнала. В качестве последнего в ЯМР 1 Н и 13 С применяют тетраметилсилан Si(CH 3) 4 (ТМС). Единицей химического сдвига является миллионная доля (м.д.) частоты прибора. Если принять сигнал ТМС за 0, а смещение сигнала в слабое поле считать положительным химическим сдвигом, то мы получим так называемую шкалу δ. Если резонанс тетраметилсилана приравнять 10 м.д. и обратить знаки на противоположные, то результирующая шкала будет шкалой τ, практически не используемой в настоящее время. Если спектр вещества слишком сложен для интерпретирования, можно воспользоваться квантовохимическими методами расчета констант экранирования и на их основании соотнести сигналы.

ЯМР-интроскопия

Явление ядерного магнитного резонанса можно применять не только в физике и химии, но и в медицине: организм человека - это совокупность все тех же органических и неорганических молекул.

Чтобы наблюдать это явление, объект помещают в постоянное магнитное поле и подвергают действию радиочастотных и градиентных магнитных полей. В катушке индуктивности, окружающей исследуемый объект, возникает переменная электродвижущая сила (ЭДС), амплитудно-частотный спектр которой и переходные во времени характеристики несут информацию о пространственной плотности резонирующих атомных ядер, а также о других параметрах, специфических только для ядерного магнитного резонанса. Компьютернаяобработка этой информации формирует объёмное изображение, которое характеризует плотность химически эквивалентных ядер, времена релаксации ядерного магнитного резонанса, распределение скоростей потока жидкости, диффузию молекул и биохимические процессы обмена веществ в живых тканях.

Сущность ЯМР-интроскопии (или магнитно-резонансной томографии) состоит, по сути дела, в реализации особого рода количественного анализа по амплитуде сигнала ядерного магнитного резонанса. В обычной ЯМР-спектроскопии стремятся реализовать, по возможности, наилучшее разрешение спектральных линий. Для этого магнитные системы регулируются таким образом, чтобы в пределах образца создать как можно лучшую однородность поля. В методах ЯМР-интроскопии, напротив, магнитное поле создается заведомо неоднородным. Тогда есть основание ожидать, что частота ядерного магнитного резонанса в каждой точке образца имеет свое собственное значение, отличающееся от значений в других частях. Задав какой-либо код для градаций амплитуды ЯМР-сигналов (яркость или цвет на экране монитора), можно получить условное изображение (томограмму) срезов внутренней структуры объекта.

ЯМР-интроскопия, ЯМР-томография впервые в мире изобретены в 1960 г. В. А. Ивановым. Заявку на изобретение (способ и устройство) некомпетентный эксперт отклонил «… ввиду явной бесполезности предлагаемого решения», поэтому авторское свидетельство на это было выдано лишь более чем через 10 лет. Таким образом, официально признано, что автором ЯМР-томографии является не коллектив нижеуказанных нобелевских лауреатов, а российский учёный. Невзирая на этот юридический факт, Нобелевская премия была присуждена за ЯМР-томографию вовсе не В. А. Иванову.

Ядерно-магнитный резонанс (ЯМР) – самый безопасный диагностический метод

Спасибо

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Общие сведения

Явление ядерно-магнитного резонанса (ЯМР) было обнаружено в 1938 г. Раби Исааком. В основе явления лежит наличие у ядер атомов магнитных свойств. И только в 2003 году был изобретен способ использования этого явления в диагностических целях в медицине. За изобретение его авторы получили Нобелевскую премию. При спектроскопии изучаемое тело (то есть тело пациента ) помещается в электромагнитное поле и облучается радиоволнами. Это совершенно безопасный метод (в отличие, например, от компьютерной томографии ), который обладает очень высокой степенью разрешающей способности и чувствительностью.

Применение в экономике и науке

1. В химии и физике для идентификации веществ, принимающих участие в реакции, а также конечных результатов реакций,
2. В фармакологии для производства лекарств,
3. В сельском хозяйстве для определения химического состава зерна и готовности к высеву (очень полезно при селекции новых видов ),
4. В медицине - для диагностики . Очень информативный метод для диагностики заболеваний позвоночника , особенно межпозвоночных дисков. Дает возможность обнаружить даже самые малые нарушения целостности диска. Выявляет раковые опухоли на ранних стадиях образования.

Суть метода

Метод ядерно-магнитного резонанса основан на том, что в момент, когда тело находится в особо настроенном очень сильном магнитном поле (в 10000 раз сильнее, чем магнитное поле нашей планеты ), молекулы воды, присутствующие во всех клетках организма, формируют цепочки, расположенные параллельно направлению магнитного поля.

Если же внезапно изменить направление поля, молекула воды выделяет частичку электричества. Именно эти заряды фиксируются датчиками прибора и анализируются компьютером. По интенсивности концентрации воды в клетках, компьютер создает модель того органа или части тела, которая изучается.

На выходе врач имеет монохромное изображение, на котором можно увидеть тонкие срезы органа в мельчайших подробностях. По степени информативности данный метод значительно превышает компьютерную томографию. Иногда деталей об исследуемом органе выдается даже больше, чем нужно для диагностики.

Виды магнитно-резонансной спектроскопии

  • Биологических жидкостей,
  • Внутренних органов.
Методика дает возможность в подробностях обследовать все ткани человеческого организма, включающие воду. Чем больше жидкости в тканях, тем светлее и ярче они на картинке. Кости же, в которых воды мало, изображаются темными. Поэтому в диагностике заболеваний кости более информативным является компьютерная томография.

Методика магнитно-резонансной перфузии дает возможность проконтролировать движение крови через ткани печени и головного мозга .

На сегодняшний день в медицине более широко используется название МРТ (магнитно-резонансная томография ), так как упоминание ядерной реакции в названии пугает пациентов.

Показания

1. Заболевания головного мозга,
2. Исследования функций отделов головного мозга,
3. Заболевания суставов,
4. Заболевания спинного мозга,
5. Заболевания внутренних органов брюшной полости,
6. Заболевания системы мочевыведения и воспроизводства,
7. Заболевания средостения и сердца ,
8. Заболевания сосудов.

Противопоказания

Абсолютные противопоказания:
1. Кардиостимулятор ,
2. Электронные или ферромагнитные протезы среднего уха,
3. Ферромагнитные аппараты Илизарова,
4. Крупные металлические внутренние протезы,
5. Кровоостанавливающие зажимы сосудов головного мозга.

Относительные противопоказания:
1. Стимуляторы нервной системы,
2. Инсулиновые насосы,
3. Другие виды внутренних ушных протезов,
4. Протезы сердечных клапанов,
5. Кровоостанавливающие зажимы на других органах,
6. Беременность (необходимо получить заключение гинеколога ),
7. Сердечная недостаточность в стадии декомпенсации,
8. Клаустрофобия (боязнь замкнутого пространства ).

Подготовка к исследованию

Специальная подготовка требуется только тем пациентам, которые идут на обследование внутренних органов (мочеполовых и пищеварительного тракта ): не следует употреблять пищу за пять часов до процедуры.
Если обследованию подвергается голова, представительницам прекрасного пола рекомендуется снять макияж, так как вещества, входящие в косметику (например, в тени для век ), могут повлиять на результат. Все металлические украшения следует с себя снять.
Иногда медицинский персонал проверяет пациента с помощью портативного металлоискателя.

Как проводится исследование?

Перед началом исследования каждый пациент заполняет анкету, помогающую обнаружить противопоказания.

Прибор представляет собой широкую трубу, в которую помещают пациента в горизонтальном положении. Пациент должен сохранять полную неподвижность, иначе изображение не получится достаточно четким. Внутри трубы не темно и есть приточная вентиляция, так что условия для прохождения процедуры достаточно комфортны. Некоторые установки производит ощутимый гул, тогда исследуемому лицу надеваются шумопоглощающие наушники.

Длительность обследования может составлять от 15 минут до 60 минут.
В некоторых медицинских центрах разрешается, чтобы помещении, где проводится исследование, вместе с пациентом находился его родственник или сопровождающий (если у него нет противопоказаний ).

В некоторых медицинских центрах анестезиолог проводит введение успокоительных препаратов. Процедура в таком случае переносится намного легче, особенно это касается больных, страдающих клаустрофобией, маленьких детей или пациентов, которым по каким-то причинам тяжело находиться в неподвижном состоянии. Пациент впадает в состояние лечебного сна и выходит из него отдохнувшим и бодрым. Используемые препараты быстро выводятся из организма и безопасны для пациента.


Результат обследования готов уже через 30 минут после окончания процедуры. Результат выдается в виде DVD-диска, заключения врача и снимков.

Использование контрастного вещества при ЯМР

Чаще всего процедура проходит без использования контраста. Однако в некоторых случаях это необходимо (для исследования сосудов ). В таком случае контрастное вещество вливается внутривенно с использованием катетера. Процедура аналогична любой внутривенной инъекции. Для этого вида исследования применяются особые вещества – парамагнетики . Это слабые магнитные вещества, частицы которых, находясь во внешнем магнитном поле, намагничиваются параллельно линиям поля.

Противопоказания к использованию контрастного вещества:

  • Беременность,
  • Индивидуальная непереносимость компонентов контрастного вещества, выявленная ранее.

Исследование сосудов (магнитно-резонансная ангиография)

С помощью этого метода можно проконтролировать как состояние кровеносной сети, так и движение крови по сосудам.
Несмотря на то, что метод дает возможность «увидеть» сосуды и без контрастного вещества, с его использованием изображение получается более наглядным.
Специальные 4-D установки дают возможность практически в реальном времени проследить за движением крови.

Показания:

  • Врожденные пороки сердца ,
  • Аневризма , расслоение ее,
  • Стеноз сосудов,

Исследование головного мозга

Это исследование головного мозга, не использующее радиоактивные лучи. Метод позволяет увидеть кости черепа, но более детально можно рассмотреть мягкие ткани. Отличный диагностический метод в нейрохирургии, а также неврологии. Дает возможность обнаружить последствия застарелых ушибов и сотрясений , инсультов , а также новообразования.
Назначается обычно при мигренеподобных состояниях непонятной этиологии, нарушении сознания, новообразованиях, гематомах , нарушении координации.

При ЯМР головного мозга исследуются:
  • основные сосуды шеи,
  • кровеносные сосуды, питающие головной мозг,
  • ткани головного мозга,
  • орбиты глазниц,
  • более глубоко находящиеся части головного мозга (мозжечок, эпифиз, гипофиз , продолговатый и промежуточный отделы ).

Функциональная ЯМР

Данная диагностика основана на том, что при активизации какого-либо отдела головного мозга, отвечающего за определенную функцию, усиливается кровообращение в этой области.
Обследуемому человеку даются различные задания, и во время их выполнения фиксируется кровообращение в разных частях головного мозга. Полученные в ходе экспериментов данные сравниваются с томограммой, полученной в период покоя.

Исследование позвоночника

Этот метод замечательно подходит для исследования нервных окончаний, мышц, костного мозга и связок, а также межпозвоночных дисков. Но при переломах позвоночника или необходимости исследования костных структур, он несколько уступает компьютерной томографии.

Можно обследовать весь позвоночник, а можно только беспокоящий отдел: шейный, грудной, пояснично-крестцовый, а также отдельно копчик. Так, при обследовании шейного отдела можно обнаружить патологии сосудов и позвонков, которые влияют на кровоснабжение головного мозга.
При обследовании поясничного отдела можно обнаружить межпозвонковые грыжи , костные и хрящевые шипы, а также ущемления нервов.

Показания:

  • Изменение формы межпозвонковых дисков, в том числе грыжи,
  • Травмы спины и позвоночника,
  • Остеохондроз , дистрофические и воспалительные процессы в костях,
  • Новообразования.

Исследование спинного мозга

Проводится одновременно с обследованием позвоночника.

Показания:

  • Вероятность новообразований спинного мозга, очаговое поражение,
  • Для контроля над заполнением спинномозговой жидкостью полостей спинного мозга,
  • Кисты спинного мозга,
  • Для контроля над восстановлением после операций,
  • При вероятности заболеваний спинного мозга.

Исследование суставов

Данный метод исследования очень эффективен для исследования состояния мягких тканей, входящих в состав сустава.

Используется для диагностики:

  • Хронических артритов ,
  • Травм сухожилий, мускул и связок (особенно часто используется в спортивной медицине ),
  • Переломов,
  • Новообразований мягких тканей и костей,
  • Повреждений, не обнаруживаемых иными методами диагностики.
Применяется при:
  • Обследовании тазобедренных суставов при остеомиелите , некрозе головки бедренной кости, стрессовом переломе, артрите септического характера,
  • Обследовании коленных суставов при стрессовых переломах, нарушении целостности некоторых внутренних составляющих (менисков, хрящей ),
  • Обследовании сустава плеча при вывихах , ущемлении нервов, разрыве капсулы сустава,
  • Обследовании лучезапястного сустава при нарушении стабильности, множественных переломах, ущемлении срединного нерва, повреждении связок.

Исследование височно-нижнечелюстного сустава

Назначается для определения причин нарушения в функции сустава. Данное исследование наиболее полно раскрывает состояние хрящей и мышц, дает возможность обнаружить вывихи. Применяется и перед ортодонтическими или ортопедическими операциями.

Показания:

  • Нарушение подвижности нижней челюсти,
  • Щелчки при открывании – закрывании рта,
  • Боли в виске при открывании – закрывании рта,
  • Боль при прощупывании жевательной мускулатуры,
  • Боль в мускулатуре шеи и головы.

Исследование внутренних органов брюшной полости

Обследование поджелудочной железы и печени назначается при:
  • Неинфекционной желтухе ,
  • Вероятности новообразования печени, перерождения, абсцесса , кист, при циррозе ,
  • В качестве контроля над ходом лечения,
  • При травматических разрывах,
  • Камнях в желчном пузыре или желчных протоках,
  • Панкреатите любой формы,
  • Вероятности новообразований,
  • Ишемии органов паренхимы.
Метод позволяет обнаружить кисты поджелудочной железы, исследовать состояние желчных протоков. Выявляются любые формирования, закупоривающие протоки.

Обследование почек назначается при:

  • Подозрении на новообразование,
  • Заболеваниях органов и тканей, находящихся возле почек,
  • Вероятности нарушения формирования органов мочевыведения,
  • В случае невозможности проведения экскреторной урографии.
Перед обследованием внутренних органов методом ядерно-магнитного резонанса необходимо провести ультразвуковое обследование.

Исследование при заболеваниях системы воспроизводства

Обследования малого таза назначаются при:
  • Вероятности новообразования матки , мочевого пузыря, простаты,
  • Травмах,
  • Новообразованиях малого таза для выявления метастазов,
  • Болях в области крестца,
  • Везикулите,
  • Для обследования состояния лимфатических узлов.
При раке простаты данное обследование назначается для обнаружения распространения новообразования на органы, находящиеся рядом.

За час до исследования нежелательно мочиться, так как изображение будет более информативным, если мочевой пузырь несколько заполнен.

Исследование в период беременности

Несмотря на то, что этот метод исследования намного более безопасен, чем рентген или компьютерная томография, категорически не разрешается использовать его в первом триместре беременности.
Во втором и третьем триместрах данных метод назначают только по жизненным показаниям. Опасность процедуры для организма беременной женщины заключается в том, что во время процедуры некоторые ткани нагреваются, что может вызвать нежелательные изменения в формировании плода.
А вот использование контрастного вещества во время беременности запрещено категорически на любой стадии вынашивания.

Меры предосторожности

1. Некоторые ЯМР установки созданы по типу закрытой трубы. У людей, страдающих боязнью замкнутого пространства, может начаться приступ. Поэтому лучше заранее поинтересоваться тем, как будет проходить процедура. Существуют установки открытого типа. Они представляют собой помещение, похожее на рентгеновский кабинет, но такие установки встречаются нечасто.

2. В помещение, где находится прибор, запрещено входить с металлическими предметами и электронными приборами (например, часами, украшениями, ключами ), так как в мощном электромагнитом поле электронные приборы могут сломаться, а мелкие металлические предметы будут разлетаться. Одновременно с этим будут получены не совсем корректные данные обследования.

Перед применением необходимо проконсультироваться со специалистом.

Содержание статьи

МАГНИТНЫЙ РЕЗОНАНС, резонансное (избирательное) поглощение радиочастотного излучения некоторыми атомными частицами, помещенными в постоянное магнитное поле. Большинство элементарных частиц, подобно волчкам, вращаются вокруг собственной оси. Если частица обладает электрическим зарядом, то при ее вращении возникает магнитное поле, т.е. она ведет себя подобно крошечному магниту. При взаимодействии этого магнитика с внешним магнитным полем происходят явления, позволяющие получить информацию о ядрах, атомах или молекулах, в состав которых входит данная элементарная частица. Метод магнитного резонанса представляет собой универсальный инструмент исследований, применяемый в столь различных областях науки, как биология, химия, геология и физика. Различают магнитные резонансы двух основных видов: электронный парамагнитный резонанс и ядерный магнитный резонанс.

Электронный парамагнитный резонанс (ЭПР).

Ядерный магнитный резонанс (ЯМР).

ЯМР был открыт в 1946 американскими физиками Э.Перселлом и Ф.Блохом. Работая независимо друг от друга, они нашли способ резонансной «настройки» в магнитных полях собственных вращений ядер некоторых атомов, например водорода и одного из изотопов углерода. Когда образец, содержащий такие ядра, помещают в сильное магнитное поле, их ядерные моменты «выстраиваются» подобно железным опилкам вблизи постоянного магнита. Эту общую ориентацию можно нарушить радиочастотным сигналом. По выключении сигнала ядерные моменты возвращаются в исходное состояние, причем быстрота такого восстановления зависит от их энергетического состояния, типа окружающих ядер и ряда других факторов. Переход сопровождается испусканием радиочастотного сигнала. Сигнал подается на компьютер, который обрабатывает его. Таким путем (метод компьютерной ЯМР-томографии) можно получить изображения. (При изменении внешнего магнитного поля малыми ступенями достигается эффект трехмерного изображения.) Метод ЯМР обеспечивает высокую контрастность разных мягких тканей на изображении, что крайне важно для выявления больных клеток на фоне здоровых. ЯМР-томография считается более безопасной, нежели рентгеновская, поскольку не вызывает ни разрушения, ни раздражения тканей

ядерный магнитный резонанс спектрометрия

ЯМР -- самый мощный и информативный метод исследования молекул. Строго говоря, это не один метод, это большое число разнообразных типов экспериментов, т. е. импульсных последовательностей. Хотя все они основаны на явлении ЯМР, но каждый из этих экспериментов предназначен для получения какой-то конкретной специфической информации. Число этих экспериментов измеряется многими десятками, если не сотнями. Теоретически ЯМР может если не всё, то почти всё, что могут все остальные экспериментальные методы исследования структуры и динамики молекул, хотя практически это выполнимо, конечно, далеко не всегда. Одно из основных достоинств ЯМР в том, что, с одной стороны, его природные зонды, т. е. магнитные ядра, распределены по всей молекуле, а с другой стороны, он позволяет отличить эти ядра друг от друга и получать пространственно-селективные данные о свойствах молекулы. Почти все остальные методы дают информацию либо усредненную по всей молекуле, либо только о какой-то одной ее части.

Основных недостатков у ЯМР два. Во-первых, это низкая чувствительность по сравнению с большинством других экспериментальных методов (оптическая спектроскопия, флюоресценция, ЭПР и т. п.). Это приводит к тому, что для усреднения шумов сигнал нужно накапливать долгое время. В некоторых случаях ЯМР-эксперимент может проводиться в течение даже нескольких недель. Во-вторых, это его дороговизна. ЯМР-спектрометры -- одни из самых дорогих научных приборов, их стоимость измеряется как минимум сотнями тысяч долларов, а самые дорогие спектрометры стоят несколько миллионов. Далеко не все лаборатории, особенно в России, могут позволить себе иметь такое научное оборудова.

Применение ЯМР

Применение спектроскопии ЯМР. Спектроскопия ЯМР относится к неразрушающим методам анализа. Современная импульсная ЯМР фурье-спектроскопия позволяет вести анализ по 80 магнитным ядрам. ЯМР спектроскопия - один из основных физико-химических методов анализа, ее данные используют для однозначной идентификации как промежуточных продуктов химических реакций, так и целевых. Помимо структурных отнесений и количественного анализа, спектроскопия ЯМР приносит информацию о конформационных равновесиях, диффузии атомов и молекул в твердых телах, внутренних движениях, водородных связях и ассоциации в жидкостях, таутомерии, металлах и прототропии, упорядоченности и распределении звеньев в полимерных цепях, электронной структуре ионных кристаллов, жидких кристаллов и др. Спектроскопия ЯМР - источник информации о структуре биополимеров, в т. ч. белковых молекул в растворах, сопоставимой по достоверности с данными рентгеноструктурного анализа. В 80-е гг. началось бурное внедрение методов спектроскопии и томографии ЯМР в медицину для диагностики сложных заболеваний и при диспансеризации населения. Число и положение линий в спектрах ЯМР однозначно характеризуют все фракции сырой нефти, синтетических каучуков, пластмасс, сланцев, углей, лекарств, препаратов, продукции химии и фармацевтическими и др. Интенсивность и ширина линии ЯМР воды или масла позволяют с высокой точностью измерять влажность и масличность семян, сохранность зерна. При отстройке от сигналов воды можно регистрировать содержание клейковины в каждом зерне, что так же, как и анализ масличности, позволяет вести ускоренную селекцию с.-х. культур. Применение все более сильных магнитных полей (до 14 Тл в серийных приборах и до 19 Тл в экспериментальных установках) обеспечивает возможность полного определения структуры белковых молекул в растворах, экспресс-анализа биологических жидкостей (концентрации эндогенных метаболитов в крови, моче, лимфе, спинномозговой жидкости), контроля качества новых полимерных материалов. При этом применяют многочисленные варианты многоквантовых и многомерных фурье-спектроскопических методик.