Простой электронный переключатель входов для усилителя. Электронный коммутатор входов аудиосигнала (К176ИЕ4, К178ИЕ8, К561КТ3). Увеличение числа выходов

Наверняка у многих радиолюбителей, особенно старшего поколения, в закромах до сих пор пылятся микросхемы «жёсткой» логики типа серий К155, КР1533, К561 и аналогичных. Многие с них начинали своё знакомство с цифровой техникой. В эпоху микроконтроллеров такие микросхемы применяются всё реже и реже, а выкинуть подобный "раритет " не у каждого поднимется рука...

Попробуем найти им хоть какое-то применение, а в разрезе нашего издания, разумеется, попытаемся их пристроить в аудиотехнику.

Предлагаемая конструкция селектора входов усилителя позволяет с помощью удобного и модного валкодера переключать входы вашего аппарата, а также выбирать какой из них будет активирован при включении питания (валкодер должен иметь функцию нажатия кнопки). Забавная схема получилась, однако.

В промышленных аппаратах это выглядит примерно так:

Теперь свой усилитель вы можете тоже оснастить таким модным коммутатором.

Плюсы устройства:

  • довольно удобная коммутация входов с различными вариантами индикации активного входа
  • низкая стоимость и доступность комплектующих элементов,
  • отсутствие тактовых сигналов (истинные аудиофилы могут смело встраивать этот селектор в свои ламповые усилители — схема генерирует импульсы только в момент переключения входов .)
  • возможность выбрать и при необходимости оперативно поменять вход, который будет активироваться при включении усилителя.
  • количество коммутируемых входов можно изменять от 2 до 10.

Справедливости ради отметим и минусы устройства:

  • нерациональное использование микросхемы памяти. В работе задействована только одна ячейка. Хотя, учитывая нынешнюю стоимость таких микросхем, этот недостаток можно считать несущественным.
  • отсутствие дистанционного управления.
  • относительная сложность. На микроконтроллере всё было бы гораздо проще, хотя не факт, что дешевле.
  • повышенное энергопотребление. Зависит от примененной серии микросхем. На фоне общего потребления электроэнергии ламповым усилителем этот недостаток тоже весьма относительный.

Принципиальная схема устройства представлена на рисунке:

Увеличение по клику

На микросхеме IC7 выполнен подавитель дребезга контактов валкодера. Элементы IC8A, IC8B, IC1a, IC1C формируют счётные импульсы в одном канале при вращении валкодера в соответствующую сторону, блокируя второй канал для предотвращения ложных срабатываний. Счётные импульсы поступают на реверсивный счётчик IC3, который является «сердцем» данного устройства.

С выходов счётчика двоичный код выбранного входа поступает на дешифратор — микросхему IC6. С выходов дешифратора сигналы через буферные каскады (на схеме не показаны) используются для управления реле или электронными ключами, которые непосредственно коммутируют входы усилителя.

Также сигналы с выводов 1 и 10 используются для блокировки счёта при достижении первого или последнего входов. В показанном на схеме варианте селектор способен коммутировать 9 входов. Если нужно меньше, например 4 входа, то вывод 6 микросхемы IC1B следует подключить к 4 выводу микросхемы IC6.

С выходов двоичного счетчика (кстати, если входов меньше 10, то можно использовать и двоично-десятичный счётчик) двоичный код выбранного входа поступает также на двунаправленный буфер IC5. При нажатии на кнопку валкодера через подавитель дребезга контактов на элементе IC8C элементами IC2a IC2B формируются управляющие сигналы для записи кода активного входа в энергонезависимую память EEPROM IC4 в ячейку с нулевым адресом.

При включении питания микросхема памяти выставляет на шину данных значение, записанное в нулевую ячейку памяти. Это значение загружается по асинхронным входам в счетчик IC3 по импульсу, сформированному цепью R6, R7, C6. Так происходит активация выбранного входа.

Организовать индикацию активного входа можно двумя способами.

Первый способ — это к выходам дешифратора IC6 подключить светодиоды. Тогда получится вариант, как показан на первом рисунке (смотри выше).

Второй способ более продвинутый. К выходам счётчика A B C D можно подключить через дешифратор типа КР514ИД1/КР514ИД2 семисегментный светодиодный индикатор, который будет показывать номер выбранного входа.

Так как высокое быстродействие от схемы не требуется, то в устройстве можно применить цифровые микросхемы разных серий, от чего будет зависеть потребляемая мощность.

Отечественные аналоги используемых микросхем:

  • IC1, IC2, IC7, IC8 — 4093 — К561ТЛ1 и аналогичные
  • IC3 — 74HC193 - КхххИЕ6, КхххИЕ7
  • IC5 — 74HC245 — КхххАП6 (АП4 или АП5 с изменением схемы)
  • IC6 — 74HC42 — КхххИД6 (можно применить другие дешифраторы в зависимости от требуемого количества коммутируемых входов)

Статья подготовлена по материалам журнала «Электор».

Вольный перевод Главного редактора «РадиоГазеты».

Удачного творчества!

Вывод напрашивается сам: нужно превратить наш однолучевой осциллограф в двухлучевой-тогда на каждом луче можно наблюдать свой сигнал. Устройства, позволяющие осуществить подобное желание, называют электронным коммутатором. С некоторыми вариантами электронного коммутатора мы и познакомимся.

Итак, электронный коммутатор. Он подключается к входному щупу осциллографа, а исследуемые сигналы поступают на входы (их два) коммутатора. С помощью электроники коммутатора сигналы с каждого входа поочередно подаются иа осциллограф. Но линия развертки осциллографа для каждого сигнала смещается: для одного сигнала, окажем, первого канала, - вверх; для другого (второго канала) - вниз. Иначе говоря, коммутатор «рисует» на экране две линии развертки, на каждой из которых виден свой сигнал. В итоге появляется возможность визуально сравнивать сигналы по форме и амплитуде, что позволяет проводить самые разнообразные испытания аппаратуры, выявлять каскады, вносящие искажения.


Правда, линии разверток теперь не сплошные, как у однолучевого осциллографа, а прерывистые, составленные из черточек, подаваемых импульсами на вход осциллографа с электродного коммутатора. Но частота следования импульсов сравнительно большая- 100 кГц, поэтому разрывов в линиях развертки глаз не замечает, и они смотрятся, как непрерывные.


Вот теперь, когда вы получили некоторое представление о принципе работы электронного коммутатора, пора познакомиться с первым вариантом его схемы - она приведена на рис. 24. Исследуемые сигналы подают на зажимы ХТ1, ХТ2 (это первый канал) и ХТ5, ХТ6 (второй канал). Параллельно каждой паре зажимов подсоединены переменные резисторы R1 и R10-регуляторы уровня сигнала, поступающего в итоге на вход осциллографа.


С движка каждого резистора сигнал подается через развязывающий (по постоянному току) оксидный конденсатор на усилительный каскад, выполненный на транзисторе VT1 для первого канала и VT2 для второго. Нагрузка обоих каскадов общая - резистор R6. С него сигнал поступает (через зажимы ХТЗ и ХТ4) на вход осциллографа.


Усилительные каскады коммутатора работают поочередно - когда открыт транзистор первого канала, транзистор второго закрыт, и наоборот. Поэтому на нагрузке появляется поочередно сигнал либо источника, подключенного к зажимам первого канала, либо источника, подключенного к зажимам второго канала.

Поочередное включение каскадов осуществляет мультивибратор, выполненный на транзисторах VT3 и VT4, к коллекторам которых подключены эмиттерные цепи транзисторов усилительных каскадов.
Как вы знаете, во время работы мультивибратора его транзисторы поочередно открываются и закрываются. Поэтому, когда открыт транзистор VT3, через его участок коллектор-эмиттер оказывается соединенным с общим проводом (плюс источника питания) резистор R4, а значит, подано питание на транзистор VT1 первого канала. При открывании же транзистора VT4 питание подается на транзистор VT2 второго канала. Переключаются каналы с достаточно большой частотой - около 80 кГц. Она зависит от номиналов деталей времязадающих цепей мультивибратора -C3R12 и C4R13.


Но даже поочередное включение усилительных каскадов еще не обеспечивает две линии развертки, и оба сигнала будут видны на одной линии, правда, в таком хаотическом виде, что различить их практически не удастся. Нужно задать каждому каскаду свой режим работы по постоянному току. Для этого и введен переменный резистор R5 («Сдвиг»), с помощью которого можно изменять ток базовой цепи транзистора. К примеру, при перемещении движка резистора в сторону левого, по схеме, вывода ток базы транзистора VT1 будет возрастать, a VT2 падать. Соответственно будет возрастать и ток коллектора транзистора VT1, а значит, падение напряжения на общей коллекторной нагрузке (резисторе R6), «когда открыт транзистор. Иными словами, на резисторе R6 при открытом транзисторе VT1 будет одно напряжение, а при открытом транзисторе VT2- другое. Поэтому на вход осциллографа будет поступать импульсный сигнал (рис. 25, а), верхняя площадка которого будет принадлежать, скажем, первому каналу (т. е. соответствовать открытому состоянию транзистора VT1), а нижняя площадка - второму.


Длительность фронта и спада сигнала весьма коротка по сравнению с длительностью самого сигнала, поэтому при той развертке, на которой будете рассматривать сигналы ЗЧ, на экране осциллографа выделятся две четкие линии развертки (рис. 25, б), которые можно сдвигать или раздвигать относительно друг друга переменным резистором R5.

Достаточно теперь подать на вход первого канала сигнал ЗЧ- и верхняя линия развертки отразит его форму (рис. 25, в). А при подаче такого же сигнала (кратного по частоте) на вход второго канала нарушится «спокойствие» второй линии (рис. 25, г). Размах изображения того или иного сигнала можно регулировать соответствующим переменным резистором (R1 - для первого канала и R10-для второго).


Все транзисторы коммутатора могут быть П416Б, МП42Б или другие аналогичной структуры, рассчитанные на работу в импульсных режимах и обладающие возможно большим коэффициентом передачи тока. Переменные резисторы - СП-I, постоянные - МПТ-0,25 или МЛТ-0,125, конденсаторы - К50-6 (CI, C2) и КЛС, МБМ (СЗ, С4). Источник питания - батарея 3336, выключатель питания SA1 и зажимы ХТ1-ХТ6 - любой конструкции.

Часть деталей коммутатора размещена на плате (рис. 26) из фольгированного стеклотекстолита, а часть - на стенках и лицевой панели корпуса (рис. 27).


Настало время проверить коммутатор. Поможет здесь, конечно, наш осциллограф. Его земляной щуп подключите к общему проводу (зажим ХТ4), а входной - к коллектору любого транзистора мультивибратора (VT3 или VT4). Режим работы осциллографа ждущий, длительность развертки - 5 мкс/дел., вход - закрытый. Надеемся, что эти указания уже понятны вам и позволят нажать на осциллографе нужные кнопки.
Включите питание, коммутатора. Сразу же на экране появятся импульсы мультивибратора (рис. 28, а) амплитудой около 4,5 В,
следующие с частотой приблизительно 80 кГц (длительность периода- примерно 12,5 мкс). Такой же сигнал должен быть и на коллекторе второго транзистора мультивибратора.


После этого переключите входной щуп осциллографа на выход коммутатора (зажим ХТЗ), установите движки переменных резисторов R1 и R10 в нижнее по схеме положение, а резистора R5 - в любое крайнее. Чувствительность осциллографа придется установить равной 0,1 В/дел., чтобы на экране появился импульсный сигнал (рис. 28, б), напоминающий сигнал мультивибратора. Это результат поочередного открывания транзисторов VT1 и VT2 при разных напряжениях смещения на их базах.
Медленно перемещайте движок переменного резистора R5 в другое крайнее положение. Верхние н нижние площадки импульсов начнут сближаться, и вскоре на экране появится изображение (рис. 28, в), свидетельствующее о равенстве режимов транзисторов. Образуется как бы один луч осциллографа, составленный из площадок-длительностей открытого состояния транзисторов («всплески» между ними - результат переходных процессов при открывании и закрывании транзисторов). При дальнейшем перемещении движка резистора площадки импульсов начнут расходиться. Правда, по сравнению с первоначальным положением, верхние площадки будут «принадлежать» другому каналу.

Теперь отпустите кнопку «МС-МКС» осциллографа, установив тем самым примерно в тысячу раз большую длительность развертки. На экране появятся две линии (рис. 28, г) -два луча. Верхний луч должен «принадлежать» первому каналу, нижний - второму. Корректируют такое положение переменным резистором R5.


Начала лучей могут немного подергиваться из-за неустойчивости синхронизации. Чтобы исключить это явление, нужно либо установить ручку «СИНХР.» в среднее положение, соответствующее нулевому сигналу синхронизации, либо переключить осциллограф в режим внешнего запуска (нажав кнопку «ВНУТР. - ВНЕШН.»).

Далее установите движок переменного резистора R1 в верхнее по схеме положение и подайте на зажимы ХТ1, ХТ2 сигнал с генератора ЗЧ (скажем, частотой 1000 Гц). Амплитуда сигнала должна быть не менее 0,5 В. Сразу же «размоется» верхний луч (рис. 29, а). Если же окажется «размытым» нижний луч, поменяйте лучи местами переменным резистором R5. Перемещением движка резистора R1 подберите размах «дорожки» равным 2... 3 деления. Переключателями длительности развертки осциллографа и ручкой длины развертки постарайтесь добиться на экране устойчивого изображения нескольких синусоидальных колебаний (рис. 29,6). Сделать это не так просто, поскольку синхронизации практически нет и ее трудно осуществить - ведь на вход осциллографа поступает несколько сигналов (импульсный и синусоидальный) и развертка не в состоянии выбрать какой-нибудь из них.


Но тем не менее способы получения устойчивого изображения есть. Во-первых, добившись предварительно в автоматическом режиме появления изображения колебаний, переводят развертку в ждущий режим с внутренней синхронизацией (кнопка «ВНЕШН. - ВНУТР.» отпущена) и более точным подбором уровня синхронизации сигнала ручкой «СИНХР.» (обычно ее приходится устанавливать вблизи среднего положения) добиваются устойчивого изображения.

Второй способ заключается в том, что развертку синхронизируют внешним сигналом амплитудой не менее 1 В от генератора ЗЧ, с которым предполагается проверять аппаратуру. О подобном способе синхронизации мы уже рассказывали, надеемся, что вы сможете правильно нажать нужные кнопки и подать сигнал на гнездо «ВХОД X».


Если же на второй канал тоже подать сигнал ЗЧ, например, соединив перемычкой зажимы ХТ1 и ХТ5, «заработают» оба луча осциллографа (рис. 29, в). Попробуйте теперь изменять амплитуду сигнала переменными резисторами R1 и R10, смещать линии развертки переменным резистором R5. Вы убедитесь, что этими регулировками можно не только устанавливать желаемый размах
изображений, но и подводить изображения друг к другу настолько, что станет удобно сравнивать их форму (рис. 29, г).

И еще один совет. Чтобы можно было рассматривать сигналы небольшой амплитуды, нужно переменным резистором R5 максимально сблизить лучи и перейти на более чувствительный диапазон -0,05 В/дел. или даже 0,02 В/дел. Правда, при этом могут несколько «размыться» линии развертки из-за шумов транзисторов и различных наводок.


Не менее интересен второй вариант коммутатора, в котором линии разверток сплошные, а не составленные из площадок импульсов. Достигается это тем, что коммутатор как бы отклоняет линию развертки то вверх, то вниз, предоставляя ее для просмотра сигнала то первого канала, то второго. Поскольку частота этих отклонений сравнительно большая, глаз не успевает замечать их и создается впечатление, что на экране два независимых друг от друга луча.

Какова идея этого варианта? На задней стенке осциллографа есть гнездо, на которое выведено пилообразное напряжение генератора развертки. Вот оно н будет управлять коммутатором: па время одного хода «пилы» откроется транзистор усилительного каскада первого канала, на время другого хода-транзистор второго канала и т. д. Удобство такого способа коммутации, прежде всего, в том, что он позволяет рассматривать колебания значительно более широкой полосы частот по сравнению с предыдущим вариантом. В сказанном нетрудно убедиться, собрав, опробовав и сравнив в работе оба коммутатора.


К сожалению, коммутатор второго варианта несколько сложнее, поскольку в него добавляется преобразователь пилообразного напряжения в импульсное, выполненный на трех транзисторах. Да и мультивибратор заменяется другим переключающим устройством- триггером, содержащим большее число радиоэлементов.

Схема изменяемой части коммутатора приведена на рис. 30. На транзисторах VT3 и VT4 собран триггер, который обладает двумя устойчивыми состояниями. В зависимости от состояния, в котором в данный момент находится триггер, к общему проводу коммутатора оказывается подключенным либо резистор R4, либо R7, а значит, открыт входной транзистор либо первого, либо второго канала - как н в предыдущем варианте коммутатора.

Для перевода триггера из одного состояния в другое на его вход (точка соединения конденсаторов СЗ, С4) должен поступать короткий импульс положительной полярности. Такой импульс снимается с триггера Шмитта, выполненного на транзисторах VT6 и VT7. В свою очередь, триггер Шмитта подключен к усилителю-ограничителю, собранному на транзисторе VT5 - на его вход (зажим ХТ7) и подается пилообразное напряжение с осциллографа. Причем для нормальной работы всего формирователя импульсов на зажим ХТ7 можно подавать сигнал амплитудой от 0,5 до 20 В. «Излишки» сигнала ограничиваются резистором R17, поэтому ток эмиттерного
перехода транзистора VT5 не превышает допустимого во всем диапазоне указанных амплитуд сигнала.
Все транзисторы дополнительного устройства могут быть такие же, что и в предыдущем коммутаторе, диоды - любые из серии Д9, конденсаторы - КЛС (СЗ, С4), КМ, МБМ (С6), резисторы - МЛТ-0,25 или МЛТ-0,125.

Чертеж печатной платы для этого варианта коммутатора приведен на рис. 31, Конструктивное оформление коммутатора остается прежним, за исключением того, что на задней стеике корпуса устанавливают дополнительный зажим ХТ7, который соединяют проводником с гнездом иа задней стенке осциллографа.

Проверку этого коммутатора начинают с контроля пилообразного напряжения на зажиме XT7. Для этого «земляной» щуп осциллографа подключают, как и прежде, к зажиму ХТ4, а входным касаются зажима ХТ7 (осциллограф работает в автоматическом режиме с открытым входом, начало развертки устанавливают в начале нижнего левого деления шкалы). При чувствительности 1 В/дел. в крайнем правом положении ручки регулировки длины развертки на экране появится изображение одного пилообразного колебания в виде наклонной прямой линии (рис. 32, а). Такое изображение будет сохраняться при установке любой длительности развертки.

Когда же будете перемещать ручку регулировки длины развертки в другое крайнее положение, длина наклонной линии станет уменьшаться и достигнет минимального значения (рис. 32,6).
По масштабной сетке вы сможете определить амплитуду пилообразного напряжения при крайних положениях ручки указанной регулировки - 3,5 В и 1 В.

Затем переключите входной щуп осциллографа на вывод коллектора транзистора VT7 (или на точку соединения конденсаторов СЗ и С4), а сам осциллограф переключите в режим закрытого входа и переместите линию развертки и а середину масштабной сетки. На экране должен появиться положительный импульс (рис 32, в), изображение которого в делениях масштабной сетки будет оставаться стабильным при изменении длительности в широких пределах, а также длины ее линии. Если же при изменении длины развертки, а значит, амплитуды входного сигнала на зажиме ХТ7, импульс будет пропадать, следует подобрать точнее резистор R18.

При больших длительностях развертки (10, 20 и 50 мс/дел.) будет наблюдаться искажение сигнала (рис. 32, г), свидетельствующее о дифференцировании импульса во входных цепях осциллографа из-за недостаточной емкости разделительного конденсатора. Выход здесь простой - переключить осциллограф в режим открытого входа, а входной щуп подключить к исследуемой цепи через бумажный конденсатор емкостью 1...2 мкФ,

После этого точно так же щуп с конденсатором подключают к выходному зажиму ХТЗ и наблюдают на экране две линии развертки, как и с предыдущим коммутатором. Чувствительность осциллографа устанавливают равной 0,1 В/дел. Дальнейшая работа с коммутатором не отличается от ранее описанной.

Возможно, вы захотите удостовериться в поочередном переключении линий развертки. Тогда установите кнопками осциллографа самую большую длительность - 50 мс/дел. и поверните ручку длины развертки в крайнее правое положение. Вы увидите медленно перемещающуюся точку то по траектории верхней линии развертки, то по траектории нижней линии.

Не меньший интерес представляют коммутаторы на микросхемах. На рис 33, например, приведена схема простейшего коммутатора на одной микросхеме, разработанного курским радиолюбителем И. Нечаевым. Правда, коммутатор обладает сравнительно низким входным сопротивлением, что ограничивает возможности его применения. Тем не менее, он заслуживает внимание своей простотой и интересным принципом действия.

На элементах DD1.1 и DD1.2 микросхемы собран генератор прямоугольных импульсов, следующих с частотой около 200 кГц. Элементы DD1.3 и DD1.4 работают инверторами и позволяют согласовать выходное сопротивление генератора с сопротивлением электронных ключей, управляющих прохождением сигналов через каналы коммутатора, а также обеспечить соответствующую развязку между каналами.

С выходов инверторов импульсы (они противофазны) генератора поступают через резисторы R4-R7 на ключи, выполненные на диодах VD1-VD4 для первого канала и на днодах YD5-VD8 - для второго. Если, к примеру, на выходе элемента DD1.3 будет уровень логической 1, а в это время на выходе элемента DD1.4 - уровень логического 0, через резисторы R5, R7 и дноды VD5-VD8 потечет ток. Ключ на этих диодах окажется открытым, сигнал с гнезд разъема XS2 попадет на гнезда разъема XS3, к которым подключаются щупы входа X осциллографа. В то же время ключ на диодах VDl-VD4 будет закрыт, сигнал с входных гнезд разъема XS1 на осциллограф не попадет.
Когда логические уровни на выходах элементов DD1.3 и DD1.4 изменятся, к осциллографу попадет сигнал, поступающий иа разъем XS1. Амплитуду сигнала, поступающего с входных разъемов XS1 и XS2 на осциллограф, можно регулировать переменными резисторами R1 и R2. Расстояние между «линиями развертки», создаваемыми коммутатором, регулируют переменным резистором R9. При перемещении движка резистора вверх по схеме эти линии расходятся, и наоборот.

Чтобы максимально подавить помехи от генератора импульсов, проникающие на входные и выходные цепи коммутатора, параллельно источнику питания (конечно, при замкнутых контактах выключателя SBI) включена цепочка из оксидных конденсаторов С2, СЗ и подстроечного резистора R10- она создает искусственную среднюю точку.

Все диоды могут быть, кроме указанных на схеме, Д2Б-Д2Ж. Д9Б-Д9Ж, Д310, Д311, Д312. Резисторы Rl, R2, R9, R10 -типа СПО, остальные -МЛТ-0,125 или МЛТ-0,25. Конденсатор С1 - БМ, ПМ, КЛС или КТ, оксидные конденсаторы С2, СЗ-К50-3, К50-6, К50-12. Кнопочный выключатель - П2К с фиксацией положения. Разъемы - любой конструкции, например, используемые в телевизорах в качестве антенных. Источник питания - батарея 3336 либо три последовательно соединенных элемента 316, 332, 343.

Часть деталей смонтирована на печатной плате (рис. 34), прикрепленной к крышке пластмассового корпуса (рис. 35) размерами примерно 40X70X95 мм, источник питания размещен на дне корпуса, а разъемы - на боковых стенках.

Налаживают коммутатор так. Движки резисторов Rl, R2 и R9 устанавливают вначале в нижнее по схеме положение и подключают к разъему XS3 входные щупы осциллографа. Включив коммутатор, перемещением движка резистора R10 добиваются минимального уровня помех на экране осциллографа (его чувствительность желательно при этом установить возможно большую). После этого можно подавать на разъемы XS1 и XS2 контролируемые сигналы, регулировать их размах на экране осциллографа переменными резисторами Rl, R2 и «раздвигать» их относительно друг друга переменным резистором R9.

При работе с этим коммутатором следует помнить, что входное сопротивление каналов при верхних по схеме положениях движков резисторов Rl, R2 может падать до 1 кОм. Поэтому желательно работать при такой чувствительности осциллографа, чтобы движки этих резисторов удавалось устанавливать возможно ближе к нижним по схеме выводам. Тогда входное сопротивление каналов составит 5 ... 10 кОм.

Другая разработка И. Нечаева - трехканальный коммутатор, позволяющий исследовать одновременно три сигнала. Особенно такой коммутатор удобен при проверке и налаживании различных устройств с цифровыми микросхемами.

Схема трехканального коммутатора приведена на рис. 36. В нем три микросхемы и четыре транзистора. На транзисторе VT1 и элементах DD1.3, DD1.4 выполнен генератор импульсов. Частота следования импульсов зависит от номиналов деталей С1, C7 и в данном случае составляет 100... 200 кГц.

С генератором соединен делитель частоты на триггере DD3. С выходов генератора и делителя импульсы поступают на дешифратор, в котором работают элементы DD1.1, DD1.2 и DD2.1. Дешифратор управляет усилительными каскадами, собранными на транзисторах VT2-VT4. На вход каждого каскада поступает свой исследуемый сигнал, который будет виден в дальнейшем на той или иной линии развертки осциллографа. В коллекторных цепях транзисторов стоят инверторы (DD2.2-DD2.4), выходы которых подключены через резисторы (R8-R10) к гнезду XS4 - его соединяют с входным шупом осциллографа, работающего в режиме открытого входа.

Работает коммутатор так. В начальный момент, на одном из входов элементов дешифратора будет уровень логического 0, а значит, на их выходах, т. е. на эмиттерах транзисторов усилительных каскадов,- уровень логической I. Если при этом на входные (разъемы XS1-XS3 не будет подан сигнал (т. е. на входах коммутатора будет уровень логического 0), транзисторы окажутся закрытыми. Поскольку отсутствие входного тока элементы ТТЛ логики воспринимают как наличие на входных выводах уровня логической 1, на выходах всех инверторов будет уровень логического 0.
Если же при проверке режимов работы цифрового устройства на входы коммутатора будут поданы уровни логической 1 (3...4 В -для ТТЛ и 6... 15 В -для КМОП логики), транзисторы откроются, но на входы инверторов по-прежнему будут поступать уровни логической 1 и на выходах их сигнал не изменится.
Такое возможно лишь в первоначальный момент, пока генератор не включился в работу. Когда же генератор начнет работать, на входах дешифраторов будут появляться «различные комбинации логических уровней. Как только, скажем, иа входах элемента DD1.1, управляющего усилительным каскадом первого канала, появится уровень логической 1, на его выходе установится уровень логического 0 и эмиттер транзистора VT2 практически окажется подключенным к общему проводу коммутатора (минус источника питания). Кроме того, уровень логической 1 с выхода элемента DD2.1 поступит через делитель R12R13 на вход осциллографа и сформирует линию развертки, соответствующую «нулевому» уровню (около 1 В) первого канала коммутатора.

Если в это время иа разъеме XS1 окажется уровень логического 0, линия останется на месте. При подаче же иа разъем уровня логической I линия отклонится.

Как только уровни логической 1 окажутся на входах элемента DD1.2, вступит в действие второй канал коммутатора. В этом случае с общим проводом окажется соединенным эмиттер транзистора VT3, в результате чего параллельно резистору R13 будет подключен резистор R11 и постоянное напряжение на разъеме XS4 упадет. Сформируется «нулевая» линия развертки (около 0,5 В) второго канала.
Далее уровни логической 1 окажутся на входах элемента DD2.1, в результате чего с общим проводом окажется соединенным только эмиттер транзистора VT4. На экране осциллографа появится «нулевая» (0 В) линия третьего канала коммутатора.

«Расстояние» между линиями каналов определяется номиналами резисторов R11 и R13, а входное сопротивление каналов - номиналами резисторов Rl-R3.

Хотя максимальная частота переключения каналов составляет 200 кГц, а частота исследуемого сигнала не превышает 10 кГц, вместе с контролируемым сигналом на экране осциллографа могут быть видны и моменты переключения каналов в виде светлого фона. Чтобы этот фон был слабее, нужно максимально уменьшить длину соединительного провода между коммутатором и осциллографом, а также уменьшить яркость изображения. Помогает и уменьшение частоты генератора увеличением вдвое-втрое емкости конденсатора С1.

В коммутаторе можно использовать транзисторы КТ315А- КТ315Б, КТ301Д-КТ301Ж, КТ312А, КТ312Б, а также транзисторы старых выпусков МП37 и МП38. Диоды - Д9Б-Д9Ж, Д2Б-Д2Е. Конденсатор О- КТ, КД или БМ; С2-К50-3 или К50-12 емкостью 10. ..50 мкФ на номинальное напряжение 5. ..15 В. Резисторы - МЛТ-0,125.

Большинство деталей монтируют на печатной плате (рис. 37, 38), которую затем укрепляют внутри подходящего корпуса. На лицевой стенке корпуса устанавливают входные разъемы XS1-XS3 и выходные гнезда XS4, XS5. Через отверстие в задней стенке корпуса выводят двухпроводный шпур питания, который подключают во время работы коммутатора к выпрямителю или батарее напряжением 5 В.

Налаживания правильно смонтированный коммутатор не требует. При желании повысить чувствительность коммутатора к уровню логической 1, подаваемого на вход, достаточно уменьшить сопротивление резисторов R1-R3. Правда, при этом упадет входное сопротивление коммутатора.


Когда для нескольких устройств используется один усилитель с одним входом, необходим переключатель входов для усилителя. Для удобства переключатель нужно сделать дистанционным. В качестве коммутирующего элемента используется мультиплексор D4. Это микросхема КМОП серии. Коммутация происходит изменением сопротивления канала полевого транзистора.

Принципиальная схема переключателя двух каналов на четыре направления изображена на рисунке.

Каналы этой микросхемы отличаются высокой линейностью в различном диапазоне коммутируемых аналоговых сигналов,кроне того микросхема позволяет коммутировать как сигналы положительной полярности, так и отрицательной (для этого на микросхему подается двухполярное напряжение питания). Информация о необходимости включения определенного входа поступает в двоичном коде на выводы 10 и 9 микросхемы. При коде числа на этих входах "0" (00) включаются X1 и У1, при коде "1" (01) - Х2 и У2, при коде "2" (10) - Х3 и У3, при "3" - (И) Х4 и У4.

Код для переключении мультиплексора формируется регистровым счетчиком D2, который в данном случае используется только как регистр. С помощью кнопок S1 - S4 на входах "1" и "2" этого счетчика формируется двоичный код нужного входа. Например при нажатии на кнопку S4 через диоды VD1 и VD2 на оба входа поступают единичные уровни, при нажатии на S2 - только на первый вход, на S3 - на второй. При нажатии на S1 на обеих входах нули.

Теперь нужно, чтобы этот код был записан в регистры микросхемы D2. При нажатии на любую из кнопок на одном из входов элемента D1.1 появляется единица, на его выходе ноль. Конденсатор С2 разряжается через резистор R3 и после того как напряжение на ней достигнет логического нуля на выходе элемента D1.2 возникает единица.

Положительный импульс зарядного тока конденсатора С5 поступает на вывод 1 микросхемы D2 и переносит установленный на её входах "1" к "2" код в память, одновременно этот код появляется на её выходах "1" и "2" (выводы 6 и 11), откуда код поступает на управляющие входы мультиплексора D4. Теперь можно отпустить нажатую кнопку, и код на выходах микросхемы D2 не изменится.

Подавление дребезга контактов в данной схеме происходит за счет того что при отпускании кнопки, на входе элемента D1.2 логическая единица устанавливается не сразу, а по истечении времени зарядки конденсатора С2 через резистор R3. Во время дребезга на выходе элемента D1.1 будут импульсы, которые не дадут конденсатору С2 зарядиться до уровня единицы. Это только тогда будет возможно, когда кнопка будет полностью отпущена.

Для индикации номера включенного входа используется светодиодный семисегментным индикатор Н1. Он показывает номера входов - "0", "1", "2" и "3". Микросхема D3 преобразует двоичный код на своих входах в семь сигналов управления сегментами индикатора.

В момент включения схему устанавливается в положение включенного первого входа "0". Для этого используется цепь C1 F2. При включении зарядный ток конденсатора С1 создает положительный импульс на выводе 9 микросхемы D2. Этот вывод используется для установки счетчика и регистра в состояние, когда ка всех выходах нули. Это состояние хранится в памяти до тех пор, пока не будет нажата одна из кнопок.

Вместо микросхем К561 можно использовать такие-же из серии К564. Дешифратор D3 можно заменить на К176ИД2 или К514ИД1. В первом случае совсем другая цоколевка, а во втором потребуется индикатор с общим катодом, например АЛС3 24А, его выводи 3, 9 и 14 придется соединить с общим проводом.

Коммутатором называют устройство, позволяющее коммутировать (включать или переключать) электрические сигналы. Аналоговый коммутатор предназначен для коммутации аналоговых, т. е. изменяющихся по амплитуде во времени сигналов.

Отмечу; что аналоговые коммутаторы с успехом можно применять и для коммутации цифровых сигналов.

Обычно состоянием «включено/выключено» аналогового коммутатора управляют подачей управляющего сигнала на управляющий вход. Для упрощения процесса коммутации для этих целей используют цифровые сигналы:

♦ логическая единица - ключ включен;

♦ логический ноль - выключен.

Чаще всего уровню логической единицы отвечает диапазон управляющих напряжений, лежащих в пределах от 2/3 до 1 от напряжения питания микросхемы коммутатора, уровню логического нуля - зона управляющих напряжений в пределах от 0 до 1/3 от напряжения питания. Вся промежуточная область диапазона управляющих напряжений (от 1/3 до 2/3 от величины напряжения питания) соответствует зоне неопределенности. Поскольку процесс переключения носит, хотя и неявно выраженный, пороговый характер, аналоговый коммутатор можно рассматривать по отношению к входу управления как простейший .

Основными характеристиками аналоговых коммутаторов являются:

К числу недостатков переключателя можно отнести то, что предель-

При включении генератора оба ключевых элемента микросхемы разомкнуты. С2 через R5 заряжается до напряжения, при котором ключ DA1.1 включается. На резистивный делитель R1-R3 подается напряжение питания; С1 заряжается через R4, R3 и часть потенциометра R2. Когда напряжение на его положительной обкладке достигнет напряжения включения ключа DA1.2, произойдет разряд обоих конденсаторов, и процесс их заряда- разряда будет периодически повторяться.

Для проверки исправности элементов световой индикации необходимо кратковременно нажать кнопку SA1 «Тест».

При работе на индуктивную нагрузку (электромагниты, обмотки и т. п.) для защиты выходных транзисторов микросхемы вывод 9 микросхемы следует подключить к шине питания, как показано на рис. 23.26.

Рис. 23.24. Структурная Рис. 23.26. включения микросхемы

микросхемы ULN2003A (ILN2003A) (JLN2003A при работе на индуктивную нагрузку

UDN2580A содержит 8 ключей (рис. 23.27). Она способна работать на активную и индуктивную нагрузку при напряжении питания 50 В и максимальном токе нагрузки до 500 мА.

Рис. 23.27. Цоколевка и эквивалентная микросхемы UDN2580A

UDN6118A (рис. 23.28) предназначена для 8-и канального ключевого управления активной нагрузкой при максимальном напряжении до 70(85) В при токе до 25(40) мА. Одна из областей применения этой микросхемы - согласование низковольтных логических уровней с высоковольтной нагрузкой, в частности, вакуумными флуоресцентными дисплеями. Входное напряжение, достаточное для включения нагрузки - от 2,4 до 15 В.

Совпадают с микросхемами UDN2580A по цоколевке, а по внутреннему строению с микросхемами UDN6118A другие микросхемы этой серии - UDN2981 - UDN2984.

Рис. 23.29. Строение и цоколевка микросхемы аналогового мультиплексора ADG408

Рис. 23.28. Цоколевка и эквивалентная микросхемы UDN6118А

Аналоговые мультиплексоры ADG408!ADG409 фирмы Analog Device можно отнести к управляемым цифровым кодом многоканальным электронным переключателям. Первый из мультиплексоров (ADG408) способен переключать единственный вход (выход) на 8 выходов (входов), рис. 23.29. Второй (ADG409) - переключает 2 входа (выхода) на 4 выхода (входа), рис. 23.30.

Максимальное замкнутого ключа не превышает 100 Ом и от напряжения питания микросхемы.

Микросхемы могут питаться от двух- или однополярного источника питания напряжением до ±25 В, соответственно, коммутируемые сигналы по знаку и амплитуде должны укладываться в эти диапазоны. Мультиплексоры отличаются малым потреблением тока - до 75 мкА. Предельная частота коммутируемых сигналов - 1 МГц.

Сопротивление нагрузки - не менее 4,7 кОм при ее емкости до 100 ηФ.

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. - СПб.: Наука и Техника, 2013. -352 с.