Как защитить блок питания от короткого замыкания. Схема защиты блока питания и зарядных устройств. Усиление измеренного падения напряжения

Для защиты блока питания при конструировании различных схем рекомендуется на выход БП добавить узел защиты от перегрузки по току. Простая схема устройства построена с применением тиристора в качестве управляющего элемента защиты по напряжению.

Пока напряжение питания на входе находится в пределах нормы, стабилитрон и тиристор закрыты, ток протекает в нагрузку. При превышении напряжения питания свыше 15,2В, открывается стабилитрон, и вслед за ним тиристор, так как между его катодом и управляющим электродом присутствует разность потенциалов, достаточная для его отпирания. Подключенный параллельно выходу источника питания тиристор VS1 при перегрузке обрывает плавкий предохранитель в течение нескольких микросекунд, если выходное напряжение окажется свыше допустимого. Порог открывания тиристора, а именно, срабатывания защиты, зависит от технических данных стабилитрона. При перегорании предохранителя включится пьезоизлучатель звука со встроенным генератором, который просигнализирует о внешней неисправности, который, так же, индицирует о возможном коротком замыкании в нагрузке. Сигнализатор будет звучать до тех пор, пока не будет отключено общее питание или устройство нагрузки.

Видео работы схемы защиты источника питания


Источник:chipdip.ru


П О П У Л Я Р Н О Е:

    Автомобильное зарядное устройство или регулируемый лабораторный блок питания с напряжением на выходе 4 — 25 В и током до 12А можно сделать из не нужного компьютерного АТ или АТХ блока питания.

    Несколько вариантов схем рассмотрим ниже:

    При создании какого-либо устройства может возникнуть проблема создания простого и надежного источника питания. Один из вариантов — импульсный источник питания.

    Сегодня много простых схем импульсных блоков питания на минимальном количестве не дефицитных элементов.

    В статье, ниже предлагаем описание одного из вариантов простого импульсного блока питания на недорогой микросхеме UC3842.

Начиниющие радиолюбители, которых большинство, для сборки регулированного блока питания выбирают схемы попроще. Такую схемку решил сделать и я, так как возможностей достать дорогие детали и настроить сложный БП вряд-ли получится.

Самое основное для любой конструкции корпус. Тут мне повезло досать нерабочий БП ATX от компьютера, куда и будет помещён будущий блок питания.


Разъёмы сзади для сети 220В оставил, а на место кулера прикрутил обычную розетку, так как их постоянно не хватает для массы моих электронных устройств. Короче лишней она не будет.


Печатная плата блока питания простейшая и изготовить её будет легко даже начинающим. В крайнем случае можно вырезать дорожки резаком, а не травить. Для защиты по максимальному току - а это обязательно должно быть в радиолюбительском блоке питания, выбрал схему электронного предохранителя с индикацией перегрузки на светодиоде.


Передняя панель блока питания изготавливается из пластика, текстолита или даже фанеры - кто на что богат. На ней будут крепиться стрелочные индикаторы - вольтметр и амперметр (как впоследствии стало понятно, что это намного лучше и удобней цифровой индикации), регулятор напряжения и кнопки включения и переключения режимов защиты. Я выбрал 0,1 и 1А, но можно расчитать резистор токовой защиты на любое значение.


Ещё на передней панели блока питания будут две клеммы для подключения проводов выхода БП.


Получается вот что-то уже похожее на блок питания. Трансформатор выбираем такой, чтоб он поместился в корпус. Так что если вы идёте его покупать на радиобазаре - сначала замеряйте габариты коробки.


Корпус обклеиваем самоклеющейся плёнкой или красим лаком.


Зелёный светодиод будет светиться при включении БП в сеть, а красный сигнализирует о срабатывании защиты от токовой перегрузки.


Здесь написано как рассчитать шунт для стрелочных индикаторов. А чтоб нанести на шкалу новые значения вольт и ампер, придётся раскрыть их корпуса и аккуратно наклеить бумажки с новыми значениями поверх старых.

Устройств необходим блок питания (БП), в котором имеется регулировка выходного напряжения и возможность регулирования уровня срабатывания защиты от превышения по току в широких пределах. При срабатывании защиты, нагрузка (подключенное устройство) должна автоматически отключаться.

Поиск в интернете дал несколько подходящих схем блоков питания. Остановился на одной из них. Схема проста в изготовлении и наладке, состоит из доступных деталей, выполняет заявленные требования.

Предлагаемый к изготовлению блок питания выполнен на базе операционного усилителя LM358 и имеет следующие характеристики :
Входное напряжение, В - 24...29
Выходное стабилизированное напряжение, В - 1...20 (27)
Ток срабатывания защиты, А - 0,03...2,0

Фото 2. Схема БП

Описание работы БП

Регулируемый стабилизатор напряжения собран на операционном усилителе DA1.1. На вход усилителя (вывод 3) поступает образцовое напряжение с движка переменного резистора R2, за стабильность которого отвечает стабилитрон VD1, а на инвертирующий вход (вывод 2) напряжение поступает с эмиттера транзистора VT1 через делитель напряжения R10R7. С помощью переменного резистора R2, можно изменять выходное напряжение БП.
Блок защиты от перегрузок по току выполнен на операционном усилителе DA1.2, он сравнивает напряжения на входах ОУ. На вход 5 через резистор R14 поступает напряжение с датчика тока нагрузки - резистора R13. На инвертирующий вход (вывод 6) поступает образцовое напряжение, за стабильность которого отвечает диод VD2 с напряжением стабилизации около 0,6 в.

Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю. В том случае, если ток нагрузки превысит допустимый установленный уровень, увеличится напряжение на датчике тока и напряжение на выходе ОУ DA1.2 возрастет практически до напряжения питания. При этом включится светодиод HL1, сигнализируя о превышении, откроется транзистор VT2, шунтируя стабилитрон VD1 резистором R12. Вследствие чего, транзистор VT1 закроется, выходное напряжение БП уменьшится практически до нуля и нагрузка отключится. Для включения нагрузки нужно нажать на кнопку SА1. Регулировка уровня защиты выполняется с помощью переменного резистора R5.

Изготовление БП

1. Основу блока питания, его выходные характеристики определяет источник тока – применяемый трансформатор. В моем случае нашел применение тороидальный трансформатор от стиральной машины. Трансформатор имеет две выходные обмотки на 8в и 15в. Соединив обе обмотки последовательно и добавив выпрямительный мост на имеющихся под рукой диодах средней мощности КД202М, получил источник постоянного напряжения 23в, 2а для БП.


Фото 3. Трансформатор и выпрямительный мост.

2. Другой определяющей частью БП является корпус прибора. В данном случае нашел применение детский диапроектор мешающийся в гараже . Удалив лишнее и обработав в передней части отверстия для установки показывающего микроамперметра, получилась заготовка корпуса БП.


Фото 4. Заготовка корпуса БП

3. Монтаж электронной схемы выполнен на универсальной монтажной плате размером 45 х 65 мм. Компоновка деталей на плате зависит от размеров, найденных в хозяйстве компонентов. Вместо резисторов R6 (настройка тока срабатывания) и R10 (ограничение максимального напряжения на выходе) на плате установлены подстроечные резисторы с увеличенным в 1,5 раза номиналом. По окончании настройки БП их можно заменить на постоянные.


Фото 5. Монтажная плата

4. Сборка платы и выносных элементов электронной схемы в полном объеме для испытания, настройки и регулировки выходных параметров.


Фото 6. Узел управления БП

5. Изготовление и подгонка шунта и дополнительного сопротивления для использования микроамперметра в качестве амперметра или вольтметра БП. Дополнительное сопротивление состоит из последовательно соединенных постоянного и подстроечного резисторов (на фото сверху). Шунт (на фото ниже) включается в основную цепь тока и состоит из провода с малым сопротивлением. Сечение провода определяется максимальным выходным током. При измерении силы тока, прибор подключается параллельно шунту.


Фото 7. Микроамперметр, шунт и дополнительное сопротивление

Подгонка длины шунта и величины дополнительного сопротивления производится при соответствующем подключении к прибору с контролем на соответствие по мультиметру. Переключение прибора в режим Амперметр/Вольтметр выполняется тумблером в соответствии со схемой:


Фото 8. Схема переключения режима контроля

6. Разметка и обработка лицевой панели БП, монтаж выносных деталей. В данном варианте на лицевую панель вынесен микроамперметр (тумблер переключения режима контроля A/V справа от прибора), выходные клеммы, регуляторы напряжения и тока, индикаторы режима работы. Для уменьшения потерь и в связи с частым использованием, дополнительно выведен отдельный стабилизированный выход 5 в. Для чего напряжение, от обмотки трансформатора на 8в, подается на второй выпрямительный мост и типовую схему на 7805 имеющую встроенную защиту.


Фото 9. Лицевая панель

7. Сборка БП. Все элементы БП устанавливаются в корпус. В данном варианте, радиатором управляющего транзистора VT1 служит алюминиевая пластина толщиной 5 мм, закрепленная в верхней части крышки корпуса, служащего дополнительным радиатором. Транзистор закреплен на радиаторе через электроизолирующую прокладку.

Предлагаю несколько несложных схем универсальных блоков питания для наладки, проверки и ремонта различного радио и электрооборудования. Предлагаемые блоки питания двухполярные, но можно использовать, конечно, и только один канал. Все блоки содержат схемы защиты от перегрузки и короткого замыкания (К.З.) на выходе. Здесь представлены разные варианты схем защиты – схема на реле, тиристоре и вообще без реле и тиристоров. Даны также варианты использования так называемых «составных» транзисторов для значительного увеличения выходного тока блока питания, которые можно использовать и в других схемах.

Блок питания с плавной регулировкой выходного напряжения

Блок питания выдает двухполярное напряжение от 1 до 15..18 В при токе нагрузки до 1 А и содержит схему защиты от перегрузки и короткого замыкания на выходе. Им удобно пользоваться при наладке радиосхем и аппаратуры, так как практически исключается возможность вывода из строя различных активных элементов схемы (транзисторов, микросхем и т.д.) при случайной переплюсовке или неправильном монтаже, а также случайных коротких замыканий.

Принципиальная схема блока представлена на рисунке ниже

При изготовлении блока питания у меня стояла задача сделать его размеры минимально возможными, что послужило причиной достаточно плотной компоновки элементов внутри корпуса. Тем не менее этот блок питания используется уже 3 года и работает без каких либо нареканий. Управляющие транзисторы практически не греются и не требуют, поэтому, применения больших теплоотводов. В качестве теплоотвода используется корпус блока, сделанный из пластин фольгированного двухстороннего текстолита. Транзисторы (VT1) крепятся к задней стенке через изоляционные прокладки из слюды.

В целях экономии места, также, применяется один вольтметр и один амперметр на оба канала. При помощи переключателя типа П2К они могут подключаться к выходу одного из каналов. Применение на выходе постоянно включенного амперметра очень удобно, так как позволяет в любой момент контролировать потребление тока налаживаемой схемы или устройства и, таким образом, вовремя заметить отклонения от нормального режима работы.

В качестве индикаторов рабочего режима и срабатывания защиты от перегрузки или короткого замыкания используются светодиоды соответственно зеленого и красного цвета свечения подключенные на выходе схемы последовательно с резисторами 2 кОм. (подключение светодиодов показано на принципиальной схеме блока питания).

Никакого налаживания собранная схема блока питания не требует. Подстроечным резистором R3 устанавливается порог срабатывания схемы защиты. Для этого к выходу каждого канала подключается нагрузка (резистор), соответствующая нужному току, например 0,9А и поворотом движка резистора R3 добиваются срабатывания реле. Чтобы вернуть блок питания в рабочий режим после срабатывания защиты, нужно на несколько секунд выключить блок питания. В схеме можно применить любые другие реле с рабочим напряжением 6 – 12 В и соответствующей группой контактов, например РЭК-53. Тиристоры КУ202 могут быть с любой буквой, можно поставить и КУ101, 104, 105. Операционный усилитель К153УД5 можно заменить на другой, из серии К140 (например К140УД7, К140УД8).

Простой блок питания с дискретным переключением

Эта схема проще, но также содержит узел защиты от перегрузки и К.З. на выходе. Выходное напряжение здесь задается дискретно, при помощи подключения опорных стабилитронов на разное напряжение стабилизации


Рис. 2

Характеристики:
- Uвых = 6 … 25 В (зависит от примененных стабилитронов);
- Iмакс (без теплоотводов) = 200 мА. При применении теплоотводов и «составных» регулирующих транзисторов (описаны далее) – до 2 .. 3 А;
- Уровень пульсаций - около 1 мВ;
- Кстаб = 700.

Стабилитроны VD2 – VD5 задают нужные значения выходного напряжения и переключаются при помощи подходящего кнопочного или галетного преключателя на нужное количество позиций. Ниже приведена примерная таблица соответствия типа стабилитрона и выходного напряжения блока:

Если нет стабилитрона на более высокие напряжения, можно использовать последовательное включение двух или трех. Например два включенных последовательно стабилитрона типа Д814А (или КС168) дадут напряжение стабилизации около 15 В. И так далее. Напряжение на входе (с трансформатора и выпрямителя, как и в схеме на рис.1) должно быть на 3 … 9 В больше выходного. Резисторы R4, R6 подбираются из расчета: Uвых. среднее х 100 (значение получается в Омах).

Блок питания защищает от перегрузки и К.З. как нагрузку, так и сам себя. Защита отключает оба канала при превышении тока даже в одном из них. В отключенном состоянии блок может находиться сколь угодно долго, для включения его нужно на несколько секунд выключить. Схема защиты (выделена на рис.2 пунктирной линией) может быть собрана и без тиристора, как показано на рис.3. В этом случае при срабатывании защиты блок питания будет переходить в рабочее состояние сам, без выключения, после устранения причины перегрузки.

При использовании для транзисторов VT1 и VT4 радиаторов площадью 100 … 200 кв. см. выходной ток блока может быть до 1 А. Транзистор VT1 можно заменить на П201 – П203, КТ816, КТ626, КТ837, а VT4 на КТ817, КТ605АМ, КТ805АМ, КТ603, КТ801. Чтобы значительно повысить выходной ток (до 2 … 3 А) можно заменить эти транзисторы на «составные», то есть состоящие из соответствующих пар. Как это сделать, показано на рис.4. Транзисторы в паре обозначены буквами «а», «б», «в» и «г». При этом транзистор, обозначенный буквой «а» может быть типа:
- П213 – П217, КТ806, КТ814, КТ816, КТ818;
«б»: - КТ203Б, КТ626Б,В; КТ209Г-М;
«в»: - П702, КТ805А, КТ803А, КТ817, КТ819;
«г»: - КТ315Г, КТ342А, КТ605А, КТ603А, КТб08А-Б.
Любой из вариантов составного транзистора VT1 может работать совместно с любым вариантом составного VT4.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Рисунок 1.
D1 x2 Микросхема К153УД5 2 В блокнот
VT1 x2 Биполярный транзистор

КТ805АМ

2 В блокнот
VT2 x2 Биполярный транзистор

КТ837А

2 В блокнот
VS1 x2 Тиристор & Симистор

КУ202И

2 В блокнот
D1-D4 x2 Диод

Д242

8 В блокнот
VD5 x2 Светодиод

АЛ307В

2 Или любой другой зеленый В блокнот
VD6 x2 Диод

Д223

2 В блокнот
VD7 x2 Стабилитрон

Д814А

2 В блокнот
VD8, VD9 x2 Стабилитрон

Д814В

4 В блокнот
VD10 x2 Светодиод

АЛ307Б

2 Или любой другой красный В блокнот
С1 x2 2000 мкФ 2 В блокнот
C2 x2 Конденсатор 200 пФ 2 В блокнот
C3 x2 Конденсатор 4700 пФ 2 В блокнот
С4 x2 Электролитический конденсатор 500 мкФ 2 В блокнот
С5 x2 Электролитический конденсатор 200 мкФ 2 В блокнот
R1, R12 x2 Резистор

2 кОм

4 0.5 Вт В блокнот
R2 x2 Резистор

2 Ом

2 2 Вт В блокнот
R3 x2 Подстроечный резистор 4.7 кОм 2 В блокнот
R4, R5 x2 Резистор

300 Ом

4 0.5 Вт В блокнот
R6 x2 Резистор

910 Ом

2 0.5 Вт В блокнот
R7 x2 Резистор

100 Ом

2 0.5 Вт В блокнот
R8 x2 Резистор

3.9 кОм

2 0.5 Вт В блокнот
R9 x2 Подстроечный резистор 1.5 кОм 2 В блокнот
R10 x2 Резистор

1 кОм

2 0.5 В В блокнот
R11 x2 Резистор

510 Ом

2 0.5 Вт В блокнот
Амперметр 1-3 А 2 В блокнот
Вольтметр 15-30 В 2 В блокнот
Трансформатор 2x15 В 1 В блокнот
SA1 Выключатель 1 В блокнот
FU1 Предохранитель 1 А 1 В блокнот
Рисунок 2.
VT1 Биполярный транзистор

КТ814Б

1 В блокнот
VT2 Биполярный транзистор

КТ315Б

1 В блокнот
VT3 Биполярный транзистор

КТ361Б

1 В блокнот
VT4 Биполярный транзистор

КТ815Б

1 В блокнот
VS Тиристор & Симистор

КУ101А

1 В блокнот
VD1 Диод

Д220

1 В блокнот
VD2, VD2.1 Стабилитрон

КС133А

1 В блокнот
VD3, VD3.1 Стабилитрон

КС156А

1 В блокнот
VD4, VD4.1 Стабилитрон

КС168А

1 Можно Д814А В блокнот
VD5, VD5.1 Стабилитрон

Д814В

1 В блокнот
VD6, VD6.1 Стабилитрон

Д814Д

1 Можно КС107А, на схеме показан VD6, VD6.1


Этот блок питания прост для повторения, надежно защищен от случайных коротких замыканий, имеет плавную регулировку выходного напряжения от “нуля”, коллекторы транзисторов крепятся непосредственно к радиатору или корпусу (массе шасси).

Блок состоит из понижающего трансформатора, выпрямителя, сравнивающего устройства на операционном усилителе, который своим током потребления управляет составным транзистором и, узле защиты (рис. 1).

Понижающий трансформатор следует проверить на отдаваемую им мощность. Для этого первичную обмотку включают через предохранитель в сеть 220 вольт, предварительно заизолировав все открытые участки проводки. Переменное напряжение на вторичной обмотке не должно превышать 20 вольт, иначе после выпрямителя постоянное напряжение на электролитическом конденсаторе превысит 30 вольт, предельное для микросхемы операционного усилителя. Параллельно к выводам вторичной обмотки трансформатора подключают вольтметр и кратковременно накоротко замыкают мощным резистором сопротивлением 20 ом. Ток через резистор будет приблизительно 1 ампер. Обычно этого достаточно, но “дело вкуса”. Если показания вольтметра изменились незначительно и такая мощность устраивает, проверка закончена.

В выпрямителе лучше использовать микросборку КЦ-402 или КЦ-405 с любым буквенным индексом. Тогда постоянное напряжение на выходе будет более “красивым” благодаря одинаковым параметрам диодов моста. При потребности в больших токах блока выпрямительный мост собирается из отдельных мощных диодов.

Сравнивающее устройство (см. рис. 1) состоит из операционного усилителя DА1 и измерительного моста, образованного резисторами R5-R7 и стабилитроном VD2. Изменение напряжения на выходе блока питания приводит к разбалансу измерительного моста. Операционный усилитель усиливает напряжение разбаланса, изменяя напряжение на нагрузочном сопротивлении R4, но, так как эта нагрузка постоянна, то меняется ток, проходящий через микросхему. Этот ток, как нельзя лучше, подходит для управления регулирующим транзистором, так как транзистор, в общем, токовый элемент. Идея нестандартного включения операционного усилителя взята из . В сравнивающем устройстве можно применить любой операционный усилитель, особенно, если блок будет использоваться как нерегулируемый стабилизатор напряжения в каком-либо устройстве. Напряжение на выходе блока будет равно удвоенному напряжению стабилизации применяемого стабилитрона (это соотношение можно изменять резисторами R5 и R6). Если понадобится стабилизировать напряжение более 30 вольт, то необходимо установить стабилитрон VD3 (показан пунктиром), который погасит избыточное напряжение на ОУ. При этом сопротивление резистора R7 должно быть рассчитано на номинальный рабочий ток стабилитрона VD2. Операционный усилитель без обратной связи может возбудиться и тогда потребуется ввести конденсатор С4.

Не все операционные усилители подходят для регулируемого варианта блока (см. рис. 2). Нужно проследить, чтобы при уменьшении выходного напряжения до “нуля” потенциометром R7 процесс стабилизации не срывался. Иначе на выходе блока появится полное напряжение от выпрямителя.

Узел защиты состоит из шунта и тринистора 2У107А. Ток, проходящий через шунт, создает на нем пропорциональное падение напряжения. Как только напряжение достигнет определенного уровня, тринистор откроется и разбалансирует уравновешивающий мост R5-R8 (рис. 2). Тогда составной транзистор VT1-VT2 закроется и ток через нагрузку блока прекратится. Для возврата защиты в исходное состояние служит кнопка SB1. Здесь не следует применять тумблер или выключатель: можно забыть включить защиту. При необходимости получения максимального тока можно просто удерживать кнопку нажатой. В качестве шунта использован отрезок манганинового провода. Сечение и длина провода подбираются экспериментально в зависимости от требуемого тока и порога срабатывания защиты. Тринистор 2У107А по чувствительности, быстроте и надежности срабатывания оказался наиболее удачным выбором. Другие тринисторы не дали нужного результата.

Составной транзистор может быть собран из любых транзисторов при соблюдении общих правил, например: VT1-КТ808А, VT2-КТ815А. Подстроечное сопротивление R3 (рис.1) служит для настройки составного транзистора на максимальную отдачу тока. Для этого следует нагрузочным сопротивлением (например, 12 ом) кратковременно замыкать выход блока питания и установить R3 по меньшему отклонению выходного напряжения.

На основе изложенного был собран двуполярный лабораторный блок питания (см. рис. 3 и фото 1-3). Верхний по схеме стабилизатор удобно использовать без защиты. Вместе с нижним стабилизатором можно получить напряжение до 25 вольт, плюс защита от перегрузки. Транзистор VT1 необходимо изолировать от радиатора слюдяной прокладкой.

Детали блока питания собраны на печатной плате размером 80х110 мм. Корпус блока сделан из одностороннего фольгированного стеклотекстолита размером 235х100х160 мм. Детали корпуса скреплены между собой оловом. Верхняя крышка корпуса укреплена треугольными косынками. Передняя и задняя стенки скреплены с поддоном прямоугольниками. В них просверлены отверстия и изнутри припаяны гайки М3 для крепления крышки.

Фальшпанель крепится к передней панели с помощью винта и гайки через отверстие, просверленное посередине. На фальшпанель выведены светодиоды: красный - загорается при срабатывании защиты, зеленый - указывает о включенном состоянии блока в сеть. Для вольтметра и миллиамперметра вырезаны отверстия. Миллиамперметр отрегулирован шунтом на полное отклонение стрелки и срабатывание защиты при токе 300 миллиaмпер. Такая защита срабатывает мгновенно и спасла не одно устройство.

На задней панели находятся радиаторы с транзисторами VT1 и VT3, предохранитель, клеммы выходного напряжения, тумблер включения блока питания в сеть, тумблер переключения вольтметра, кнопка “Сброс защиты”.

Литература:

1. Журнал “Радио”, 1986 г., номер 9, стр. 48.

М. Файзуллин (UA9WNH/9), Тюменская обл., г. Нижневартовск