Работа 2 электролитическая диссоциация реакции ионного обмена. Конспект урока по химии: "Электролитическая диссоциация. Водородный показатель. Реакции ионного обмена". Основные положения теории электролитической диссоциации

Цель работы. Приобрести навыки составления молекулярных и ион- ных уравнений реакций, протекающих в растворах электролитов. Нау- читься определять направление протекания ионных реакций.

При растворении некоторых веществ в воде (или других поляр- ных растворителях) под воздействием молекул растворителя проис- ходит распад молекул данного вещества на ионы. В результате этого процесса раствор содержит не только молекулы растворителя и рас- творенного вещества, но и образовавшиеся ионы. Растворы веществ, которые при растворении в воде или других полярных растворителях распадаются на ионы, называются электролитами.

Процесс распада молекул растворенного вещества (электроли- та) на ионы под действием полярных молекул растворителя называ- ется электролитической диссоциацией.

Растворы электролитов обладают ионной электропроводностью (в переносе электрических зарядов участвуют ионы) и являются про- водниками второго рода.

Количественной характеристикой процесса распада растворенно- го вещества на ионы является степень электролитической диссоциа- ции – α. Степенью диссоциации называется отношение числа молекул растворенного вещества, распавшихся на ионы в растворе (n), к об- щему числу растворенных молекул (N):

Степень электролитической диссоциации определяется опытным пу- тем и выражается либо в долях единицы, либо в процентах. Степень дис- социации электролита зависит от природы электролита, концентрации и температуры.

По степени диссоциации электролита в растворе с молярной кон-

центрацией эквивалента, равной 0,1 моль/л (0,1 н.), растворы условно

делят на три группы: сильные, слабые и средние электролиты. Если в

0,1 н. растворе электролита α > 0,3 (30 \%) электролит считается сильным, α ≤ 0,03 (3 \%) – слабым электролитом. Электролиты с промежуточными значениями степени диссоциации считают средними.

К сильным электролитам, если растворителем является вода, отно-

– кислоты: НNO3, H2SO4, НCNS, НCl, НClO3, HClO4, HBr, HВrО3, HВrО4, НI, НIO3 HMnO4, H2SeO4, HReO4, HTcO4; а также кислоты Н2СrO4, H4P2O7, H2S2O6 которые являются сильными по первой ступени дис- социации, т. е. при отрыве первого иона Н+;

– основания: гидроксиды щелочных (Li, Na, K, Rb, Cs, Fr) и щелочнозе- мельных металлов (Ca, Sr, Ba, Ra): LiOH, NаОН, KОH, RbОН, CsОН, FrОН, Ca(OH)2, Ba(OH)2, Sr(OH)2; Ra(OH)2; а также TlOH;

– большинство солей. Исключение: Fe(SCN)3, Mg(CN)2, HgCl2, Hg(CN)2.

К слабым электролитам относятся:

– кислоты: H2CO3, НClO, H2S, H3BO3, HCN, H2SO3, H2SiO3, CH3COOH, HCOOH, H2C2O4 и т. д. (Приложение, табл. 2);

– основания (р- и d-элементов): Be(OH)2, Mg(OH)2, Fe(OH)2, Zn(OH)2; гид- роксид аммония NH4OH, а также органические основания – амины (CH3NH2) и амфолиты (H3N+CH2COOˉ).

Вода является очень слабым электролитом (H2O) α = 2·10-9, т. е.

молекулы воды также могут распадаться на ионы за счет взаимодействия молекул между собой.

Сильные электролиты – вещества, которые при растворении в воде полностью распадаются на ионы, т. е. диссоциируют практически нацело. После разрыва связи между ионами в молекуле электролита под действи- ем молекул воды, образовавшиеся ионы окружают себя молекулами воды и поэтому в растворе находятся в гидратированном состоянии. С учетом гидратации ионов уравнение электролитической диссоциации можно бы- ло бы записать таким образом:

Na+Clˉ (к) + (x+y) H2О + + ˉ

Уравнение диссоциации сильного электролита записывают упрощенно,

например:

NaCl → Na+ + Clˉ;

HNO3 → H+ + NO3ˉ;

Ва(ОН)2 → Ва2+ + 2ОНˉ

К слабым электролитам относятся вещества, которые при растворе- нии в воде частично диссоциируют на ионы. Между ионами, концентра- ция которых в растворе невелика, и реально существующими недиссоции- рованными молекулами устанавливается равновесие:

CH3COOH ⇄ CH3COOˉ + H+; H2О ⇄ H+ + ОНˉ.

Такая запись означает, что в растворе одновременно происходят два

процесса: распад молекул на ионы и образование молекул из ионов. Рав- новесие в растворах слабых электролитов смещено в сторону исходных продуктов, поэтому слабые электролиты в растворе существуют преиму- щественно в виде молекул.

Химические свойства растворов электролитов зависят от свойств ио- нов и молекул, находящихся в растворе. Направление протекания реакций между ионами и молекулами в растворах электролитов определяется воз- можностью образования малорастворимых веществ или слабых электро- литов. Если в результате реакции не происходит образования малорас- творимого вещества или слабого электролита, то такая реакция протекать не может. Например, при сливании растворов нитрата натрия и хлорида калия реакция не протекает, так как по обменной реакции из ионов нахо- дящихся в растворе не может образоваться какое либо малорастворимое вещество или слабый электролит. Эти соли относятся к сильным электро- литам и хорошо растворяются в воде, поэтому в растворе будет находить-

ся смесь ионов:

Na+ + NO3ˉ + K+ + Clˉ,

из которых состояли исходные вещества. Следовательно, в этом случае нельзя написать молекулярное уравнение обменной реакции

NaNO3 + KCl ≠ KNO3 + NaCl.

Реакцию, протекающую в растворе, можно представить в виде:

Молекулярного уравнения реакции;

Ионно-молекулярного уравнения (полного или сокращенного).

Уравнение реакции, содержащее только формулы недиссоциирован- ных веществ, называется молекулярным уравнением. Молекулярная форма уравнения показывает, какие вещества и в каком количестве участвуют в реакции. Оно позволяет производить необходимые расчеты, связанные с данной реакцией. Уравнение, содержащее формулы недиссоциированных слабых электролитов и ионы сильных электролитов, называется полным ионным или ионно-молекулярным уравнением реакции.

Сократив одинаковые продукты в левой и правой части ионно- молекулярного уравнения реакции, получаем сокращенное или краткое ионное уравнение реакции. Ионное уравнение, не содержащее одинако- вых веществ (ионов или молекул) в левой и правой части реакции, назы- вается сокращенным или кратким ионным уравнением реакции. Это урав- нение и отражает сущность происходящей реакции.

При записи ионных уравнений реакций необходимо помнить:

1) сильные электролиты следует записывать в виде отдельных со-

ставляющих их ионов;

2) слабые электролиты и малорастворимые вещества следует запи-

сывать в виде молекул.

В качестве примера рассмотрим взаимодействие соды с кислотой. В молекулярном уравнении реакции исходные вещества и продукты реак- ции записывают в виде молекул:

Na2CO3 + H2SO4 = Na2SO4 + CO2 + H2O.

Принимая во внимание, что в водном растворе молекулы электроли-

тов распадаются на ионы, полное ионное уравнение этой реакции имеет вид

CO 2–

В ионном уравнении слабые электролиты, газы и малорастворимые вещества записывают в виде молекул. Знак ↓, стоящий при формуле веще- ства, обозначает, что это вещество выведено из сферы реакции в виде

осадка, а знак обозначает, что вещество удаляется из сферы реакции в виде газа.

Вещества, молекулы которых полностью диссоциируют на ионы (сильные электролиты), записывают в виде ионов. Сумма электрических зарядов левой части уравнения должна быть равна сумме электрических зарядов правой части.

При написании ионных уравнений следует руководствоваться табли- цей растворимости кислот, оснований и солей в воде, т. е. обязательно проверять растворимость реагентов и продуктов, отмечая это в уравнени- ях, а также таблицей констант диссоциации слабых электролитов (Прило- жение, табл. 1 и 2). Рассмотрим примеры записи некоторых ионно- молекулярных уравнений.

Пример 1. Образование трудно- и малорастворимых соединений (осадка).

а) Образование сульфата бария

Молекулярное уравнение реакции:

BaCl2 + Na2SO4 = BaSO4↓ + 2NaCl.

Полное ионное (ионно-молекулярное) уравнение реакции:

Ba2+ + 2Clˉ + 2Na+ + SO4 ˉ = BaSO4↓ + 2Na

CO 2–

CO2 + H2O (сокращенное ионное уравнение).

Пример 3. Образование слабого электролита.

2Na+ + 2OH– +2H+ + SO 2–

(полное ионное уравнение)

2OH– + 2H+ = 2H2O (сокращенное ионное уравнение).

Реакция нейтрализации сильной кислоты сильным основанием сводится к взаимодействию ионов водорода с гидроксид-ионами;

б) слабой кислоты:

2NaNO2 + H2SO4 = 2HNO2 + Na2SO4 (молекулярное уравнение)

NH +

(полное ионное уравнение)

NH4OH (сокращенное ионное уравнение).

Сильные основания вытесняют слабые основания из их солей.

Пример 4. Когда среди исходных соединений и продуктов реакции есть слабый электролит или малорастворимое вещество, то в уравнении применяет-

ся знак равновесия «⇄». Равновесие в реакции смещается в сторону более слабого электролита или малорастворимого вещества, что обозначается

значком (↷)..

а) CH3COOH + NaОН ⇄ CH3COONa + H2O

CH3COOН + ОНˉ ⇄ CH3COOˉ + H2O (↷).

В результате реакции образуется более слабый электролит – вода. Равнове-

сие смещается в сторону прямой реакции.

б) CaSO4↓ + Na2CO3 ⇄ CaCO3↓ + Na2SO4;

CaSO4↓ + 2 Na+ + CO 2–

⇄ CaCO3↓ + 2 Na+

В результате реакции образуется менее растворимая соль – карбонат каль-

ция. Равновесие смещается в сторону прямой реакции.

Пример 5. Составьте три возможных молекулярных уравнения реакции,

соответствующих сокращенному ионному уравнению: CH3COO– + H+ = CH3COOH.

Решение. В левой части ионного уравнения указаны свободные ионы СН3СОО– и Н+. Эти ионы образуются при диссоциации каких-либо раствори- мых сильных электролитов. Ионы СН3СОО– могут образовываться при диссо- циации, например солей КСН3СОО, NaCH3COO, Mg (CH3COO)2; донорами ио-

нов Н+ могут быть любые сильные кислоты. Молекулярные уравнения реакций,

которым отвечает данное молекулярно-ионное уравнение, могут быть:

1. KCH3COO + HCl = CH3COOH + KCl;

2. NaCH3COO + HNO3 = CH3COOH + NaNO3;

3. Mg(CH3COO)2 + H2SO4 = 2 CH3COOH + MgSO4.

Техника безопасности

1. Соблюдайте особую осторожность при работе с растворами кислот и щелочей, не допускайте их попадания на кожу и одежду.

2. Если в процессе эксперимента выделяется токсичный газообразный продукт, то обязательно проводите опыт в вытяжном шкафу при работаю- щей вентиляции.

3. Соблюдайте осторожность при работе с токсичными солями и их растворами (соли бария, хрома, меди и др.).

Урок: Электролитическая диссоциация. Водородный показатель. Реакции ионного обмена
Цели: систематизировать знания учащихся об электролитической диссоциации. Показать научный подвиг основоположников теории. Показать зависимость свойств веществ от их строения. Привести полученные учащимися знания по теме в единую систему.
Задачи: Совершенствовать умения и навыки составления уравнений диссоциации, ионных уравнений, уравнений гидролиза. Сформировать умение предсказывать среду растворов различных солей. Систематизировать знания учащихся о гидролизе органических веществ. Развить способность наблюдать, анализировать и делать выводы.
Оборудование и реактивы : мультимедиапроектор, компьютер.

Ход урока

Организационный момент

Актуализация опорных знаний:

Учащиеся дают ответ по плану:
- Что такое электрическая проводимость растворов?
- Электролитическая диссоциация солей, оснований и кислот.
- Механизм электролитической диссоциации веществ с ионной связью.

Подведение к изучению новой темы: - Почему растворы кислот, солей и щелочей проводят электрический ток?

Почему температура кипения раствора электролита всегда будет выше, чем температура кипения раствора не электролита той же концентрации?

Изучение нового материала:

1. Понятие электролитическая диссоциация

В 1887 году шведский физико - химик Сванте Аррениус, исследуя электропроводность водных растворов, высказал предположение, что в таких растворах вещества распадаются на заряженные частицы – ионы, которые могут передвигаться к электродам – отрицательно заряженному катоду и положительно заряженному аноду.

Это и есть причина электрического тока в растворах. Данный процесс получил название электролитической диссоциации (дословный перевод – расщепление, разложение под действием электричества). Такое название также предполагает, что диссоциация происходит под действием электрического тока. Дальнейшие исследования показали, что это не так: ионы являются толькопереносчиками зарядов в растворе и существуют в нем независимо от того, проходит черезраствор ток или нет. При активном участии Сванте Аррениуса была сформулирована теория электролитической диссоциации, которою часто называют в честь этого ученого. Основная идея данной теории заключается в том, что электролиты под действием растворителя самопроизвольно распадаются на ионы. И именно эти ионы являются носителями заряда и отвечают за электропроводность раствора.

Электрический ток - это направленное движение свободных заряженных частиц. Вы уже знаете, что растворы и расплавы солей и щелочей электропроводны, так как состоят не из нейтральных молекул, а из заряженных частиц – ионов. При расплавлении или растворении ионы становятся свободными переносчиками электрического заряда.

Процесс распада вещества на свободные ионы при его растворении или расплавлении называют электролитической диссоциацией.

2. Сущность процесса электролитической диссоциации солей

Сущность электролитической диссоциации заключается в том, что ионы становятся свободными под влиянием молекулы воды. Рис.1. Процесс распада электролита на ионы отображают с помощью химического уравнения. Запишем уравнение диссоциации хлорида натрия и бромида кальция. При диссоциации одного моля хлорида натрия образуются один моль катионов натрия и один моль хлорид - анионов. NaCl Na+ + Cl-

При диссоциации одного моля бромида кальция образуется один моль катионов натрия и два моля бромид - анионов.

CaBr2 Ca2+ + 2Br-

Обратите внимание: так как в левой части уравнения записана формула электронейтральной частицы, то суммарный заряд ионов должен быть равен нулю.

Вывод : при диссоциации солей образуются катионы металла и анионы кислотного остатка.

3. Сущность процесса электролитической диссоциации щелочей

Рассмотрим процесс электролитической диссоциации щелочей. Запишем уравнение диссоциации в растворе гидроксида калия и гидроксида бария.

При диссоциации одного моля гидроксида калия образуются один моль катионов калия и один моль гидроксид-анионов. KOH K+ + OH-

При диссоциации одного моля гидроксида бария образуются один моль катионов бария и два моля гидроксид - анионов. Ba(OH)2 Ba2+ + 2 OH-

Вывод: при электролитической диссоциации щелочей образуются катионы металла и гидроксид - анионы.

Нерастворимые в воде основания практически не подвергаются электролитической диссоциации, так как в воде они практически нерастворимы, а при нагревании – разлагаются, так что расплав их получить не удается.

4. Сущность процесса электролитической диссоциации кислот

Рассмотри процесс электролитической диссоциации кислот. Молекулы кислот образованы ковалентной полярной связью, а значит, кислоты состоят не из ионов, а из молекул.

Возникает вопрос – как же тогда кислота диссоциирует, т. е как в кислотах образуются свободные заряженные частицы? Оказывается, ионы образуются в растворах кислот именно при растворении.

Рассмотрим процесс электролитической диссоциации хлороводорода в воде, но для этого запишем строение молекул хлороводорода и воды. Обе молекулы образованы ковалентной полярной связью. Электронная плотность в молекуле хлороводорода смещена к атому хлора, а в молекуле воды – к атому кислорода. Молекула воды способна оторвать катион водорода от молекулы хлороводорода, при этом образуется катион гидроксония Н3О+.

Тогда уравнение диссоциации хлороводорода выглядит так: HCl H+ + Cl-

5. Ступенчатая диссоциация кислот

Ступенчатая диссоциация серной кислоты

Рассмотри процесс электролитической диссоциации серной кислоты. Серная кислота диссоциирует ступенчато, в две стадии.

I–я стадия диссоциации

На первой стадии отрывается один катион водорода и образуется гидросульфат-анион.

H2SO4 H+ + HSO4-

гидросульфат-анион.

II - я стадия диссоциации

На второй стадии происходит дальнейшая диссоциация гидросульфат - анионов. HSO4- H+ + SO42-

Эта стадия является обратимой, то есть, образующиеся сульфат - ионы могут присоединять к себе катионы водорода и превращаться в гидросульфат - анионы. Это показано знаком обратимости.

Существуют кислоты, которые даже на первой стадии диссоциируют не полностью – такие кислоты являются слабыми. Например, угольная кислота Н2СО3.

Водородный показатель характеризует концентрацию свободных ионов водорода в воде.

Для удобства отображения был введен специальный показатель, названный рН и представляющий собой логарифм концентрации ионов водорода, взятый с обратным знаком, т.е. pH = -log.

Если говорить проще, то величина рН определяется количественным соотношением в воде ионов Н + и ОН - , образующихся при диссоциации воды. Если в воде пониженное содержание свободных ионов водорода (рН>7) по сравнению с ионами ОН - , то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н + (рН<7)- кислую. В идеально чистой дистиллированной воде эти ионы будут уравновешивать друг друга. В таких случаях вода нейтральна и рН=7. При растворении в воде различных химических веществ этот баланс может быть нарушен, что приводит к изменению уровня рН.

Рефлексия: составить синквейн

Д/З:

Подведение итога урока

На этом уроке вы узнали, что растворы кислот, солей и щелочей электропроводны, так как при их растворении образуются заряженные частицы – ионы. Такой процесс называется электролитической диссоциацией. При диссоциации солей образуются катионы металла и анионы кислотных остатков. При диссоциации щелочей образуются катионы металла и гидроксид-анионы. При диссоциации кислот образуются катионы водорода и анионы кислотного остатка.

Электролитическая диссоциация – это процесс распада молекул электролита на ионы под действием полярных молекул растворителя.

Электролиты – это вещества, расплавы или водные растворы которых проводят электрический ток. К ним относятся растворы кислот, расплавы и растворы щелочей и солей. Неэлектролиты – это вещества, которые не проводят электрический ток. К ним относятся многие органические вещества.

Электролиты, которые практически полностью диссоциируют на ионы, называются сильными; электролиты, которые частично диссоциируют на ионы, называются слабыми. Для количественной оценки полноты диссоциации введено понятие степени диссоциации. Степенью диссоциации электролита называют отношение числа молекул, распавшихся на ионы, к общему числу молекул, находящихся в растворе.

Обычно степень диссоциации (α ) выражают в долях единицы или %:

где n – число частиц, подвергшихся электролитической диссоциации;

n 0 – общее число частиц в растворе.

Сильные электролиты – почти все соли, растворимые основания (NaOH , KOH , Ba (OH ) 2 и др.), неорганические кислоты (H 2 SO 4 , HCl , HNO 3 , HBr , HI и др).

Слабые электролиты – нерастворимые основания и NH 4 OH , неорганические кислоты (H 2 CO 3, , H 2 S , HNO 2, H 3 PO 4 и др.), органические кислоты и вода H 2 O .

Сильные электролиты диссоциируют на ионы практически нацело (т.е. процесс диссоциации является необратимым) и одностадийно:

HCl = H + + Cl H 2 SO 4 = 2H + + SO 4 2–

Слабые электролиты диссоциируют частично (т.е. процесс диссоциацииявляется обратимым) и ступенчато. Например, для многоосновных кислот на каждой стадии происходит отрыв одного иона водорода:

1. H 2 SO 3 H + + HSO 3 - 2. HSO 3 - H + + SO 3 2-

Таким образом, число стадий многоосновных кислот определяется основностью кислоты (числом ионов водорода), а число стадий многокислотных оснований будет определяться кислотностью основания (или числом гидроксильных групп): NH 4 OH NH 4 + + OH . Процесс электролитической диссоциации завершается установлением в системе состояния химического равновесия, которое характеризуется константой равновесия:

Константа равновесия процесса электролитической диссоциации называется константой диссоциации – К Д . Константа диссоциации зависит от природы электролита, природы растворителя, температуры, но не зависит от концентрации электролита.

Между К Д и α существует количественная связь:

(13)

Соотношение (13) называют законом разбавления Оствальда: степень диссоциации слабого электролита возрастает с разбавлением раствора.

Для слабых электролитов, когда α 1, К Д = α 2 С.

Вода является слабым электролитом, поэтому диссоциирует обратимо:

H 2 O H + + OH H = +56,5кДж/моль

Константа диссоциации воды:

Степень диссоциации воды очень мала (это очень слабый электролит). Так как вода присутствует в большом избытке, то ее концентрация может считаться величиной постоянной и составляет
, тогда

К Д [ H 2 O ] = [ H + ]∙[ OH - ] = 55,6∙1,8∙10 -16 = 10 -14

[ H + ]∙[ OH - ] = 10 -14 = K W – ионное произведение воды

Так как в воде концентрации катионов водорода и гидроксид-ионов равны, то: [ H + ] = [ OH - ] =
.

Растворение в воде других веществ (кислот, оснований, солей) изменяет концентрацию ионов Н + или ОН , а их произведение всегда остается постоянным и равным 10 -14 при Т=25 0 С. Концентрация ионов Н + может служить мерой кислотности или щелочности раствора. Обычно для этой цели используется водородный показатель: pH = - lg [ H + ]. Таким образом, водородный показатель – это десятичный логарифм концентрации ионов водорода, взятый с обратным знаком.

В зависимости от концентрации ионов водорода различают три среды.

В нейтральной среде [ H + ] = [ OH - ]= 10 -7 моль/л, рН= – lg 10 -7 = 7 . Эта среда характерна как для чистой воды, так и для нейтральных растворов. В кислых растворах [ H + ] > 10 -7 моль/л, рН < 7 . В кислых средах рН меняется в пределах 0 < рН < 7 . В щелочных средах [ H + ] < [ОН ] и [ H + ] < 10 -7 моль/л , следовательно, рН > 7 . Пределы изменения рН: 7 < рН < 14 .

Реакции ионного обмена (РИО) – это реакции между ионами, протекающие в водных растворах электролитов. Отличительная особенность обменных реакций: элементы, входящие в состав реагирующих веществ, не меняют свою степень окисления. Реакции ионного обмена являются необратимыми реакциями и протекают при условии : 1) образования малорастворимого вещества, 2) выделения газообразного вещества, 3) образования слабого электролита.

При протекании РИО противоположно заряженные ионы связываются и выводятся из сферы реакции. Сущность реакций ионного обмена выражают с помощью ионных уравнений, которые, в отличие от молекулярных, показывают истинных участников реакции. При составлении ионных уравнений следует руководствоваться тем, что вещества малодиссоциирующие, малорастворимые (выпадающие в осадок) и газообразные записываются в молекулярной форме. Сильные растворимые электролиты записываются в виде ионов. Поэтому при написании ионных уравнений необходимо пользоваться таблицей растворимости солей и оснований в воде.

Гидролиз – это процесс взаимодействия ионов соли с молекулами воды, приводящий к образованию малодиссоциирующих соединений; является частным случаем реакций ионного обмена. Гидролизу подвергаются соли, образованные:

    слабой кислотой и сильным основанием (NaCH 3 COO , Na 2 CO 3 , Na 2 S , );

    слабым основанием и сильной кислотой (NH 4 Cl , FeCl 3 , AlCl 3 ,);

    слабым основанием и слабой кислотой (NH 4 CN , NH 4 CH 3 COO ).

Соли, образованные сильной кислотой и сильным основанием, гидролизу не подвергаются: Na 2 SO 4 , BaCl 2 , NaCl , NaJ и т.д.

Гидролиз солей увеличивает концентрации ионов Н + или ОН . Это приводит к смещению ионного равновесия воды и в зависимости от природы соли сообщает раствору кислую или щелочную среду (см. примеры решения задач).

Формулы для расчета.

1. Вычислить нормальную концентрацию раствора кислоты (оп.№1) или раствора щелочи (оп.№2) из формулы закона эквивалентов для растворов:

2. Вычислить массу кислоты (оп.№1) или щелочи (оп.№2), содержащейся в 10 мл соответствующего раствора, из формулы нормальной концентрации:

3. Вычислить массу воды (растворителя) в 10 мл раствора, считая плотность раствора равной 1:

4. Пользуясь полученными данными, вычислить заданные концентрации по соответствующим формулам.

Лабораторная работа №5

Цель работы: изучить условия протекания реакций ионного обмена и правил написания ионообменных реакций в молекулярной и ионно-молекулярной формах.

Теоретическая часть .

Электролитической диссоциацией называется частичный или полный распад молекул электролита на ионы под действием полярных молекул растворителей. Диссоциация протекает в результате сложного физико-химического взаимодействия молекул электролита с полярными молекулами растворителей. Взаимодействие ионов с полярными молекулами растворителя называется сольватацией (для водных растворов - гидратацией) ионов. В растворах электролитов образуются сольватированные ионы.

Электролиты проводят электрический ток, так как в растворах имеются заряженные частицы: катионы и анионы.

Количественно процесс диссоциации характеризуется степенью электролитической диссоциации α. Степенью диссоциации называется отношение числа молекул, распавшихся на ионы n к общему числу молекул N растворенного вещества:

Степень диссоциации выражается в процентах или долях единицы.

Электролиты делятся на три группы: а) сильные (α>30%), б) средние (3<α<30%), в) слабые (α<3%).

В учебной литературе приведены таблицы степеней диссоциации кислот, основании и солей. Степень диссоциации зависит от природы растворенного вещества и растворители, температуры, концентрации и присутствия в растворе одноименных ионов. Для слабых электролитов степень диссоциации существенно зависит от концентрации: чем меньше концентрация раствора, тем больше степень электролитической диссоциации.

Значительно удобней характеризовать способность электролитов к диссоциации к растворе константой диссоциации К , которая не зависит от концентрации раствора. Константа диссоциации К представляет собой константу равновесия обратимого процесса диссоциации слабого электролита – кислоты или основания. Константа диссоциации кислот называют также константой кислотности, а оснований – константой основности. Значения констант диссоциации слабых электролитов приведены в таблицах для стандартных условий.



Константа диссоциации (основности) выражается отношением произведения равновесных концентраций ионов в растворе данного слабого электролита к концентрации недиссоциированных молекул:

Константа диссоциации является мерой относительной силы слабых электролитов: чем она меньше, тем слабее электролит. Связь между константой и степенью диссоциации слабого бинарного электролита подчиняется закону разведения Оствальда:

Кислотами с точки зрения электролитической диссоциации называются электролиты, образующие в водных растворах положительно заряженные ноны водорода и анионы кислотного остатка. Ионы водорода являются характерными для кислот и определяют их свойства. Кислоты, являющиеся сильными электролитами: азотная HNО 3 , соляная НСl, бромоводородная НВг, иодоводородная HJ, серная H 2 SO 4 , марганцовая НМnО 4 и другие.

Слабых электролитов значительно больше, чем сильных. Слабыми электролитами являются кислоты: сернистая H 2 SO 3 , фтороводородная HF, угольная H 2 СO 3 , сероводородная H 2 S, уксусная CH 3 COOН и др. Многоосновные кислоты диссоциируют ступенчато. Примеры диссоциации кислот:

HCl = H + + Cl ‑

CH 3 COOH CH 3 COO ‑ + H +

I ступень: H 2 SO 3 H + + HSО 3 ‑

или H 2 SO 3 2H + + SО 3 2- ,

II ступень: HSО 3 ‑ H + + SО 3 2 ‑

С точки зрения электролитической диссоциации основаниями называются электролиты, образующие в водных растворах отрицательно заряженные гидроксид-ионы ОН ‑ и катионы металлов. Гидроксид-ионы обуславливают общие свойства оснований. Основания с валентностью катиона больше единицы диссоциируют ступенчато. Сильными электролитами являются основания, в которых катионами являются щелочные и щелочноземельные металлы, за исключением Вe(ОН) 2 и Mg(OH) 2 .

В основном основания являются слабыми электролитами, особенно образованные амфотерными металлами. Амфотерные гидроксиды вкислой среде диссоциируют как основания, в щелочной - как кислоты. Примеры диссоциации оснований и амфотерных гидроксидов:

NaOH = Na + + OH -

1ст. Fe(OH) 2 FeOH + +OH -

II ст. FeOH + Fe 2+ + OH - или Fe(OH) 2 Fe 2+ + 2OH -

Zn 2+ + 2OH - Zn(OH) 2 H 2 ZnО 2 2H + + ZnO 2 2-

Солями называются электролиты, диссоциирующие а воде на положительные ионы металла и отрицательные ионы кислотного остатка, Все соли, хорошо растворимые в воде, являются сильными электролитами. Примеры диссоциации нормальных (средних), кислых, основных, комплексных и двойных солей:

КВг = К + + Вг - ; K 3 =3K + + 3- ;

NaHCO 3 = Na + + HCO 3 - ; KAl(SO 4) 2 = K + + Al 3+ + 2SO 4 2- .

АlOHCl 2 =АlOН 2+ +2С1 - ;

Изучение различных реакций, в основном в неводных средах, привело к созданию более общих представлений о кислотах и основаниях. К важнейшим из современных теорий кислот и оснований принадлежит протонная теория, согласно которой кислотой является донор протона, то есть частица (молекула или ион), которая способна отдавать ион водорода - протон, а основанием - акцептор протона, т.е. частица (молекула или ион), способная присоединять протон. Например, в реакции:

HC1+NH 3 = NH 4 + + Cl -

ион С1 - - основание, сопряженное кислоте НCl, а ион NH 4 + - кислота, сопряженная основанию NH 3 . Реакции в растворах электролитов протекают между ионами, на которые распадаются молекулы растворенных веществ. Реакции записывают в трех формах: молекулярной, полной ионно-молекулярной и сокращенной ионно-молекулярной. Сильные электролиты записываются в виде ионов, средние и слабые электролиты, осадки и газы - в виде молекул. Сущность реакции отражается сокращенным ионно-молекулярным уравнением, в котором указываются только частицы, которые непосредственно вступают в реакцию и не указываются ионы и молекулы, концентрация которых существенно не изменяется. Реакции между электролитами протекают в сторону образования газа, осадка или более слабого

электролита.

Пример реакции в растворах электролитов: нейтрализация слабым основанием (гидроксидом аммония) сильной азотной кислоты. Молекулярное уравнение реакции:

HNO 3 + NH 4 OH = NH 4 NO 3 + Н 2 О.

В этой реакции сильные электролиты - азотная кислота и образующаяся соль- нитрат аммония, которые записываем в виде ионов, а слабые - гидроксид аммония и вода, которые записываем в виде молекул. Полное ионно-молекулярное уравнение имеет вид:

Н + + NО 3 - + NH 4 OH = NH 4 + + NO 3 - + Н 2 О.

Как видно, не претерпевают изменений в ходе реакции только ионы NО 3 - , исключая их, записываем сокращенное ионно-молекулярное уравнение:

H + + NH 4 OH = NH 4 + + H 2 O.

Практическая часть

Ионно - молекулярные реакции обмена

Провести реакции между растворами электролитов согласно заданию. Для этого в пробирку налить 7-8 капель одного реактива и добавить 7-8 капель другого реактива. Отметить признаки реакции: выпадение осадка, выделение газа или изменение запаха (что свидетельствует об образовании малодиссоциирующего вещества).

Затем, в соответствии с наблюдаемыми признаками, отнести реакцию к одному из 3-х типов:

1) ионообменные реакции с образованием малорастворимого вещества (осадка);

2) ионообменные реакции с выделением газа;

3) ионообменные реакции с образованием слабого электролита.

Каждую реакцию записать в 3-х формах:

а) молекулярной,

б) полной ионно - молекулярной,

в) сокращенной ионно - молекулярной.

Сделайте вывод о направлении протекания реакций ионного обмена.

Список заданий:

1. CH 3 COONa+H 2 SO 4 2. NaNO 2 + H 2 SO 4 3. MgCl 2 +Na 3 PO 4 4. NH 4 Cl+KOH 5. Na 2 CO 3 +HCl 6. Na 2 CO 3 +Ba(NO 3) 2 7. (CH 3 COO) 2 Pb+HCl 8. Hg(NO 3) 2 +NaOH 9. H 2 SO 4 +BaCl 2 10. NaCl+Pb(NO 3) 2 11. NiSO 4 +KOH 12. NaNO 2 +HCl 13. Bi(NO 3) 3 +KOH 14. Na 2 S+CdCl 2 15. Bi(NO 3) 3 +Na 2 S 16. CoSO 4 +KOH 17. CuSO 4 +KOH 18. Na 2 CO 3 +HNO 3 19. K 2 CrO 4 + CuSO 4 20. K 2 CrO 4 + MnSO 4 21. K 2 CrO 4 + NiSO 4 22. K 2 CO 3 + MnSO 4 23. Na 2 SO 3 +HCl 24. Hg(NO 3) 2 +Na 2 S 25. NiSO 4 + NH 4 OH 26. NiSO 4 + NH 4 OH изб 27.AlCl 3 +KOH 28. FeCl 3 +Na 3 PO 4 29. K 2 CrO 4 + Ba(NO 3) 2 30. NaNO 2 +HNO 3 31. MgCl 2 + NaOH 32. CuSO 4 + NH 4 OH 33. CuSO 4 + NH 4 OH изб 34. AlCl 3 +KOH изб 35. Pb(NO 3) 2 +KI 36. CH 3 COOK+ HCl 37. Al 2 (SO 4) 3 +NaOH 38. Al 2 (SO 4) 3 +NaOH изб 39. CoSO 4 + Na 2 S 40. Pb(NO 3) 2 + Na 3 PO 4 41. Na 3 PO 4 + CuSO 4 42. CH 3 COOK+ HNO 3 43. CH 3 COOH+KOH 44. CoSO 4 + NH 4 OH 45. CoSO 4 + NH 4 OH изб 46. Hg(NO 3) 2 + KI 47. Hg(NO 3) 2 + KI изб 48. CdCl 2 + NH 4 OH 49. CdCl 2 + NH 4 OH изб 50. NaHCO 3 + HNO 3 51. ZnSO 4 + BaCl 2 52. ZnSO 4 +KOH 53. ZnSO 4 +KOH изб 54. (CH 3 COO) 2 Pb+ H 2 SO 4 55. NaHCO 3 +H 2 SO 4 56. (NH 4) 2 SO 4 +KOH 57. K 2 CO 3 + H 2 SO 4 58. (NH 4) 2 SO 4 +NaOH 59. K 2 CO 3 + HCl 60. CrCl 3 +KOH 61. CrCl 3 +KOH изб 62. ZnCl 2 +NaOH 63. ZnCl 2 +NaOH изб 64. MnSO 4 +KOH 65. MnSO 4 +Na 3 PO 4 66. Na 2 SO 3 + H 2 SO 4 67. K 2 CO 3 + CH 3 COOH 68. Na 2 CO 3 +CH 3 COOH 69. NaHCO 3 +CH 3 COOH

Лабораторная работа №6

Сокращённое ионное уравнение Н + + ОН − = H 2 O соответствует взаимодействию азотной кислоты с:

1) оксидом натрия

2) гидроксидом меди

3) гидроксидом натри

Ответ: 3

Пояснение:

Азотная кислота является сильной кислотой, следовательно, практически все ее молекулы диссоциируют на катионы H + и анионы NO 3 − . На гидроксид-ионы OH − диссоциируют сильные растворимые в воде основания, т.е. щелочи. Из всех вариантов ответов, представленных в задании, подходит гидроксид натрия, который в водном растворе распадается на Na + и OH − .

Полное ионное уравнение реакции NaOH и HNO 3: Na + + OH − + H + + NO 3 − = Na + + NO 3 − + H 2 O. Сократив слева и справа в уравнении одинаковые ионы, получим сокращенное ионной уравнение, представленное в задании. Данная реакция идет за счет образования малодиссоциирующего вещества – воды.

Оксид натрия не диссоциирует в воде, а реагирует с ней с образованием щелочи:

Na 2 O + H 2 O = 2 NaOH.

Гидроксид меди является нерастворимым основанием, поэтому в воде не диссоциирует.

Полное ионное уравнение Cu(OH) 2 + 2H + + 2NO 3 − = Cu 2+ + 2NO 3 − + 2H 2 O

Сокращенное ионное уравнение: Cu(OH) 2 + 2H + = Cu 2+ + 2H 2 O

Растворимая в воде соль KNO 3 при диссоциации не дает гидроксид-ионы. Являясь сильным электролитом, она распадается на катионы K + и анионы NO 3 −

Осадок выпадает при приливании серной кислоты к раствору, содержащему ионы:

1) NH 4 + и NO 3 −

2) K + и SiO 3 2−

Ответ: 2

Пояснение:

Серная кислота является сильным электролитом и в воде диссоциирует на ионы: H + и SO 4 2- . При взаимодействии катионов H + с анионами SiO 3 2− образуется не растворимая в воде кремниевая кислота H 2 SiO 3 .

Кислотный остаток серной кислоты SO 4 2- не образует осадков с предложенными катионами, как можно проверить по таблице растворимости кислот, оснований и солей в воде.

Катион H + , кроме как с SiO 3 2− , также не образует осадков с предложенными анионами.

Сокращённое ионное уравнение Cu 2+ + 2OH − = Cu(OH) 2 соответствует взаимодействию между:

1) CuSO 4 (p-p) и Fe(OH) 3

2) CuS и Ba(OH) 2 (p-p)

3) CuCl 2 (p-p) и NaOH (p-p)

Ответ: 3

Пояснение:

В первом случае реакция между сульфатом меди CuSO 4 и гидроксидом железа (III) Fe(OH) 3 не протекает, поскольку гидроксид железа является нерастворимым основанием и не диссоциирует в водном растворе.

Во втором случае реакция также не идет из-за нерастворимости сульфида меди CuS.

В третьем варианте реакция обмена между хлоридом меди (II) и NaOH протекает за счет выпадения осадка Cu(OH) 2 .

Уравнение реакции в молекулярном виде выглядит следующим образом:

CuCl 2 + 2NaOH = Cu(OH) 2 ↓ + 2NaCl.

Уравнение этой реакции в полном ионном виде:

Cu 2+ + 2Cl − + 2Na + + 2OH − = Cu(OH) 2 ↓ + 2Na + + 2Cl − .

Сократив одинаковые ионы Na + и Cl − в левой и правой частях полного ионного уравнения, получаем сокращенное ионное уравнение:

Cu 2+ + 2OH − = Cu(OH) 2 ↓

Оксид меди CuO (II), являясь оксидом переходного металла (IA группы) с водой не взаимодействует, так как не образует растворимого основания.

Взаимодействию растворов хлорида меди(II) и гидроксида калия соответствует сокращённое ионное уравнение:

1) Cl − + K + = KCl

2) CuCl 2 + 2OH − = Cu(OH) 2 + 2Cl −

3) Cu 2+ + 2KOH = Cu(OH) 2 + 2K +

Ответ: 4

Пояснение:

Реакция обмена между растворами хлорида меди (II) и гидроксида калия в молекулярном виде записывается следующим образом:

CuCl 2 + 2KOH = Cu(OH) 2 ↓ + 2KCl

Реакция проходит за счет выпадения голубого осадка Cu(OH) 2 .

CuCl 2 и KOH являются растворимыми соединениями, поэтому в растворе распадаются на ионы.

Запишем реакцию в полном ионном виде:

Cu 2+ + 2Cl − + 2K + + 2OH − = Cu(OH) 2 ↓ + 2Cl − + 2K +

Сокращаем одинаковые ионы 2Cl − и 2K +

слева и справа полного ионного уравнения и получаем сокращенное ионное уравнение:

Cu 2+ + 2OH − = Cu(OH) 2 ↓

KCl, CuCl 2 и KOH являются растворимыми веществами и в водном растворе диссоциируют на катионы и анионы практически нацело. В других предложенных вариантах ответов эти соединения фигурируют в недиссоциированном виде, поэтому варианты 1, 2 и 3 не являются верными.

Какое сокращённое ионное уравнение соответствует взаимодействию силиката натрия с азотной кислотой?

1) K + + NO 3 − = KNO 3

2) H + + NO 3 − = HNO 3

3) 2H + + SiO 3 2- = H 2 SiO 3

Ответ: 3

Пояснение:

Реакцию взаимодействия силиката натрия с азотной кислотой (реакция обмена) в молекулярном виде записывается следующим образом:

Na 2 SiO 3 + 2HNO 3 = H 2 SiO 3 ↓ + 2NaNO 3

Поскольку силикат натрия – растворимая соль, а азотная кислота является сильной, оба вещества в растворе диссоциируют на ионы. Запишем реакцию в полном ионном виде:

2Na + + SiO 3 2− + 2H + + 2NO 3 − = H 2 SiO 3 ↓ + 2Na + + 2NO 3 −

SiO 3 2- + 2H + = H 2 SiO 3 ↓

Остальные предложенные варианты не отражают признака реакции – выпадение осадка. Кроме того, в представленных вариантах ответа растворимые соли KNO 3 и K 2 SiO 3 и сильная кислота HNO 3 представлены в недиссоциированном виде, что, конечно, неверно, поскольку эти вещества сильные электролиты.

Сокращённое ионное уравнение Ba 2+ + SO 4 2− =BaSO 4 соответствует взаимодействию

1) Ba(NO 3) 2 и Na 2 SO 4

2) Ba(OH) 2 и CuSO 4

3) BaO и H 2 SO 4

Ответ: 1

Пояснение:

Реакцию взаимодействия нитрата бария с сульфатом натрия (реакция обмена) в молекулярном виде записывается следующим образом:

Ba(NO 3) 2 + Na 2 SO 4 = BaSO 4 ↓ + 2NaNO 3

Поскольку нитрат бария и сульфат натрия являются растворимыми солями, оба вещества в растворе диссоциируют на ионы. Запишем реакцию в полном ионном виде:

Ba 2+ + 2NO 3 − + 2Na + + SO 4 2− = BaSO 4 ↓ + 2Na + + 2NO 3 −

Сократив ионы Na + и NO 3 − в левой и правой частях уравнения, получим сокращенное ионное уравнение:

Ba 2+ + SO 4 2− = BaSO 4 ↓

Реакцию взаимодействия гидроксида бария с сульфатом меди (реакция обмена) в молекулярном виде записывается следующим образом:

Ba(OH) 2 + CuSO 4 = BaSO 4 ↓ + Cu(OH) 2 ↓

Образуются два осадка. Поскольку гидроксид бария и сульфат меди являются растворимыми веществами, то оба в растворе диссоциируют на ионы. Запишем реакцию в полном ионном виде:

Ba 2+ + 2OH − + Cu 2+ + SO 4 2− = BaSO 4 ↓ + Cu(OH) 2 ↓


Реакцию взаимодействия оксида бария с серной кислотой (реакция обмена) в молекулярном виде записывается следующим образом:

BaO + H 2 SO 4 = BaSO 4 ↓ + H 2 O

Поскольку BaO является оксидом, в воде не диссоциирует (BaO взаимодействует с водой с образованием щелочи), записываем формулу BaO в недиссоциированном виде. Серная кислота является сильной, поэтому в растворе диссоциирует на катионы H + и анионы SO 4 2− . Реакция протекает за счет выпадения осадка сульфата бария и образования малодиссоциирующего вещества. Запишем реакцию в полном ионном виде:

BaO + 2H + + SO 4 2− = BaSO 4 ↓ + 2H 2 O

Здесь тоже одинаковых ионов в левой и правой частях уравнения нет и невозможно ничего сократить, то сокращенное ионное уравнение выглядит так же, как и полное.
Реакцию взаимодействия карбоната бария с серной кислотой (реакция обмена) в молекулярном виде записывается следующим образом:

BaCO 3 + H 2 SO 4 = BaSO 4 ↓ + CO 2 + H 2 O

Реакция протекает за счет образования осадка, выделения газа и образования малодиссоциирующего соединения – воды. Поскольку BaCO 3 – это нерастворимая соль, следовательно, в растворе на ионы не распадается, то записываем формулу BaCO 3 в молекулярном виде. Серная кислота является сильной, поэтому в растворе диссоциирует на катионы H + и анионы SO 4 2− . Запишем реакцию в полном ионном виде:

BaCO 3 + 2H + + SO 4 2− = BaSO 4 ↓ + CO 2 + H 2 O

Полное ионное уравнение совпадает с сокращенным, поскольку одинаковых ионов в левой и правой частях уравнения нет.

Сокращённое ионное уравнение Ba 2+ + CO 3 2− = BaCO 3 соответствует взаимодействию

1) сульфата бария и карбоната калия

2) гидроксида бария и углекислого газа

3) хлорида бария и карбоната натрия

4) нитрата бария и углекислого газа

Ответ: 3

Пояснение:

Реакция между сульфатом бария BaSO 4 и карбонатом калия K 2 CO 3 не протекает, поскольку сульфат бария – нерастворимая соль. Необходимое условие реакции обмена двух солей – это растворимость обоих солей.

Реакция между гидроксидом бария Ba(OH) 2 и углекислым газом CO 2 (кислотным оксидом) протекает за счет образования нерастворимой соли BaCO 3 . Это реакция взаимодействия щелочи с кислотным оксидом с образованием соли и воды. Запишем реакцию в молекулярном виде:

Ba(OH) 2 + CO 2 = BaCO 3 ↓ + H 2 O

Поскольку гидроксид бария является растворимым основанием, в растворе он диссоциирует на катионы Ba 2+ и гидроксид-ионы OH − . Оксид углерода в воде не диссоциирует, поэтому в ионных уравнениях его формулу следует записывать в молекулярном виде. Карбонат бария является нерастворимой солью, поэтому в ионном уравнении реакции его также записываем в молекулярном виде. Таким образом, реакция взаимодействия гидроксида бария и углекислого газа в полном ионном виде выглядит следующим образом:

Ba 2+ + 2OH − + CO 2 = BaCO 3 ↓ + H 2 O

Поскольку одинаковых ионов в левой и правой частях уравнения нет и невозможно ничего сократить, то сокращенное ионное уравнение выглядит так же, как и полное.

Реакцию взаимодействия хлорида бария с карбонатом натрия (реакция обмена) в молекулярном виде записывается следующим образом:

BaCl 2 + Na 2 CO 3 = BaCO 3 ↓ + 2NaCl

Поскольку хлорид бария и карбонат натрия являются растворимыми солями, оба вещества в растворе диссоциируют на ионы. Запишем реакцию в полном ионном виде:

Ba 2+ + 2Cl − + 2Na + + CO 3 2- = BaCO 3 ↓ + 2Na + + 2Cl −

Сократив ионы Na + и Cl − в левой и правой частях уравнения, получим сокращенное ионное уравнение:

Ba 2+ + CO 3 2- = BaCO 3 ↓

Реакция между нитратом бария Ba(NO 3) 2 и углекислым газом CO 2 (кислотным оксидом) в водном растворе не протекает. Углекислый газ CO 2 в водном растворе образует слабую неустойчивую угольную кислоту H 2 CO 3 , которая не способна вытеснить сильную HNO 3 из раствора соли Ba(NO 3) 2 .