Вследствие землетрясения. Землетрясение как один из наиболее страшных природных катастроф. Что такое землетрясение

Введение

Землетрясения -- это подземные толчки и колебания поверхности Земли, вызванные естественными причинами (главным образом тектоническими процессами), или (иногда) искусственными процессами (взрывы, заполнение водохранилищ, обрушение подземных полостей горных выработок). Небольшие толчки могут вызываться также подъёмом лавы при вулканических извержениях. Другими словами, колебания Земли, вызванные внезапными изменениями в состоянии недр планеты. Эти колебания представляют собой упругие волны, распространяющиеся с высокой скоростью в толще горных пород. Наиболее сильные землетрясения иногда ощущаются на расстояниях более 1500 км от очага и могут быть зарегистрированы сейсмографами (специальными высокочувствительными приборами). Район, где зарождаются колебания, называется очагом землетрясения, а его проекция на поверхность Земли - эпицентром землетрясения. Очаги большей части землетрясений лежат в земной коре на глубинах не более 16 км, однако в некоторых районах глубины очагов достигают 700 км.

Ежегодно на всей Земле происходит около миллиона землетрясений, но большинство из них так незначительны, что они остаются незамеченными. Действительно сильные землетрясения, способные вызвать обширные разрушения, случаются на планете примерно раз в две недели. Большая их часть приходится на дно океанов, и поэтому не сопровождается катастрофическими последствиями (если землетрясение под океаном обходится без цунами).

Виды землетрясений

Тектонические землетрясения возникают вследствие внезапного снятия напряжения, например, при подвижках по разлому в земной коре (исследования последних лет показывают, что причиной глубоких землетрясений могут быть и фазовые переходы в мантии Земли, происходящие при определенных температурах и давлениях). Иногда глубинные разломы выходят на поверхность. Во время катастрофического землетрясения в Сан-Франциско 18 апреля 1906 общая протяженность поверхностных разрывов в зоне разлома Сан-Андреас составила более 430 км, максимальное горизонтальное смещение - 6 м. Максимальная зарегистрированная величина сейсмогенных смещений по разлому 15 м.

Вулканические землетрясения происходят вследствие резких перемещений магматического расплава в недрах Земли или в результате возникновения разрывов под влиянием этих перемещений.

Техногенные землетрясения могут быть вызваны подземными ядерными испытаниями, заполнением водохранилищ, добычей нефти и газа методом нагнетания жидкости в скважины, взрывными работами при добыче полезных ископаемых и пр. Менее сильные землетрясения происходят при обвале сводов пещер или горных выработок.

Причины землетрясений

Любое землетрясение - это мгновенное высвобождение энергии за счет образования разрыва горных пород, возникающего в некотором объеме, называемом очагом землетрясения, границы которого не могут быть определены достаточно строго и зависят от структуры и напряженно-деформированного состояния горных пород в данном конкретном месте. Деформация, происходящая скачкообразно, излучает упругие волны. Объем деформируемых пород играет важную роль, определяя силу сейсмического толчка и выделившуюся энергию.

Большие пространства земной коры или верхней мантии Земли, в которых происходят разрывы и возникают неупругие тектонические деформации, порождают сильные землетрясения: чем меньше объем очага, тем слабее сейсмические толчки. Гипоцентром, или фокусом, землетрясения называют условный центр очага на глубине, а эпицентром - проекцию гипоцентра на поверхность Земли. Зона сильных колебаний и значительных разрушений на поверхности при землетрясении называется плейстосейстовой областью.

По глубине расположения гипоцентров землетрясения делятся на три типа: 1) мелкофокусные (0-70 км), 2) среднефокусные (70-300 км), 3) глубокофокусные (300-700 км). Чаще всего очаги землетрясений сосредоточены в земной коре на глубине 10-30 км. Как правило, главному подземному сейсмическому удару предшествуют локальные толчки - форшоки. Сейсмические толчки, возникающие после главного удара, называются афтершоками. Происходящие в течение значительного времени афтершоки способствуют разрядке напряжений в очаге и возникновению новых разрывов в толще горных пород, окружающих очаг.

Очаг землетрясения характеризуется интенсивностью сейсмического эффекта, выражаемого в баллах и магнитуде. В России используется 12-балльная шкала интенсивности Медведева-Шпонхойера-Карника (МSК-64). Согласно этой шкале, принята следующая градация интенсивности землетрясений: I-III балла - слабые, IV-V - ощутимые, VI-VII - сильные (разрушаются ветхие постройки), VIII - разрушительные (частично разрушаются прочные здания, падают фабричные трубы), IХ - опустошительные (разрушается большинство зданий), Х - уничтожающие (разрушаются мосты, возникают оползни и обвалы), ХI - катастрофические (разрушаются все сооружения, изменяется ландшафт), ХII - губительные катастрофы (вызывают изменения рельефа местности на обширной территории). Магнитуда землетрясения по Чарльзу Ф. Рихтеру определяется как десятичный логарифм отношения максимальных амплитуд сейсмических волн данного землетрясения (А) к амплитуде таких же волн некоторого стандартного землетрясения (Ах). Чем больше размах волны, тем соответственно больше смещение грунта:

Магнитуда 0 означает землетрясение с максимальной амплитудой 1 мкм на эпицентральном расстоянии в 100 км. При магнитуде, равной 5, отмечаются небольшие разрушения зданий. Опустошительный толчок имеет магнитуду 7. Самые сильные из зарегистрированных землетрясений достигают величины 8,5-8,9 по шкале Рихтера. В настоящее время оценка землетрясений в магнитудах применяется чаще, чем в баллах.

Линии, соединяющие пункты с одинаковой интенсивностью колебаний, называются изосейстами. В эпицентре землетрясения поверхность Земли испытывает в основном вертикальные колебания. При удалении от эпицентра возрастает роль горизонтальной составляющей колебаний.

Энергия, выделяющаяся при землетрясениях

Е = p2rV (а / Т),

где V - скорость распространения сейсмических волн,

r - плотность верхних слоев Земли,

а - амплитуда смещения,

Т - период колебаний. Исходным материалом для расчета энергии служат данные сейсмограмм. Б. Гутенберг, как и Ч. Рихтер, работавший в Калифорнийском технологическом институте, предложил связь между энергией землетрясения и его магнитудой по шкале Рихтера:

log E = 9,9 + 1,9М - 0,024М 2.

Данная формула показывает колоссальное возрастание энергии при увеличении магнитуды землетрясения. Энергия землетрясений в несколько миллионов раз превышает энергию стандартной атомной бомбы. Например, при Ашхабадском землетрясении 1948 году выделилось энергии 1023 эрг, при Хаитском в Таджикистане в 1949 году - 5 " 1024 эрг, в 1960 году в Чили - 1025 эрг. По всему земному шару в среднем за год за счет землетрясений выделяется около 0,5 " 1026 эрг энергии.

Важным понятием в сейсмологии является удельная сейсмическая мощность, то есть количество энергии, выделившейся в единице объема, например в 1 м 3 , за единицу времени 1 с. Сейсмические волны, образующиеся при мгновенной деформации в очагах землетрясений, производят основную разрушающую работу на поверхности Земли. Известны три главных типа упругих волн, создающих такие сейсмические колебания, которые ощущаются людьми и вызывают разрушения: объемные продольные (Р-волны) и поперечные (S-волны), а также поверхностные волны.

Содержание статьи

ЗЕМЛЕТРЯСЕНИЯ, колебания Земли, вызванные внезапными изменениями в состоянии недр планеты. Эти колебания представляют собой упругие волны, распространяющиеся с высокой скоростью в толще горных пород. Наиболее сильные землетрясения иногда ощущаются на расстояниях более 1500 км от очага и могут быть зарегистрированы сейсмографами (специальными высокочувствительными приборами) даже в противоположном полушарии. Район, где зарождаются колебания, называется очагом землетрясения, а его проекция на поверхность Земли – эпицентром землетрясения. Очаги большей части землетрясений лежат в земной коре на глубинах не более 16 км, однако в некоторых районах глубины очагов достигают 700 км. Ежедневно происходят тысячи землетрясений, но лишь немногие из них ощущаются человеком.

Упоминания о землетрясениях встречаются в Библии, в трактатах античных ученых – Геродота , Плиния и Ливия , а также в древних китайских и японских письменных источниках. До 19 в. большинство сообщений о землетрясениях содержало описания, обильно приправленные суевериями, и теории, основанные на скудных и недостоверных наблюдениях. Серию систематических описаний (каталогов) землетрясений в 1840 начал А.Перри (Франция). В 1850-х годах Р.Малле (Ирландия) составил большой каталог землетрясений, а его подробный отчет о землетрясении в Неаполе в 1857 стал одним из первых строго научных описаний сильных землетрясений.

Причины землетрясений.

Хотя уже с давних времен ведутся многочисленные исследования, нельзя сказать, что причины возникновения землетрясений полностью изучены. По характеру процессов в их очагах выделяют несколько типов землетрясений, основными из которых являются тектонические, вулканические и техногенные.

Тектонические землетрясения

возникают вследствие внезапного снятия напряжения, например, при подвижках по разлому в земной коре (исследования последних лет показывают, что причиной глубоких землетрясений могут быть и фазовые переходы в мантии Земли, происходящие при определенных температурах и давлениях). Иногда глубинные разломы выходят на поверхность. Во время катастрофического землетрясения в Сан-Франциско 18 апреля 1906 общая протяженность поверхностных разрывов в зоне разлома Сан-Андреас составила более 430 км, максимальное горизонтальное смещение – 6 м. Максимальная зарегистрированная величина сейсмогенных смещений по разлому 15 м.

Вулканические землетрясения

происходят вследствие резких перемещений магматического расплава в недрах Земли или в результате возникновения разрывов под влиянием этих перемещений.

Техногенные землетрясения

могут быть вызваны подземными ядерными испытаниями, заполнением водохранилищ, добычей нефти и газа методом нагнетания жидкости в скважины, взрывными работами при добыче полезных ископаемых и пр. Менее сильные землетрясения происходят при обвале сводов пещер или горных выработок.

Сейсмические волны.

Колебания, распространяющиеся из очага землетрясения, представляют собой упругие волны, характер и скорость распространения которых зависят от упругих свойств и плотности пород. К упругим свойствам относятся модуль объемной деформации, характеризующий сопротивление сжатию без изменения формы, и модуль сдвига, определяющий сопротивление усилиям сдвига. Скорость распространения упругих волн увеличивается прямо пропорционально квадратному корню значений параметров упругости и плотности среды.

Продольные и поперечные волны.

На сейсмограммах эти волны появляются первыми. Раньше всего регистрируются продольные волны, при прохождении которых каждая частица среды подвергается сначала сжатию, а затем снова расширяется, испытывая при этом возвратно-поступательное движение в продольном направлении (т.е. в направлении распространения волны). Эти волны называются также Р- волнами, или первичными волнами. Их скорость зависит от модуля упругости и жесткости породы. Вблизи земной поверхности скорость Р -волн составляет 6 км/с, а на очень большой глубине - ок. 13 км/с. Следующими регистрируются поперечные сейсмические волны, называемые также S -волнами, или вторичными волнами. При их прохождении каждая частица породы колеблется перпендикулярно направлению распространения волны. Их скорость зависит от сопротивления породы сдвигу и составляет примерно 7 / 12 от скорости распространения Р- волн.

Поверхностные волны

распространяются вдоль земной поверхности или параллельно ей и не проникают глубже 80- 160 км. В этой группе выделяются волны Рэлея и волны Лява (названные по именам ученых, разработавших математическую теорию распространения таких волн). При прохождении волн Рэлея частицы породы описывают вертикальные эллипсы, лежащие в очаговой плоскости. В волнах Лява частицы породы колеблются перпендикулярно направлению распространения волн. Поверхностные волны часто обозначаются сокращенно как L -волны. Скорость их распространения составляет 3,2- 4,4 км/с. При глубокофокусных землетрясениях поверхностные волны очень слабые.

Амплитуда и период

характеризуют колебательные движения сейсмических волн. Амплитудой называется величина, на которую изменяется положение частицы грунта при прохождении волны по сравнению с предшествовавшим состоянием покоя. Период колебаний - промежуток времени, за который совершается одно полное колебание частицы. Вблизи очага землетрясения наблюдаются колебания с различными периодами – от долей секунды до нескольких секунд. Однако на больших расстояниях от центра (сотни километров) короткопериодные колебания выражены слабее: для Р -волн характерны периоды от 1 до 10 с, а для S -волн – немного больше. Периоды поверхностных волн составляют от нескольких секунд до нескольких сотен секунд. Амплитуды колебаний могут быть значительными вблизи очага, однако на расстояниях 1500 км и более они очень малы - менее нескольких микрон для волн Р и S и менее 1 см – для поверхностных волн.

Отражение и преломление.

Встречая на своем пути слои пород с отличающимися свойствами, сейсмические волны отражаются или преломляются подобно тому, как луч света отражается от зеркальной поверхности или преломляется, переходя из воздуха в воду. Любые изменения упругих характеристик или плотности материала на пути распространения сейсмических волн заставляют их преломляться, а при резких изменениях свойств среды часть энергии волн отражается (см . рис.).

Пути сейсмических волн.

Продольные и поперечные волны распространяются в толще Земли, при этом непрерывно увеличивается объем среды, вовлекаемой в колебательный процесс. Поверхность, соответствующая максимальному продвижению волн определенного типа в данный момент, называется фронтом этих волн. Поскольку модуль упругости среды возрастает с глубиной быстрее, чем ее плотность (до глубины 2900 км), скорость распространения волн на глубине выше, чем вблизи поверхности, и фронт волны оказывается более продвинутым вглубь, чем в латеральном (боковом) направлении. Траекторией волны называется линия, соединяющая точку, находящуюся на фронте волны, с источником волны. Направления распространения волн Р и S представляют собой кривые, обращенные выпуклостью вниз (из-за того, что скорость движения волн больше на глубине). Траектории волн Р и S совпадают, хотя первые распространяются быстрее.

Сейсмические станции, находящиеся вдали от эпицентра землетрясения, регистрируют не только прямые волны Р и S , но также волны этих типов, уже отраженные один раз от поверхности Земли - РР и SS (или РR 1 и SR 1), а иногда - отраженные дважды - РРР и SSS (или РR 2 и SR 2). Существуют также отраженные волны, которые проходят один отрезок пути как Р -волна, а второй, после отражения, - как S -волна. Образующиеся обменные волны обозначаются как РS или SР. На сейсмограммах глубокофокусных землетрясений наблюдаются также и другие типы отраженных волн, например, волны, которые прежде, чем достичь регистрирующей станции, отразились от поверхности Земли. Их принято обозначать маленькой буквой, за которой следует заглавная (например, рR ). Эти волны очень удобно использовать для определения глубины очага землетрясения.

На глубине 2900 км скорость P -волн резко снижается от >13 км/с до ~ 8 км/с; а S -волны не распространяются ниже этого уровня, соответствующего границе земного ядра и мантии. Оба типа волн частично отражаются от этой поверхности, и некоторое количество их энергии возвращается к поверхности в виде волн, обозначаемых как Р с Р и S с S . Р -волны проходят сквозь ядро, но их траектория при этом резко отклоняется и на поверхности Земли возникает теневая зона, в пределах которой регистрируются только очень слабые Р -волны. Эта зона начинается на расстоянии ок. 11 тыс. км от сейсмического источника, а уже на расстоянии 16 тыс. км Р -волны снова появляются, причем их амплитуда значительно возрастает из-за фокусирующего влияния ядра, где скорости волн низкие. Р -волны, прошедшие сквозь земное ядро, обозначаются РКР или Р ў . На сейсмограммах хорошо выделяются также волны, которые по пути от источника к ядру идут как волны S , затем проходят сквозь ядро как волны Р , а при выходе волны снова преобразуются в тип S. В самом центре Земли, на глубине более 5100 км, существует внутреннее ядро, находящееся предположительно в твердом состоянии, но природа его пока не вполне ясна. Волны, проникающие сквозь это внутреннее ядро, обозначаются как РКIКР или SКIКS (см . рис. 1).

Регистрация землетрясений.

Прибор, записывающий сейсмические колебания, называется сейсмографом, а сама запись - сейсмограммой. Сейсмограф состоит из маятника, подвешенного внутри корпуса на пружине, и записывающего устройства.

Одно из первых записывающих устройств представляло собой вращающийся барабан с бумажной лентой. При вращении барабан постепенно смещается в одну сторону, так что нулевая линия записи на бумаге имеет вид спирали. Каждую минуту на график наносятся вертикальные линии - отметки времени; для этого используются очень точные часы, которые периодически сверяют с эталоном точного времени. Для изучения близких землетрясений необходима точность маркировки - до секунды или меньше.

Во многих сейсмографах для преобразования механического сигнала в электрический используются индукционные устройства, в которых при перемещении инертной массы маятника относительно корпуса изменяется величина магнитного потока, проходящего через витки индукционной катушки. Возникающий при этом слабый электрический ток приводит в действие гальванометр, соединенный с зеркальцем, которое отбрасывает луч света на светочувствительную бумагу записывающего устройства. В современных сейсмографах регистрация колебаний ведется в цифровом виде с использованием компьютеров.

Магнитуда землетрясений

обычно определяется по шкале, основанной на записях сейсмографов. Эта шкала известна под названием шкалы магнитуд, или шкалы Рихтера (по имени американского сейсмолога Ч.Ф.Рихтера, предложившего ее в 1935). Магнитуда землетрясения - безразмерная величина, пропорциональная логарифму отношения максимальных амплитуд определенного типа волн данного землетрясения и некоторого стандартного землетрясения. Существуют различия в методах определения магнитуд близких, удаленных, мелкофокусных (неглубоких) и глубоких землетрясений. Магнитуды, определенные по разным типам волн, отличаются по величине. Землетрясения разной магнитуды (по шкале Рихтера) проявляются следующим образом:

2 - самые слабые ощущаемые толчки;

4 1 / 2 - самые слабые толчки, приводящие к небольшим разрушениям;

6 - умеренные разрушения;

8 1 / 2 - самые сильные из известных землетрясений.

Интенсивность землетрясений

оценивается в баллах при обследовании района по величине вызванных ими разрушений наземных сооружений или деформаций земной поверхности. Для ретроспективной оценки балльности исторических или более древних землетрясений используют некоторые эмпирически полученные соотношения. В США оценка интенсивности обычно проводится по модифицированной 12-балльной шкале Меркалли.

1 балл . Ощущается немногими особо чувствительными людьми в особенно благоприятных для этого обстоятельствах.

3 балла . Ощущается людьми как вибрация от проезжающего грузовика.

4 балла . Дребезжат посуда и оконные стекла, скрипят двери и стены.

5 баллов . Ощущается почти всеми; многие спящие просыпаются. Незакрепленные предметы падают.

6 баллов . Ощущается всеми. Небольшие повреждения.

8 баллов . Падают дымовые трубы, памятники, рушатся стены. Меняется уровень воды в колодцах. Сильно повреждаются капитальные здания.

10 баллов . Разрушаются кирпичные постройки и каркасные сооружения. Деформируются рельсы, возникают оползни.

12 баллов . Полное разрушение. На земной поверхности видны волны.

В России и некоторых соседних с ней странах принято оценивать интенсивность колебаний в баллах МSК (12-балльной шкалы Медведева - Шпонхойера - Карника), в Японии - в баллах ЯМА (9-балльной шкалы Японского метеорологического агентства).

Интенсивность в баллах (выражающихся целыми числами без дробей) определяется при обследовании района, в котором произошло землетрясение, или опросе жителей об их ощущениях при отсутствии разрушений, или же расчетами по эмпирически полученным и принятым для данного района формулам. Среди первых сведений о произошедшем землетрясении становится известной именно его магнитуда, а не интенсивность. Магнитуда определяется по сейсмограммам даже на больших расстояниях от эпицентра.

Последствия землетрясений.

Сильные землетрясения оставляют множество следов, особенно в районе эпицентра: наибольшее распространение имеют оползни и осыпи рыхлого грунта и трещины на земной поверхности. Характер таких нарушений в значительной степени определяется геологическим строением местности. В рыхлом и водонасыщенном грунте на крутых склонах часто происходят оползни и обвалы, а мощная толща водонасыщенного аллювия в долинах деформируется легче, чем твердые породы. На поверхности аллювия образуются просадочные котловины, заполняющиеся водой. И даже не очень сильные землетрясения получают отражение в рельефе местности.

Смещения по разломам или возникновение поверхностных разрывов могут изменить плановое и высотное положение отдельных точек земной поверхности вдоль линии разлома, как это произошло во время землетрясения 1906 в Сан-Франциско. При землетрясении в октябре 1915 в долине Плезант в Неваде на разломе образовался уступ длиной 35 км и высотой до 4,5 м. При землетрясении в мае 1940 в долине Импириал в Калифорнии подвижки произошли на 55-километровом участке разлома, причем наблюдались горизонтальные смещения до 4,5 м. В результате Ассамского землетрясения (Индия) в июне 1897 в эпицентральной области высота местности изменилась не менее, чем на 3 м.

Значительные поверхностные деформации прослеживаются не только вблизи разломов и приводят к изменению направления речного стока, подпруживанию или разрывам водотоков, нарушению режима источников воды, причем некоторые из них временно или навсегда перестают функционировать, но в то же время могут появиться новые. Колодцы и скважины заплывают грязью, а уровень воды в них ощутимо меняется. При сильных землетрясениях вода, жидкая грязь или песок могут фонтанами выбрасываться из грунта.

При смещении по разломам происходят повреждения автомобильных и железных дорог, зданий, мостов и прочих инженерных сооружений. Однако качественно построенные здания редко разрушаются полностью. Обычно степень разрушений находится в прямой зависимости от типа сооружения и геологического строения местности. При землетрясениях умеренной силы могут происходить частичные повреждения зданий, а если они неудачно спроектированы или некачественно построены, то возможно и их полное разрушение.

При очень сильных толчках могут обрушиться и сильно пострадать сооружения, построенные без учета сейсмической опасности. Обычно не обрушиваются одно- и двухэтажные постройки, если у них не очень тяжелые крыши. Однако бывает, что они смещаются с фундаментов и часто у них растрескивается и отваливается штукатурка.

Дифференцированные движения могут приводить к тому, что мосты сдвигаются со своих опор, а инженерные коммуникации и водопроводные трубы разрываются. При интенсивных колебаниях уложенные в грунт трубы могут «складываться», всовываясь одна в другую, или выгибаться, выходя на поверхность, а железнодорожные рельсы деформироваться. В сейсмоопасных районах сооружения должны проектироваться и строиться с соблюдением строительных норм, принятых для данного района в соответствии с картой сейсмического районирования.

В густонаселенных районах едва ли не больший ущерб, чем сами землетрясения, наносят пожары, возникающие в результате разрыва газопроводов и линий электропередач, опрокидывания печей, плит и разных нагревательных приборов. Борьба с пожарами затрудняется из-за того, что водопровод оказывается поврежденным, а улицы непроезжими вследствие образовавшихся завалов.

Сопутствующие явления.

Иногда подземные толчки сопровождаются хорошо различимым низким гулом, когда частота сейсмических колебаний лежит в диапазоне, воспринимаемом человеческим ухом, иногда такие звуки слышатся и при отсутствии толчков. В некоторых районах они представляют собой довольно обычное явление, хотя ощутимые землетрясения происходят очень редко. Имеются также многочисленные сообщения о возникновении свечения во время сильных землетрясений. Общепринятого объяснения таких явлений пока нет. Цунами (большие волны на море) возникают при быстрых вертикальных деформациях морского дна во время подводных землетрясений. Цунами распространяются в океанах в пределах глубоководных зон океанов со скоростью 400–800 км/ч и могут вызвать разрушения на берегах, удаленных на тысячи километров от эпицентра. У близлежащих к эпицентру берегов эти волны иногда достигают в высоту 30 м.

При многих сильных землетрясениях помимо основных толчков регистрируются форшоки (предшествующие землетрясения) и многочисленные афтершоки (землетрясения, следующие за основным толчком). Афтершоки обычно слабее, чем основной толчок, и могут повторяться в течение недель и даже лет, становясь все реже и реже.

Географическое распространение землетрясений.

Большинство землетрясений сосредоточено в двух протяженных, узких зонах. Одна из них обрамляет Тихий океан, а вторая тянется от Азорских о-вов на восток до Юго-Восточной Азии.

Тихоокеанская сейсмическая зона проходит вдоль западного побережья Южной Америки. В Центральной Америке она разделяется на две ветви, одна из которых следует вдоль островной дуги Вест-Индии, а другая продолжается на север, расширяясь в пределах США, до западных хребтов Скалистых гор. Далее эта зона проходит через Алеутские о-ва до Камчатки и затем через Японские о-ва, Филиппины, Новую Гвинею и острова юго-западной части Тихого океана к Новой Зеландии и Антарктике.

Вторая зона от Азорских о-вов простирается на восток через Альпы и Турцию. На юге Азии она расширяется, а затем сужается и меняет направление на меридиональное, следует через территорию Мьянмы, острова Суматра и Ява и соединяется с циркумтихоокеанской зоной в районе Новой Гвинеи.

Выделяется также зона меньшего размера в центральной части Атлантического океана, следующая вдоль Срединно-Атлантического хребта.

Существует ряд районов, где землетрясения происходят довольно часто. К ним относятся Восточная Африка, Индийский океан и в Северной Америке долина р.Св. Лаврентия и северо-восток США.

По сравнению с мелкофокусными глубокофокусные землетрясения имеют более ограниченное распространение. Они не были зарегистрированы в пределах Тихоокеанской зоны от южной Мексики до Алеутских о-вов, а в Средиземноморской зоне - к западу от Карпат. Глубокофокусные землетрясения характерны для западной окраины Тихого океана, Юго-Восточной Азии и западного побережья Южной Америки. Зона с глубокофокусными очагами обычно располагается вдоль зоны мелкофокусных землетрясений со стороны материка.

Прогноз землетрясений.

Для повышения точности прогноза землетрясений необходимо лучше представлять механизмы накопления напряжений в земной коре, крипа и деформаций на разломах, выявить зависимости между тепловым потоком из недр Земли и пространственным распределением землетрясений, а также установить закономерности повторяемости землетрясений в зависимости от их магнитуды.

Во многих районах земного шара, где существует вероятность возникновения сильных землетрясений, ведутся геодинамические наблюдения с целью обнаружения предвестников землетрясений, среди которых заслуживают особого внимания изменения сейсмической активности, деформации земной коры, аномалии геомагнитных полей и теплового потока, резкие изменения свойств горных пород (электрических, сейсмических и т.п.), геохимические аномалии, нарушения водного режима, атмосферные явления, а также аномальное поведение насекомых и других животных (биологические предвестники). Такого рода исследования проводятся на специальных геодинамических полигонах (например, Паркфилдском в Калифорнии, Гармском в Таджикистане и др.). С 1960 работает множество сейсмических станций, оборудованных высокочувствительной регистрирующей аппаратурой и мощными компьютерами, позволяющими быстро обрабатывать данные и определять положение очагов землетрясений.

Древнегреческие философы более двух тысяч лет тому назад высказывали правильные, но, конечно, далеко не полные суждения о том, какие причины землетрясений . Они объясняли их провалами кровель пещер, образование которых тоже правильно со­четали с . Высказывались, предположения, что землетрясение - это

подзем­ная гроза, которая не находит выхода наружу.
Прошло с тех пор много веков и только внимательное наблюдение природы и тщательное изучение явлений, в ней происходящих, позволили во второй половине ХIX столетия правильно объяснить причины землетрясений.

Типы землетрясений

В настоящее время различают землетрясения трех типов:
  • о­бвальные,
  • вулканические,
  • тектонические.
Обвальные землетрясения происходят в результате разрушений и перемещения больших масс пород по склонам гор, или обвалами пещер, они обычно со­провождаются одиночными ударами. связаны с действующими вул­канами. Извержения вулканов иногда сопровождаются землетрясениями. Это определенно указывает на то, что между извержениями вулканов и землетрясениями существует внутренняя связь. Область распространения землетрясений невелика, а продолжительность зависит от характера самого извержения.
Вулканические землетрясения. Землетрясения тектонического характера тесно связаны с горо­образовательными процессами (в переводе с древнегреческого «тектонике»-строительное искусство), связанные со строением земной коры, и перемещением тектонических плит. Они отличаются частой повторяемостью, значительной областью охвата и продолжитель­ностью. На землетрясения этого типа приходится наибольшее количество человеческих жертв и материальных убытков.

Связь землетрясений с другими явлениями природы

Не удовлетворяясь изучением самого процесса землетрясения, исследователи стремится установить связь землетрясений с другими явлениями природы .
  • То обстоятельство, что наибольшее количество землетрясений приходится на осень и зиму, дает повод некоторым ученым усматривать здесь не слу­чайное совпадение. Действительно, совершая свой го­довой путь, и движется не по кругу, а по эллипсу. Солнце помещается не в центре этой кривой. Зимой Земля бы­вает ближе к Солнцу, летом - дальше. Отсюда естественно на­прашивается вывод о возможности влияния Солнца на земле­трясения.
  • Высказываются также соображения о влиянии Луны, (подробнее: ), кото­рая ближе всех светил расположена к Земле и воздействием которой объясняются правильные чередования у берегов океана через каждые 6 часов 12,5 минуты.
  • Еще больший интерес представляет попытка объяснить при­чину землетрясений влиянием воздушной . Многолет­ние наблюдения за состоянием атмосферы в Италии показали тесную связь давления воздуха с колебаниями земной коры: понижение давления усиливает их, повышение, наоборот, умень­шает.
  • Резкое понижение давления, действительно, в отдельных случаях предшествовало землетрясениям. Поэтому и высказы­вались предположения, что понижение давления может служить толчком к смещению пластов земной коры, находящихся в неустойчивом равновесии, и тем самым вызвать землетря­сение.
  • Устанавливается также связь между колебаниями магнит­ной стрелки и землетрясениями. В отдельных случаях отклонение стрелки наблюдалось да­же за два дня до землетрясения.
  • Весьма показательно и поведение некоторых домашних жи­вотных: еще накануне они испытывают определенное беспокойство - убегают со двора, не берут корма; ослы ревут, коровы мычат, собаки воют и жмутся к человеку; голуби и воробьи уле­тают с насиженных мест, птицы покидают сады и леса.
Все более расширяются наши сведения о природе землетря­сений, а потому без преувеличения можно сказать, что, веро­ятно, не так уж долго осталось ждать точных предсказаний землетрясений, которые спасут, таким образом, не одну сот­ню тысяч человеческих жизней.

Сейсмически стойкая постройка

Если наука до настоящего времени еще не может сказать решающего слова для предупреждения землетрясений, (подробнее: ), то инженерное искусство обладает уже опытом строительст­ва асейсмических, т. е. не поддающихся разрушению, построек. Сейсмически стойкая постройка должна отвечать особым требованиям. Так при изучении катастрофических землетрясений, например в Сан-Франциско (1906), (подробнее: ), лучше всего сохранились гигантские двадцатиэтажные небо­скребы, построенные из железобетона, а также монументальные здания на прочном фундаменте. Подобные выводы дало и Ашхабадское землетрясение (1948): среди общего разрушения в городе хорошо сохранились зда­ния, связанные металлическим каркасом, такие, например, как огромные корпуса и башня текстильной фабрики. Главной основой сохранения здания является прочная связь всех его частей, что и достигается железным каркасом (остовом), (подробнее: ) и надежный фундамент, покоящийся не на тонком слое поверхностных наносов, а на коренной породе. Постройка такого типа колеблется при землетрясении как одно целое, связь отдельных частей не нарушается, и они прекрасно выдерживают те толчки, от которых кругом все разрушается.
Сохранившиеся здания. Во время землетрясения в Сан-Франциско толчки ощущались только в нижних этажах небоскребов, а в верхних они были настолько ослаблены, что люди, игравшие на бильярде на 17-м этаже (на высоте 90 метров от поверхности земли), спокойно гоняли шары. Хорошие результаты дает также циркульный тип построек, представляющий сочетание в здании отдельных помещений овальной формы. Отсутствие углов уподобляет каждую такую круглую комнату башне или минарету, обыкновенно хорошо выдерживающим толчки землетрясений. В Ашхабаде почти не пострадали бетонные башни элеватора, в то время как у примыкавшего к ним здания первый этаж был совершенно раздроблен, в результате чего все сооружение осело и покосилось. Большого внимания заслуживает также опыт деревянной стройки хорошо срубленных домов на прочном фундаменте. Действительно, учет повреждений Верненского землетрясения показал преимущество деревянной постройки: в то время как в городе не оказалось ни одного каменного дома без повреждений, деревянные дома все уцелели. Несмотря на свой сравнительно молодой возраст, сейсмология уже сейчас дает много ценных практических указаний, которые помогают не только в вопросах, какие причины землетрясений, но и в строении Земли и в разведке недр. Вместо дорогостоящих способов разведки теперь на некоторой глубине, в толще исследуемых пород, производятся взрывы динамитных патронов, затем по записям сейсмографов, после математической их обработки, делают заключение о наличии искомой залежи, глубоко скрытой под землей.

Землетрясения - природное явление, которое и сегодня привлекает внимание ученых не только за счет своей малой изученности, но и непредсказуемости, способной наносить вред человечеству.

Что такое землетрясение?

Землетрясением называется подземный толчок, который может ощущаться человеком в значительной мере в зависимости от мощности колебания земной поверхности. Землетрясения не представляют собой редкость и ежедневно возникают в разных точках планеты. Зачастую большая часть землетрясений возникает на дне океанов, что позволяет избежать катастрофических разрушений в пределах густонаселенных городов.

Принцип возникновения землетрясений

Что вызывает землетрясения? Землетрясения могут быть вызваны как естественными причинами, так и искусственными, которые возникают по вине человека.

Чаще всего землетрясения происходят из-за разломов тектонических плит и их быстрого смещения. Для человека разлом не ощутим до того момента, пока энергия, образовавшаяся от разрыва горных пород, не начнет вырываться к поверхности.

Как происходит землетрясения по неестественным причинам? Достаточно часто человек по своей неосторожности провоцирует появление искусственных толчков, которые по своей мощности совсем не уступают природным. Среди таких причин можно выделить следующие:

  • - взрывы;
  • - перезаполненность водохранилищ;
  • - наземный(подземный)ядерный взрыв;
  • - обрушения в шахтах.

Место разрыва тектонической плиты - это очаг землетрясения. От глубины его расположения будет зависеть не только сила потенциального толчка, но и его продолжительность. Если очаг располагается в 100 километрах от поверхности, то его сила будет более чем ощутима. Вероятней всего, это землетрясение повлечет за собой разрушение домов и сооружений. Возникнув в море, такие землетрясения вызывают цунами. Однако, очаг может располагаться и намного глубже - 700 и 800 километрах. Такие явления не опасны и могут зафиксироваться только при помощи специальных приборов - сейсмографов.

Место, в котором землетрясение проявляет наибольшую мощность, называется эпицентром. Именно этот участок земли считается наиболее опасным для существования всего живого.

Изучение землетрясений

Детальное изучения характера землетрясений позволяет предупредить многие из них и сделать жизнь населения, проживающих в опасных местах, более спокойной. Для определению мощности и измерения силы землетрясения используют два основных понятия:

  • - магнитуда;
  • - интенсивность;

Магнитудой землетрясения называют меру, при помощи которой измеряют энергию, выделяющуюся в ходе освобождения из очага в виде сейсмических волн. Шкала магнитуды позволяет безошибочно определить истоки колебаний.

Интенсивность измеряется в баллах и позволяет определить соотношение магнитуды толчков и их сейсмической активности от 0 до 12 баллов по шкале Рихтера.

Особенности и признаки землетрясений

В независимости от того из-за чего происходит землетрясение и в какой местности оно локализируется, его длительность будет приблизительно одинаковой. Один толчок в среднем длится 20-30 секунд. Но в истории зафиксированы случаи, когда единичный толчок без повторов мог длиться до трех минут.

Признаками приближающегося землетрясения служит беспокойство животных, которые почуяв малейшие колебания поверхности земли, стараются уйти от злополучного места подальше. Другими признаками скорого землетрясения служат:

  • - появление характерных облаков в виде продолговатых лент;
  • - изменение уровня воды в колодцах;
  • - сбои в работе электротехники, мобильных телефонов.

Как вести себя при землетрясениях?

Как вести себя во время землетрясения, чтобы сохранить свою жизнь?

  • - Сохранять рассудительность и спокойствие;
  • - Находясь в помещении, ни в коем случае не прячьтесь под хрупкой мебелью, например, под кроватью. Лягте рядом с ними в позе эмбриона и прикройте голову руками (либо защитите голову чем-то дополнительно). При обрушении кровли, она упадет на мебель и может образоваться прослойка, в которой вы и окажетесь. Важо выбрать крепкую мебель, у которой самая широкая часть стоит на полу, т.е эта мебель не может упасть;
  • - Находясь на улице, отойдите от высоких зданий и сооружений, линий электропередач, которые могут разрушиться.
  • - Закройте рот и нос мокрой тряпкой для предотвращения попадания пыли и гари в случае возгорания какого-либо объекта.

Если вы заметили пострадавшего человека в здании, то дождитесь окончания толчков и только тогда пробирайтесь в помещение. В противном случае, оба человека может оказаться в ловушке.

Где не бывает землетрясений и почему?

Землетрясения возникают в местах разломов тектонических плит. Поэтому, страны и города, находящиеся на цельной тектонической плите без разломов, могут не беспокоиться о своей безопасности.

Австралия является единственным в мире континентом, который не находится на стыке литосферных плит. На нем отсутствуют действующие вулканы и высокие горы и, соответственно, отсутствуют землетрясения. Также землетрясений нет в Антарктике и Гренландии. Наличие огромной тяжести ледяного панциря препятствует распространению подземных толчков по поверхности земли.

Вероятность возникновения землетрясений на территории Российской Федерации достаточно высока в скалистой местности, где наиболее активно наблюдается смещение и движение горных пород. Так, высокая сейсмичность отмечается в Северном Кавказе, на Алтае, в Сибири и на Дальнем Востоке.

Кислотные дожди – это серьезная экологическая проблема, причиной которой является загрязнение окружающей среды. Их частое появление пугает не только ученых, но и простых людей, ведь подобные осадки могут оказать негативное влияние на здоровье человека. Характеризует кислотный дождь пониженный уровень pH. Для обычных осадков этот показатель равен 5,6, и даже небольшое нарушение нормы чревато серьезными последствиями для живых организмов, попавших в зону поражения.

При существенном сдвиге пониженный уровень кислотности становится причиной гибели рыб, земноводных, насекомых. Также в районе, где отмечены такие осадки, можно заметить кислотные ожоги на листьях деревьев, отмирание некоторых растений.

Отрицательные последствия выпадения кислотных дождей существуют и для человека. После ливня в атмосфере скапливаются токсические газы, и вдыхать их крайне не рекомендуется. Небольшая прогулка под кислотным дождем может стать причиной астмы, сердечных и легочных заболеваний.

Кислотные дожди: причины и последствия

Проблема кислотных дождей уже давно носит глобальный характер, и каждому жителю планеты следует задуматься о своем вкладе в данное природное явление. Все вредные вещества, попадающие в воздух в процессе жизнедеятельности человека, никуда не исчезают, а остаются в атмосфере и рано или поздно возвращаются на землю в виде осадков. При этом последствия кислотных дождей настолько серьезны, что на их устранение порой требуются сотни лет.

Для того чтобы узнать, какими могут быть последствия кислотных дождей, следует разобраться в самом понятии рассматриваемого природного явления. Так ученые сходятся во мнении, что это определение является слишком узким, чтобы обрисовать глобальную проблему. Нельзя принимать во внимание только дожди – кислотные грады, туманы и снега также являются носителями вредных веществ, поскольку процессы их образования во многом идентичны. Кроме того, в засушливую погоду могут появляться токсические газы или пылевые облака. Они также являются разновидностью кислотных осадков.

Причины образования кислотных дождей

Причина кислотных дождей в большей степени кроется в человеческом факторе. Постоянное загрязнение воздуха кислотообразующими соединениями (оксидами серы, хлористым водородом, азотом) приводят к нарушению баланса. Основными «поставщиками» данных веществ в атмосферу являются крупные предприятия, в частности, работающие в сфере металлургии, обработки нефтесодержащих продуктов, занимающиеся сжиганием угля или мазута. Несмотря на наличие фильтров и очистительных систем, уровень современной техники все еще не позволяет полностью устранить негативное влияние промышленных отходов.

Также выпадение кислотных дождей связано с увеличением транспортных средств на планете. Выхлопные газы, хоть и в малых долях, но также содержат вредные кислотные соединения, а в пересчете на количество автомобилей, уровень загрязнения становится критичным. Свой вклад вносят и тепловые электростанции, а также множество предметов быта, вроде аэрозолей, чистящих средств и пр.

Кроме влияния человека, кислотные дожди могут возникнуть и из-за некоторых природных процессов. Так к их появлению ведет вулканическая деятельность, во время которой выбрасывается большое количество серы. Кроме того, она образует газообразные соединения во время распада некоторых органических веществ, что также ведет к загрязнению воздуха.

Как образуются кислотные дожди?

Все выброшенные в воздух вредные вещества вступают в реакцию с солнечной энергией, углекислым газом или водой, в итоге получаются кислотные соединения. Вместе с каплями влаги они поднимаются в атмосферу и формируют облака. В итоге, возникают кислотные дожди, образуются снежинки или градины, которые возвращают на землю все впитанные элементы.

В некоторых регионах были замечены отклонения от нормы в 2-3 единицы: допустимый уровень кислотности составляет 5,6 pH, но в Китае и Подмосковье выпадали осадки с показателями в 2,15 pH. При этом предсказать, где именно появятся кислотные дожди довольно трудно, ведь ветер может относить образовавшиеся тучи довольно далеко от места загрязнения.

Состав кислотных дождей

Основными элементами в составе кислотного дождя являются серная и сернистая кислоты, а также озон, который образовывается во время грозы. Существует также азотная разновидность осадков, в которой основным ядром являются азотная и азотистая кислоты. Реже причиной возникновения кислотного дождя может стать большое содержание в атмосфере хлора и метана. Также в осадки могут попасть другие вредные вещества, в зависимости от состава промышленных и бытовых отходов, которые поступают в воздух в конкретном регионе.

Последствия: кислотные дожди

Кислотные дожди и их последствия являются постоянным предметом наблюдения для ученых со всего мира. К сожалению, их прогнозы весьма неутешительны. Осадки с пониженным уровнем кислотности опасны и для флоры, и для фауны, и для человека. Кроме того, они могут привести и к более серьезным экологическим проблемам.

Попадая в грунт, кислые дожди уничтожают множество питательных веществ, которые необходимы для роста растений. При этом они также вытягивают на поверхность токсичные металлы. Среди них свинец, алюминий и пр. При достаточно концентрированном содержании кислот, осадки приводят к отмиранию деревьев, почва становится непригодной для выращивания урожая, и на ее восстановление требуются годы!

Землетрясение – это одно из самых страшных природных явлений. Ежедневно в мире фиксируются случаи землетрясения. Но большинство из них настолько незначительны, что обнаружить их можно только с помощью датчиков и приборов. Однако пару раз в месяц ученым удается зафиксировать сильное колебание земной коры, которое способно на серьезные разрушения.

Описание землетрясения

Землетрясением называют колебания земной коры и подземные толчки, которые вызваны естественными или искусственно созданными причинами. Что может стать причиной землетрясения? Любое землетрясение – это мгновенное высвобождение энергии, происходящее за счет разрыва горных пород. Объем разрыва называют очагом землетрясения. Он играет важную роль, так как от его размера зависит размер выделяемой энергии и сила толчка.

Очаг землетрясения представляет собой разрыв, после которого идет смещение земной поверхности. Этот разрыв происходит не сразу. Сначала плиты наталкиваются друг на друга. В результате этого происходит трение и образуется энергия. Она постепенно нарастает и накапливается.

В какой-то момент напряжение становится максимальным и превышает силу трения. Именно тогда происходит разрыв горной породы. Освобожденная таким образом энергия порождает сейсмические волны. Они имеют скорость около 8 км/с и вызывают колебания земли.

Надо заметить, что деформация горных пород происходит скачкообразно, то есть землетрясение состоит из нескольких этапов. Самому сильному толчку предшествуют колебания (форшоки), после которых идут афтершоки. Такие колебания могут происходить в течение нескольких лет до того, как произойдет основной толчок.

Очень сложно рассчитать, какой именно толчок окажется самым сильным. Именно поэтому многие землетрясения оказываются полной неожиданностью и приводят к серьезным катастрофам. Кроме этого, бывают случаи, когда сильные содрогания земли на одном конце планеты приводят к землетрясениям на противоположной стороне.

Причины возникновения землетрясений

Существует несколько причин возникновения землетрясений.

Среди них:

  • вулканические;
  • тектонические;
  • обвальные;
  • искусственные;
  • техногенные.

Также существует такое понятие, как моретрясение.

Тектонические

Это самая распространенная причина землетрясений. Именно в результате смещения тектонических плит происходит самое большое количество катастроф. Обычно этот сдвиг небольшой и составляет всего несколько сантиметров. Однако он приводит в движение горы, которые находятся сверху, именно они выделяют огромную энергию. В результате этого на поверхности земли появляются трещины, по краям которых происходит смещение всех находящихся на ней объектов.

Вулканические

Причиной землетрясений может стать вулканическая деятельность. Вулканические колебания редко приводят к серьезным последствиям, обычно они фиксируются в течение достаточно продолжительного периода времени. Содержимое вулкана оказывает давление на поверхность земли, которое называют вулканическим тремором. Во время подготовки вулкана к извержению можно наблюдать периодические взрывы пара и газа. Именно они порождают сейсмические волны.

Причиной землетрясений может стать как действующий, так и потухший вулкан. В последнем случае колебания говорят о том, что он еще может проснуться. Именно исследования сейсмологической активности помогают прогнозировать извержения. Часто ученые затрудняются определить причину возникновения подземных толчков. В этом случае землетрясение, причиной возникновения которого стал вулкан, характеризуется близким расположением эпицентра к вулкану и небольшой магнитудой.

Обвальные

Обвалы горных пород могут также стать причиной землетрясений. Они могут происходить как по естественной причине, так и в результате человеческой деятельности. При этом причиной обвала могут стать и тектонические землетрясения. Но даже обрушение значительной массы горной породы вызывает незначительную сейсмическую активность.

Землетрясения, причиной возникновения которых является обвал горных пород, имеют незначительную интенсивность. Чаще всего даже большого объема горной породы недостаточно для того, чтобы вызвать сильные колебания. Чаще всего катастрофа возникает именно по причине схода оползня, а не из-за самого землетрясения.

Искусственные

Искусственные землетрясение и причины их возникновения бывают вызваны человеком. Например, после того как в КНДР происходило испытание ядерного оружия, во многих местах планеты были зафиксированы толчки умеренной силы.

Техногенные

Техногенные землетрясения и причины их возникновения также вызваны человеческой деятельностью. Например, ученые фиксируют увеличение подземных толчков в местах крупных водохранилищ. Причиной таких колебаний становится давление большого объема воды на земную кору. Кроме этого, вода начинает просачиваться сквозь грунт и разрушать ее. Также увеличение сейсмической активности регистрируется в районах добычи газа и нефти.

Моретрясение

Моретрясение – это одна из разновидностей тектонического землетрясения. Оно возникает в результате смещения тектонических плит на дне океана или недалеко от побережья. Опасным последствием такого природного явления является цунами. Именно оно становится причиной многих катастроф.

Цунами появляется из-за содрогания морской коры, во время которой одна часть дна опускается, а другая поднимается над ней. В результате этого происходит движение воды, которая старается вернуться в первоначальное положение. Она начинает двигаться вертикально и порождает серию огромных волн, которые идут по направлению к берегу.

Землетрясение: основные характеристики

Для того чтобы разобраться в причинах возникновения землетрясений, ученые разработали параметры, определяющие силу явления.

Среди них:

  • интенсивность землетрясения;
  • глубина эпицентра;
  • энергетический класс;
  • магнитуда.

Шкала интенсивности

Она основывается на внешних проявлениях катастрофы. Учитывается воздействие на людей, природу и здания. Чем ближе эпицентр землетрясения к земле, тем больше будет его интенсивность. Например, если эпицентр располагался на глубине 10 км, а магнитуда была равна 8, то интенсивность землетрясения составит 11–12 баллов. При такой же магнитуде и расположении эпицентра на глубине 50 км, интенсивность землетрясения составит 9–10 баллов.

Первые явные разрушения происходят уже при 6-балльном землетрясении. При такой интенсивности появляются трещины на стенах. А вот при землетрясении в 11 баллов уже происходит разрушение зданий. Самыми сильными и катастрофическими считаются землетрясения в 12 баллов. Они способны серьезно изменить не только вид местности, но даже направления течения воды в реках.

Магнитуда

Другим способом измерения силы землетрясения является шкала магнитуд или шкала Рихтера. По этой шкале замеряют амплитуду колебаний и количество высвобождаемой энергии. Если размер эпицентра в длину и ширину составляет несколько метров, то колебания слабые и фиксируются только приборами. При катастрофических землетрясениях длина эпицентра может составлять до 1 тыс. км. Магнитуда измеряется в условных единицах от 1 до 9,5.

Журналисты часто путают в своих сообщениях магнитуду и интенсивность. Нужно помнить, что описание землетрясений должно происходить именно по шкале интенсивности, которая в сейсмологии является синонимом балльности.

Глубина эпицентра

Также существует характеристика землетрясения по глубине эпицентра. Чем глубже эпицентр, тем дальше смогут дойти сейсмические волны.

  • нормальные – эпицентр до 70 км (на этот тип приходится примерно 51% землетрясений);
  • промежуточные – эпицентр до 300 км (около 36%);
  • глубокофокусные – эпицентр находится глубже 300 км (около 13% землетрясений).

Глубокофокусные землетрясения типичны для Тихого океана. Наиболее значительное глубокофокусное моретрясение произошло в Индонезии в 1996 году на глубине 600 км.

Землетрясение: причины и последствия

Вне зависимости от причины, последствия землетрясений могут быть катастрофическими. За последние полтысячи лет они унесли около 5 миллионов жизней. Больше всего жертв приходится на сейсмоопасные районы, главным из которых является Китай. Таких катастрофических последствий можно избежать, если продумывать защиту от землетрясений на государственном уровне.

В частности, нужно учитывать возможность толчков при проектировании зданий. Кроме этого, необходимо обучать людей, проживающих в сейсмически активной зоне, порядку действий при землетрясении.

Если вы почувствовали сильные подземные толчки, то необходимо действовать следующим образом.

  1. Если землетрясение застало вас в здании, то необходимо выбраться из него как можно быстрее. При этом нельзя пользоваться лифтом.
  2. На улице необходимо отойти от высоких зданий как можно дальше. Двигайтесь в сторону широких улиц или парков.
  3. Необходимо держаться в стороне от электрических проводов и отойти подальше от промышленных предприятий.
  4. Если возможности выйти на улицу нет, то необходимо залезть под крепкий стол или кровать. При этом голову необходимо накрыть подушкой.
  5. Не стоит становиться в дверном проеме. При сильных толчках он может обрушиться, и часть стены над дверью может упасть на вас.
  6. Безопаснее всего оставаться возле наружных стен здания.
  7. Как только толчки закончатся, необходимо как можно быстрее выбраться на улицу.
  8. Если землетрясение застало вас в машине в черте города, то необходимо выбраться из нее и сесть рядом. Если вы оказались в машине на трассе, то необходимо остановиться и переждать толчки внутри.

Если вас завалило обломками, не стоит впадать в панику. Человеческий организм способен продержаться без еды и воды в течение нескольких дней. Сразу после землетрясений на месте катастроф работают спасатели, у которых есть специально обученные собаки. Они легко находят живых людей под завалами и подают знак спасателям.