Голографические информационные дисплеи в автомобиле. Голография на лобовом стекле: когда нам ждать стёкол-дисплеев? Альтернативные способы управления

АСУТС – автоматизированные системы управления транспортными средствами состоят из технических средств, обеспечивающих работу информационных систем (персональные компьютеры, принтеры и локальные сети) и операционных систем (набор программных средств, который начинает работать сразу после того, как включена кнопка электрического питания компьютера).

Автомобили меняются, и скорость внедрения новых технологий с каждым годом будет только увеличиваться. Многие полагают, что такая тесная интеграция интернета и автомобиля будет только усугублять и так непростое положение с безопасностью (усилится отвлекающий водителя от дороги фактор). Так же как растет скорость передачи данных в сотовых сетях, в той же пропорции скорость интернета будет расти и в автомобиле. Правда, есть в этом и свои плюсы. Можно ожидать таких услуг, как напоминание об обслуживании автомобилей с разнообразным информационным сопровождением, возможностью автоматической записи и направлением в ближайшие сервисные центры, подключение автомобиля к различным базам данных, чтобы можно было заказать номер в гостинице, и так далее. Пассажиры в перспективе могут получить больше возможностей для развлечений в дороге и т.д.

Помимо возможности доступа в сеть, автомобили имеют возможность более тесной интеграции (в более полном объеме синхронизироваться) с компьютерами и мобильными устройствами. Это наличие USB-портов в автомобиле, возможность дистанционно обновлять программное обеспечение различных систем автомобиля, не прибегая к услугам специально обученных для этого людей. Или, например, при возникновении какой-либо неисправности в автомобиле дилер может дистанционно найти причину и указать на возможные пути выхода из сложившейся ситуации или же исправить поломку, если сбой был в компьютерной системе. Данные наработки существуют реализованы в таких системах, как OnStar компании General Motors или в системе аварийного вызова Tele Aid от Mercedes-Benz.

Рисунок 2.1 – Синхронизация с устройствами автомобиля

С помощью системы OnStar есть возможность удаленно замедлять транспорт, мешая угонщикам скрыться от полиции при погоне. Данная система может вернуть украденные машины за часы, если не за минуты. Новая технология называется Remote Ignition Block (удаленная блокировка зажигания). У оператора OnStar есть возможность послать сигнал компьютеру в угнанной машине, который вызовет блокировку системы зажигания и не позволит перезапустить её. Эта возможность не только поможет властям возвратить украденные автомобили, но также и предотвратит «опасные» погони.

Голографические информационные дисплеи. Подобные системы можно увидеть у BMW или Audi. Суть в том, чтобы выводить информацию непосредственно на лобовое стекло. Например, компания General Motors уже сделала первые шаги в направлении создания и внедрения моделей, способных выводить информацию о скорости, направлении движения и другую.

Сейчас General Motors в сотрудничестве с рядом университетов приступила к разработке так называемого «умного стекла». GM рассчитывает превратить стекло в прозрачный дисплей, на который может быть выведена такая информация, как дорожная разметка, дорожные знаки или различные объекты, такие как пешеходы, которых в туман или дождь распознать на дороге бывает весьма проблематично.

Частично такая технология была показана на Light Car, где с помощью светодиодной технологией LED, автомобиль использует прозрачную заднюю дверь как проекционный экран, для видимой связи между машинами, что очень полезно для всех автомобилистов. Например, с какой силой жмет на тормоза водитель можно показать автомобилю, который едет сзади при освещении масштаба картинки на дисплее.

Система, с помощью которой автомобили будут связаны между собой и дорожной структурой в единое целое, в единую сеть, уже сейчас имеет свое название – «car-to-X communication». Сегодня несколько компаний, в числе которых Audi, приступили к ее созданию. Суть разработки в том, чтобы сделать возможным «общение» автомобиля не только с другими машинами, но и с инфраструктурой, например с веб-камерами на перекрестках, светофорами или дорожными знаками.

Зная о состоянии светофоров, загруженности улиц и дорожных условиях, автомобиль может экономить энергию, предостерегая водителя от ненужных разгонов/торможений. Автомобиль даже сможет самостоятельно резервировать место на парковке. Если автомобиль попал в экстренную ситуацию, он сможет сообщить об этом окружающим авто, чтобы другие водители могли вовремя сбавить скорость и избежать столкновения. Audi показала часть этих инноваций на примере E-tron. Говоря о технологиях, способных улучшить ситуацию с безопасностью, одну из основных задач разработчики видят в том, чтобы «удержать» нас на одной полосе или вообще на дороге в особо тяжелых случаях.

Улучшенная система запуска двигателя. Эти системы являются одним из элементов той самой эффективности использования ресурсов. Речь идет о системе автоматического запуска или остановки двигателя.

Такие решения уже сейчас можно наблюдать практически на всех гибридных автомобилях: когда он останавливается – двигатели выключаются; чтобы тронуться с места, не надо снова заводить мотор, а достаточно лишь нажать на педаль газа. А если говорить о будущем данной технологии, то она со временем может быть тесно интегрирована с системой car-to-X, дабы еще больше снизить расход топлива. Например, получив информацию о том, что на перекрестке светофор загорелся красным, автомобиль может выключить основной двигатель и продолжить движение только на электродвигателе, тем самым сэкономив немного энергии.

Автопилот или четкий круиз-контроль. Системы помощи при торможении посредством установленных на автомобиль эхолокаторов/лазеров или радаров уже стали стандартной опцией, устанавливаемой в дорогие автомобили. Но, как и другие разработки, вначале появившиеся в автомобилях верхнего ценового диапазона, эта так же скоро перекочует и в более дешевый сегмент. Этот вид технологии, который способен предотвратить столкновение с впереди идущим транспортом, может помочь в безопасности движения и пригодится в основном начинающим водителям. Если производители и дальше будут продолжать совершенствование данной технологии, а это именно так и будет, вскоре мы сможем увидеть нечто похожее на автопилот.

Мониторинг движения или «Мертвые зоны». Еще две, несомненно, нужные технологии, объединенные в одну информационную технологию, которая может помочь в улучшении ситуации с безопасностью, – это мониторинг так называемых «мертвых зон» и система предупреждения пересечения дорожной разметки. Система будет не только способна предупреждать водителя, если он без поворотника начнет перестроение на соседнюю полосу, но и воспрепятствует перестроению, если ряд будет занят другим транспортным средством.

Так называемая «слепая зона». Такие компании, как BMW, Ford, GM, Mazda и Volvo, предлагают специальные системы, которые используют встроенные в зеркала камеры или датчики, контролирующие мертвые зоны. Небольшие лампочки аварийной сигнализации, устанавливаемые рядом с зеркалами заднего вида, предупреждают водителя о нахождении автомобиля в мертвой зоне, а если никакой реакции от водителя не последовало и он начал перестроение, система принимается более активно предупреждать о помехе, издавая звуки, или, в зависимости от марки, начинается вибрация рулевого колеса. Минусом является тем, что подобные системы работают только на небольших скоростях.

Система Cross Traffic Alert: это радар, который работает на базе системы мониторинга «мертвых зон». Система способна определять движение автомобилей в перекрестном направлении во время езды задним ходом. Cross Traffic Alert умеет определять приближение авто на расстоянии 19,8 метра как с левого, так и правого бока, где установлены специальные радары. В данный момент эта функция доступна на автомобилях Ford и Lincoln.

Пересечение дорожной разметки. Несколько компаний, в числе которых Audi, BMW, Ford, Infiniti, Lexus, Mercedes-Benz, Nissan и Volvo, предлагают похожие друг на друга решения. Для работы системы используются маленькие камеры, считывающие дорожную разметку, и если водитель ее пересекает, не включив при этом поворотник, система подает предупредительный знак. В зависимости от системы это может быть звуковой или световой сигналы, вибрация руля либо небольшое натяжение ремня. Например, в Infiniti применяется автоматическое торможение с одной из сторон автомобиля, чтобы предотвратить выезд автомобиля из полосы движения.

Парковка. Многие компании уже сегодня устанавливают автоматизированные системы помощи при парковке. Действуют такие системы следующим образом: автомобиль при помощи радаров определяет, достаточно ли места, чтобы припарковаться. Далее помогает водителю выбрать правильный угол поворота руля и практически сам ставит автомобиль на парковочное место. Конечно, без помощи человека пока что не обходится, но в скором времени появятся такие системы, в которых участие человека будет совсем необязательно. Можно будет выйти из автомобиля и понаблюдать весь процесс со стороны.

Отслеживание состояния водителя: утомленный водитель может быть столь же опасен, как и водитель, севший за руль в нетрезвом состоянии (а пить та нужно в норму закона). Интегрированные в автомобиль системы слежения, которые распознают признаки усталости в движениях и реакциях водителя и предупреждают о необходимости передохнуть, доступны у нескольких автопроизводителей. Это Lexus, Mercedes-Benz, Saab и Volvo. Например, в Mercedes такая система называется Attention Assist: она сначала изучает манеру езды, в частности вращение обода рулевого колеса, включение указателей поворота и нажатия на педали, а также следит за некоторыми управляющими действиями водителя и такими внешними факторами, как боковой ветер и неровности дорожного полотна. Если Attention Assist распознает утомление водителя, она информирует его о необходимости сделать остановку, чтобы немного передохнуть. Делает Attention Assist это с помощью звукового сигнала и предупреждающего сообщения на дисплее комбинации приборов.

В автомобилях Volvo тоже присутствует похожая система, но работает она несколько по-другому. Система не контролирует поведение водителя, а оценивает перемещение автомобиля на дороге. Если что-то происходит не так, как должно, система оповещает водителя, прежде чем ситуация станет критической.

Камеры ночного видения. Благодаря системам ночного видения можно сократить случаи дорожно-транспортных происшествий в ночное время суток. В настоящее время предлагается такими компаниями, как Mercedes-Benz, BMW и Audi в модели A8. Такие системы способны помочь водителю разглядеть в темное время суток пешеходов, животных или лучше видеть дорожные знаки. В BMW для этого используется инфракрасная камера, которая передает изображение на монитор в черно-белом формате. Камера различает объекты на удалении до 300 метров. Инфракрасная система Mercedes-Benz имеет более короткий диапазон, но способна выдавать более четкое изображение, однако ее минусом является плохая работа при низких температурах.

А инженеры компании Toyota последнее время трудятся над улучшением систем ночного видения, которые могут помочь водителям увереннее ориентироваться в ночное время суток. Они представили прототип камеры, работа которой основана на алгоритмах и принципах построения изображений, открытых в ходе изучения функционирования глаз ночных жуков, пчел и моли, которые могут видеть в более широком диапазоне цветов, а также приспособлены к более полному улавливанию света, которого не так уж много в ночном мраке. Новый цифровой алгоритм обработки изображения может захватывать качественные полноцветные изображения в условиях недостаточной освещенности из перемещающегося на высоких скоростях автомобиля. Плюс к этому камера способна в автоматическом режиме адаптироваться к изменениям уровня освещенности.

Так же актуальны тепловизоры – камеры ночного видения для автомобиля.

Ford представил первые в мире ремни безопасности с надувными подушками. По словам разработчиков, данная система позволит значительно увеличить защиту пассажиров задних сидений, и в первую очередь маленьких детей, которые чаще взрослых подвержены травматизму в ДТП. Встроенная в ремень подушка безопасности надувается за 40 миллисекунд.

В последнее время практически все автопроизводители, и большие и маленькие, пытаются добиться большей эффективности, или коэффициента полезного действия, от силовых агрегатов, при этом делая ставку на новые виды топлива и двигатели, пытаясь снизить расход и увеличить средний показатель пробега на одном заряде/заправке. Уже сегодня мы можем наблюдать большое количество серийно выпускаемых электрокаров, и практически каждый автопроизводитель имеет в своем портфолио гибридный автомобиль.

Беспроводная зарядка аккумуляторов. В связи с распространением автомобилей на аккумуляторных батареях остро встает вопрос об их беспроблемной, а главное, быстрой перезарядке. Конечно, можно раскрутить удлинитель со штепселем из автомобиля и подсоединить его к обычной розетке. Но это не каждому доступно. Другой вариант, который кажется не столь фантастичным, – это индукционные зарядные устройства. К тому же технология уже проходит обкатку на более мелких устройствах, таких как плееры и мобильные телефоны. Такого рода зарядные устройства можно было бы встраивать в места для паркинга в больших магазинах, например.

Активная аэродинамика. Несмотря на то что все автопроизводители давно уже используют аэродинамические трубы, и в этом аспекте есть куда стремиться. Например, компания BMW, в своем концепт каре BMW Vision Efficient Dynamics уже успешно использует системы управления воздухозаборниками. В зависимости от условий движения и температуры наружного воздуха заслонки перед радиатором по сигналу системы открываются или закрываются. Если они закрыты, это улучшает аэродинамику и сокращает время прогрева двигателя, уменьшая тем самым расход топлива. Естественно, BMW не единственная компания, использующая данную технологию.

KERS – рекуперативное торможение. Это вид электрического торможения, при котором электроэнергия, вырабатываемая тяговыми электродвигателями, работающими в генераторном режиме, возвращается в электрическую сеть. Только в сезоне 2009 года в «Формуле-1» на некоторых болидах использовалась система рекуперации кинетической энергии (KERS). Рассчитывалось, что это подстегнёт разработки в области гибридных автомобилей и дальнейшие совершенствования данной системы.

Панель приборов это хорошо, но когда дополнительно выводится информация на стекло еще лучше. Расскажем о назначении проекционного дисплея, его разновидности, характеристики, стоимость и видео.


Содержание статьи:

Все больше становится популярным проекционный дисплей, по-другому его еще называют HUD или Head-Up Display. Большим преимуществом такой технологии считается безопасность движения и комфорт управления.

Главным назначением является проекция на ветровое стекло автомобиля актуальной информации с панели приборов. Изображение рассчитано таким образом по высоте, чтоб не отвлекая внимание от дороги иметь понятие о состоянии автомобиля и скорости.

Немного предыстории


Впервые подобная технология начала использоваться в авиации, а вот в автомобильную промышленность проекционный дисплей попал только в 1988 году компанией General Motors. Через 10 лет компания GM впервые внедрила эту технологию с цветным дисплеем.

Начиная с 2003 года, проекционный дисплей появился в автомобилях компании BMW. Нынче, система проекции используется во многих автомобилях премиум класса. С каждым годом технология становится дешевле, а значит доступней на автомобилях других бюджетных классов.

Штатный проекционный дисплей


Название говорит само за себя, при покупке автомобиля он предлагается как опциональный. По конструкции система включает в себя проекционный дисплей, проектор и систему управлением проекцией.

Чтоб сформировать изображение производители используют проектор высокой контрастности и насыщенности цветов. Собрав совокупно параметры от разных измерителей автомобиля:

  • датчиков двигателя;
  • навигационная система;
  • система ночного виденья;
  • адаптивный круиз-контроль;
  • распознавания знаков и другие.
В состав проекционного дисплея входят зеркала и линзы, которые фокусируют изображение на ветровое стекло. Так же есть функция подстройки положения дисплея под каждого водителя. Как правило, проекционный дисплей располагается в углублении на панели приборов.

Благодаря проекционному дисплею, водитель получает виртуальное изображение, что позволяет сконцентрировать внимание на дороге. Распознают два вида экрана. Зачастую самым распространенным можно считать специальную, прозрачную пленку, которая клеится на лобовое стекло. Она препятствует рассеиванию изображения при разных погодных условиях. На машинах марки Mini производитель применяет прозрачный экран вместо пленки.


В зависимости от производителя проекционного дисплея и систем, которые он использует, проектироваться может:
  • дублирование разных датчиков панели приборов;
  • сигнал об автомобиле в мертвой зоне;
  • наличие пешеходов на обочине в темное время;
  • скорость автомобиля;
  • обороты двигателя с тахометра;
  • показатели с навигационной системы;
  • сигнал о разных дорожных знаках.
Так как технологии развиваются, и автомобили добавляются все новыми и новыми системами, на проекционный дисплей выводятся новые данные. Определенного списка выводимой информации нет.


Плюсом такого дисплея считается универсальность и простота установки. Собой представляет портативный проектор, который можно установить в удобном месте для водителя и выводить картинку на ветровое стекло.

Самыми распространенными считаются приборы компании Garmin. Устанавливается непосредственно на торпеду. Вторым производителем считается Pioneer, по инструкции она крепится на солнцезащитный козырек. В этом случае видеосигнал поступает на проектор через смартфон по Bluetooth или USB кабелю.

Сразу стоит учесть, что функциональный набор мобильного проекционного дисплея в разы меньше, чем штатного. Чаще всего в мобильный прибор включает показатели системы навигации, скорость автомобиля, но для этого нужен смартфон и установленное на него специальное программное обеспечение.

Из популярных мобильных проекторов считается аппарат от Navdy. Дисплей можно подключить к смартфону через систему Wi-Fi или Bluetooth, так же можно подключить его к бортовому компьютеру, через разъем диагностики.


Благодаря бортовому компьютеру, на проекционный дисплей может выводиться информация с различных датчиков панели приборов. Встроенная инфракрасная камера позволит реализовать жесткое управление проекционным дисплеем с дополнительного пульта управления.


Самым простым из способов реализации проекционного дисплея можно сделать из обычного смартфона. В основе такого будет лежать специальная программа, с помощью которой выводится определенная информация на экран смартфона.

Сам же смартфон располагается на панели приборов, изображение с дисплея смартфона проектируется (отображается) на лобовое стекло, тем самым показывая водителю нужную информацию.

Программа искажает изображение в зеркальном виде так, чтоб на стекле была правильная, читабельная информация. Но все же заменить стационарный не один из выше наведенных дисплеев, не сможет.

Цена дисплея

Стоимость штатного дисплея будет зависеть от производителя, в среднем его цена как опции будет составлять от 500 евро. Если взять за основу мобильный проекционный дисплей компании Garmin, то его цена колеблется от 200 евро. Самый дешевый и простой способ это использование смартфона, достаточно купить специальную подставку за пару тысяч рублей и установить возле ветрового стекла и добавить свой смартфон.

Стоит отметить, что технология проекционного дисплея только на ветровое стекло только начинает развиваться. Считается, что в будущем система Head-Up Display будет выводить на лобовое стекло полностью всю необходимую информацию, в том числе изображении с боковых зеркал заднего вида.

Видео принципа работы проекционного дисплея:



Все сталкивались с ситуацией, когда взгляд на экран навигатора, приборную панель или экран смартфона отвлекал от управления автомобилем. А некоторые даже попадали из-за этого в аварию. Так случилось и с владельцем маркетингового агентства Виталием Пономаревым. В 2008 году он серьезно заинтересовался дополненной реальностью (augmented reality, AR) и решил уговорить серьезных инвесторов вложить в дело всего каких-то 100 млн долларов. «Я ездил по всему миру и доказывал инвестфондам, что через несколько лет AR будет везде, — смеется Виталий. — Отвлекшись на навигатор, я чуть не попал в аварию. И пазл сложился: вот она, моя дополненная реальность. Прямо здесь. На лобовом стекле».

Полтора ведра

Head-up-дисплеи в то время новинкой не были. Например, немецкая компания Continental — мировой лидер в их производстве — устанавливала HUD в автомобили BMW, Audi и Mercedes с 2003 года. Традиционные устройства отображения информации на лобовом стекле — очень сложные приборы с изогнутыми зеркалами и сферической оптикой. И что критически важно, требующие большого объема, примерно 18 л — полтора обычных ведра! А ведь разместить эти полтора ведра нужно в районе рулевого колеса — одной из самых значимых точек автомобиля. Поэтому HUD оснащаются большие дорогие авто, которые изначально спроектированы с местом под дисплей. Неудивительно, что за установку проекционного дисплея в дилерских центрах немецких автомарок с вас попросят не меньше 100 000 рублей. Ну а на обычных машинах классический HUD не увидишь.

Основатель и CEO компании WayRay, изобретатель Обучался в Российской академии народного хозяйства и государственной службы при Президенте Российской Федерации по специальностям «экономика», «управление инновационными проектами». В 2012 году основал проект WayRay, который за четыре года превратился в международную компанию с офисами в России, Швейцарии и США. В 2015 году вошел в топ-100 выдающихся инноваторов Швейцарии по версии газеты L’Hebdo.

Барс-монстр

Кроме габаритов и сложности конструкции, у традиционных head-up-дисплеев есть и еще один недостаток: они выдают плоскую картинку на расстоянии 20 см от лобового стекла. То есть водителю все равно приходится перефокусировать взгляд. А Виталий Пономарев решил получить изображение на расстоянии 10−20 м. По его замыслу, картинка должна стать объемной. Не стереоскопической, а настоящей, голографической. Несмотря на финансовое образование, в физике Виталий разбирался очень даже неплохо. Занимаясь поиском инвесторов, он многое узнал о новых технологиях. Интуиция подсказывала ему, в каких областях нужно искать специалистов. Как правило, у истоков подобных компаний стоят два человека: один — гуру в области маркетинга, второй — технический гений. С маркетингом все было в порядке, дело оставалось за технарем. История обретения технического директора будущей WayRay уже вошла в кейсы хедхантеров: Виталий просто запустил поиск по словам «лазеры», «микроэлектроника» и «IT» на «Хабре», культовом сайте технологических гиков habrahabr.ru. В топе ответов поисковик выдал: Михаил Сваричевский с ником BarsMonster. «Теперь этот монстр мой», — шутит Пономарев.


Между стекол

В 2012 году Виталий с Михаилом начали собирать первые гигантские прототипы на основе стандартной оптики, чтобы определить, насколько интересным будет эффект. Стало понятно, что так нужного изображения и требуемых габаритов не добиться. Пришла идея использовать плоскую линзу Френеля типа тех, которые устанавливают на задние стекла автомобилей. Эта прозрачная пленка наклеивается или вваривается между стекол триплекса и работает как часть оптической системы. Решили создать линзу Френеля для нескольких длин волн, и оказалось, что это голограмма — голографический оптический элемент (holographic optical element, HOE). Самый обширный опыт работы с голографическими материалами в России в ФИАН — Физическом институте имени П. Н. Лебедева. Именно туда отправились коллеги за новыми технологиями. Начинали с голограмм на серебре, пытаясь понять, можно ли вообще делать голографические элементы большой площади, постепенно перешли на прототипы прозрачных фотополимеров. Сделали объемную трехмерную голограмму, на которой записана дифракционная решетка — по сути, виртуальный оптический элемент, преобразователь волнового фронта, который отражал волны нужной длины, а остальные пропускал.


Идея устройства, которое проецирует навигационные сведения на лобовое стекло автомобиля, пришла к Виталию, когда он отвлекся на навигатор и чуть не разбил машину. Концепция постепенно дополнилась подключением к интернету, технологиями социальной сети и дополненной реальности.

«Что здесь инновационного? — опережает мой вопрос Виталий Пономарев. — Голографию изобрели не мы. Фотополимеры тоже. И попытки делать HUD на голографических элементах были до нас. Но тогда не было дешевых лазеров и фотополимеров, которые подходят под наши требования: прозрачность и отсутствие host-эффектов. Мы занялись head-up-дисплеями как раз в тот момент, когда все это появилось. Наш небольшой стартап быстрее других создал средства проектирования и производства, невозможные в условиях крупной компании, и стал первым». Впрочем, неправильно считать WayRay технологическим интегратором: в компании работают физики, инженеры-механики, оптики, программисты. Даже средства проектирования они применяют нестандартные: их пришлось модифицировать, чтобы они могли считывать системы с «ненормальными» оптическими компонентами.


Alibaba и сорок разработчиков

Наша редакция вдоволь наигралась с прототипом HUD. Его размер — с небольшой чемодан — огромный прогресс: первые прототипы занимали все пассажирское сиденье справа от водителя. Штука действительно впечатляющая, фотографии и видео не передают всей полноты генерируемой дополненной реальности. Осенью выпустят и коммерческий образец голографического навигатора Navion: в комплект войдет небольшая коробочка с лазерным проектором и специальная пленка, превращающая лобовое стекло в экран. Он будет стоить около 500 долларов. А в следующем году на дорогах появится первый автомобиль со встроенным AR-решением WayRay. В начале 2016 года компания договорилась о реализации пилотного проекта с Banma Technologies — совместным предприятием Alibaba Group и крупнейшего китайского автопроизводителя SAIC Motor.


В рамках проекта будет разработана AR-инфотейнмент-система, которую внедрят в массовое производство одного из автомобилей в 2018 году. На вопрос, почему решили обратиться к китайцам, а не к европейцам, Виталий отвечает просто: китайцы готовы рисковать и очень быстро работают. И к тому же акционер Banma — интернет-гигант Alibaba Group, который в марте инвестировал в WayRay 18 млн долларов, в одночасье сделав компанию Виталия Пономарева всемирно знаменитой. «Нас не купили, нашу компанию проинвестировали, — подчеркивает Виталий. — Alibaba является миноритарным акционером. Мы сохранили контроль». Впрочем, это не первые инвестиции. Около 10 млн долларов вложили российские частные инвесторы, имен которых Пономарев не называет. Один из них профессионально разбирается в современной оптике — именно он первым поверил в перспективы технологии.

Глобальный результат

Сегодня WayRay — технологическая компания с офисами в Швейцарии, России и США. Разрабатывает навигационную систему для автомобилей, использующую принцип дополненной реальности, а также программно-технический комплекс для сбора информации о вождении и коррекции поведения водителя.

Однако автомобильные голографические навигаторы для стартапа всего лишь этап на пути к цели. «Мы хотим стать компанией номер один на рынке неносимых устройств дополненной реальности, — говорит Виталий. — Любая прозрачная поверхность может стать дисплеем для трехмерного изображения». Компания уже работает над прототипами новых устройств. Судя по всему, они будут связаны с развлечениями.

Стартап с российскими корнями WayRay привез на выставку в Лас-Вегас голографический навигатор с дополненной реальностью, который можно будет просто купить в свой автомобиль. Он устанавливается за рулем, прямо на приборную панель, и всю инфографику водитель видит через небольшой визор. Специальные обозначения и подсказки привязаны к реальным объектам и выглядят как рисунки на асфальте, таким образом водитель практически не отвлекается от дороги. А управлять навигатором можно голосом или жестами.

"Еще одна сложность, с которой мы столкнулись - это огромное разнообразие дизайна приборных панелей, геометрии лобовых стекол, угла наклона, геометрии приборных панелей и т.д. Для того, чтобы эта штука работала во всех машинах, нам пришлось просканировать больше 400 автомобилей, моделей, которые сейчас есть в продаже, и математически найти оптимальные размеры."

Смысл технологии в нанесении на прозрачную поверхность специальной пленки, которая заменяет систему линз. Таким образом удалось сделать голографическое изображение без громоздкой конструкции. Голограмма, в свою очередь, хороша тем, что воспринимается глазом не как рисунок на стекле, а как объемное изображение отнесенное далеко вперед. То есть на него не нужно перефокусироваться, если ты смотришь на дорогу.

Надо сказать, что первый раз мы общались с Пономарёвым ровного год назад, там же, на CЕS. И WayRay тогда наделала много шума. Выставлялась компания в павильоне Harman, идею демонстрировала на автомобиле от Rinspeed. И уже тогда руководителей крупнейший автоконцернов вокруг той машины было удивительно много. Дело в том, что представленное в этот раз отдельное устройство с очень небольшим визором. А вот если закладывать технологию WayRay на стадии проектирования автомобиля, то в голографический дисплей можно превратить всё лобовое стекло. И таких проектов, говорят, сделали за минувший год уже довольно много.

Виталий Пономарев, основатель и глава WayRay:

"Каждый проект - это какая-то модель автомобиля, которая выйдет в 19-ом или скорее всего в 20-ом году. Потому что им нужно зафиксировать дизайн Dashboard, вот этой приборной панели, всего автомобиля, и тогда они уже начинают делать молдинги для отливки пластика, чтобы потом все это превратилось в конечный автомобиль. То есть, мы сейчас работаем над автомобилями, которые будут выходить с 19-го по 29 год. Все новые технологии начинаются с люкса и потихоньку спускаются в масс-маркет. Но как ни странно в нашем случае, наибольшие объемы мы видим в среднем сегменте. Это SUV - паркетники, популярность который сейчас растет и растет."

А пока автомобили с голографическими лобовыми стёклами только готовятся к производству, в WayRay уже смотрят в сторону беспилотных автомобилей и роботакси. Там, говорят, понадобится уже не навигатор, а система доставки на стекла машины развлекательного и рекламного контента. Компания уже анонсировала True AR SDK - набор инструментов для сторонних разработчиков, которые могут создавать приложения и игры под экосистему WayRay. Ведь если у человека в машине забрать руль, ему нужно будет чем-то занять руки и глаза.

Запустить софт для моделирования и вывести полноразмерную модель для редактирования в пространстве. Включить коммуникатор и побеседовать не с плоским изображением собеседника на видеозвонке, а с его объемной проекцией, через которую просвечивает любимый ковер. Отодвинуть штору и увидеть на оконном стекле прогноз погоды, ситуацию с пробками, и вообще - как оно там. Завести двигатель автомобиля и получать на участке лобового стекла дополнительные оповещения о дорожной разметке, возможных опасностях и иных важных сведениях.

Если раньше все это было уделом научных фантастов, то сейчас подобное перешло из разряда “Фантастика” в разряд “Ближайшее будущее”. О том, как современные ученые приближают век голографии, с чего все начиналось и какие трудности развития голографические технологии испытывают на данный момент, мы постараемся рассказать в этом посте.

Как создаются голографические изображения

Человеческий глаз видит физические объекты, так как от них отражается свет. Построение голографического изображения основано именно на этом принципе – создается пучок отраженного света, полностью идентичный тому, который отражался бы от физического объекта. Человек, смотря на этот пучок, видит тот же самый объект (даже если смотрит на него под разными углами).

Голограммы же более высокого разрешения - это статические рисунки, “холст” которых - фотополимер, а “кисть” - лазерный луч, который разово меняет структуру фотополимерных материалов. В итоге обработанный таким образом фотополимер создает голографическое изображение (на плоскость голограммы падает свет, фотополимер создает его тонкую интерференционную картину).

К слову, про саму интерференцию. Она возникает в случае, если в определенном пространстве складывается ряд электромагнитных волн, у которых совпадают частоты, причем с довольно высокой степенью. Уже в процессе записи голограммы в конкретной области складывают две волны – первая, опорная, исходит непосредственно от источника, вторая, объектная – отражается от объекта. Фотопластину с чувствительным материалом размещают в этой же области, и на ней возникает картина полос потемнения, соответствующих распределению электромагнитной энергии (интерференционная картина). Затем пластину освещают волной, близкой по характеристикам к опорной, и пластина преобразует эту волну в близкую к объектной.

В итоге получается, что наблюдатель видит примерно такой же свет, который отражался бы от изначального объекта записи.

Краткая историческая справка

Шел 1947-й год. Индия получила независимость от Британии, Аргентина предоставила избирательные права женщинам, Михаил Тимофеевич Калашников создал свой знаменитый автомат, Джон Бардин и Уолтер Браттейномиз проводят эксперимент, позволивший создать первый в мире действующий биполярный транзистор, начинается производство фотоаппаратов Polaroid.

А Деннис Габор получает первую в мире голограмму.

Вообще, Деннис пытался повысить разрешающую способность электронных микроскопов той эпохи, но в ходе направленного на это эксперимента получил голограмму.

Увы, Габор, как и многие умы, немного опередил свое время, и у него просто не было нужных технологий, чтобы получать голограммы хорошего качества (без когерентного источника света этого сделать невозможно, а первый лазер на кристалле искусственного рубина Теодор Мейман продемонстрирует лишь 13 лет спустя).

А вот после 1960-го (красный рубиновый лазер с длиной волны 694 нм, импульсный, и гелий-неоновый, 633 нм, непрерывный) дело пошло куда бодрее.

1962 . Эммет Лейт и Юрис Упатниекс, Мичиганский Технологический Институт. Создание классической схемы записи голограмм. Записывались пропускающие голограммы – в процессе восстановления голограммы свет пропускали через фотопластину, но некоторая часть света отражается от пластины и тоже создает изображение, которое видно с противоположной стороны.

1967 . Первый голографический портрет записывают при помощи рубинового лазера.

1968 . Совершенствуются и сами фотоматериалы, благодаря чему Юрий Николаевич Денисюк разрабатывает собственную схему записи и получает высококачественные голограммы (восстанавливали изображение путем отражения белого света). Все проходит вполне неплохо, настолько, что схема записи получает название “Схема Денисюка”, а голограммы - “Голограммы Денисюка”.

1977 . Мультиплексная голограмма Ллойда Кросса, состоящая из нескольких десятков ракурсов, каждый из которых можно увидеть только под одним углом.

Плюсы - размеры объекта, которые требуется записать, не ограничиваются длиной волны лазера или размером фотопластины. Можно создать голограмму предмета, которого не существует (то есть просто нарисовав придуманный предмет в сразу нескольких ракурсах).

Минусы - отсутствие вертикального параллакса, рассмотреть такую голограмму можно только по горизонтальной оси, но не сверху или снизу.

1986 . Абрахам Секе осознает, что нет предела совершенству, и предлагает создать источник когерентного излучения в приповерхностной области с помощью рентгеновского излучения. Пространственное разрешение в голографии всегда зависит от размеров источника излучения и его удаленности от предмета – это дало возможность восстановить в реальном пространстве атомы, которые окружали эмиттер.

Сейчас

Сегодня некоторые прототипы голографических видеодисплеев работают примерно так же, как и современные ЖК-мониторы: особым образом рассеивают свет, формируя псевдо-3D, а не создают интерференционную картину. С чем связан и главный минус такого подхода - нормально оценить такую картинку сможет только один человек, сидящих под правильным углом к монитору. Все остальные зрители будут не так впечатлены.

Конечно же, любители научной фантастики и новых технологий спят и видят, как голографические дисплеи станут такой же привычной вещью, как wifi дома или фотокамера в смартфоне, сравнимая с не самой плохой мыльницей. И хотя идеальная голограмма в понимании большинства - это на самом деле не сегодня и не завтра, разработки на эту тему уже активно ведутся.

Институт науки и передовых исследований, Корея. Рабочий прототип нового 3D-голографического дисплея, ТТХ которого примерно в пару тысяч раз лучше , чем у существующих аналогов.

Слабое звено таких дисплеев - матрица. Пока матрицы состоят из двухмерных пикселей. Корейцы же использовали обычный (но хороший) дисплей вкупе со специальным модулятором для фронта оптического импульса. Результатом стала высококачественная голограмма, правда, небольшая - 1 кубический сантиметр.

Было время, когда считалось, что рассеивание света - это серьезное препятствие для нормального распознавания проецируемых объектов. Но как показывает наша практика, современные 3D-дисплеи можно существенно улучшить, научившись контролировать это рассеивание. Правильное рассеивание позволило увеличить и угол обзора, и общую разрешающую способность,
- отмечает профессор Йонкен Парк .

Университет Гриффита, Технологический университет Суинберна, Австралия. Голографический дисплей на основе графена.

Ученые вооружились методом Габора, упоминавшимся в самом начале этого поста, и сделали 3D-голографический дисплей высокого разрешения на основе цифрового голографического экрана, состоящего из мелких точек, отражающих свет.

Плюсы – угол обзор в 52 градуса. Для нормального восприятия картинки не нужны никакие дополнительные приблуды в виде 3D-очков и прочего.

К слову, о 52 градусах. Угол обзора тем больше, чем меньше будет использоваться пикселей. Оксид графена обрабатывают путем фоторедукции, что создает пиксель, которому под силу изгибать цвет для голокартинки.

Разработчики полагают, что подобный подход в свое время сможет положить начало революции в разработке дисплеев, особенно - на мобильных устройствах.

Бристольский университет, Великобритания. Ультразвуковая голография.

Объект создается в воздухе с помощью множества ультразвуковых излучателей, направленных на облако водяного пара, которое также создается системой. Реализация, конечно, сложнее, чем в случае с привычными экрана, но все же.

  • туман создается не просто каплями воды, а каплями специального вещества.
  • это вещество освещается специальной лампой.
  • лампа модулирует специальный свет.

В итоге получается проекция объекта, который можно не только рассмотреть со всех сторон, но и потрогать.

Частота колебаний такой интерференционной картины - от 0.4 до 500 Гц.

Одно из главных направлений деятельности, в котором разработчики предполагают полезное использование технологии - медицина. Врач сможет на основе данных медкарты и смоделированного органа “почувствовать” его. Также можно будет создавать объемные проекции каких-либо товаров на презентациях. Положительный эффект предрекают и при замене подобной технологией сенсорных дисплеев в местах массового пользования (электронные меню, терминалы, банкоматы). Как сложно и дорого будет это внедрить - само собой, уже второй вопрос.

А уж до чего могут дойти развлекательные сервисы определенной направленности - страшно (но интересно) подумать.

Ванкувер, Канада. Интерактивный голографический дисплей.

Что нужно:

  • мобильное устройство
  • HDMI или wifi
  • пожертвовать 550$ на Кикстартере вот