Происхождение регуляторных белков. Регуляторные белки Регуляторный белок

Белки, принимающие участие в регуляции метаболизма, сами мо­гут служить лигандами (например, пептидные гормоны), т. е. взаимодействовать с другими белками, такими, как гормональные рецепторы, оказывая регуляторное действие. Другие регуляторные белки такие, как рецепторы гормонов или регуляторная субъ­единица протеинкиназы (фермент, активируемый цАМФ), обла­дают активностями, контролируемыми связыванием регуляторных лигандов (т. е. гормонов и цАМФ соответственно) (см. главу 4). Для того чтобы активности белков этого класса могли специфи­чески регулироваться лигандами, такие молекулы прежде всего должны обладать участками, специфически (и, как правило, с вы­соким сродством) связывающими лиганд, что придает молекулам способность отличать лиганд от других химических соединений. Кроме того, белок должен обладать такой структурой, чтобы в результате связывания лиганда его конформация могла менять­ся, т. е. обеспечивать возможность оказания регуляторного дей­ствия. Например, у млекопитающих специфическое связывание цАМФ с регуляторной субъединицей отдельных протеинкиназ приводит к уменьшению сродства связи этой субъединицы с ка­талитической субъединицей фермента (см. главу 4). Это обус­ловливает диссоциацию обеих белковых субъединиц фермента. Каталитическая субъединица, освободившись из-под ингибиторного действия регуляторной субъединицы, активируется и ката­лизирует фосфорилирование белков. Фосфорилирование изменяет свойства определенных белков, что сказывается на процессах, на­ходящихся под контролем цАМФ. Взаимодействие стероидных гормонов со своими рецепторами вызывает в последних такие конформационные изменения, которые придают им способность связываться с клеточным ядром (см. главу 4). Это взаимодейст­вие изменяет и другие свойства рецепторов, важные для опосредования эффекта стероидных гормонов на транскрипцию опреде­ленных видов мРНК.

Для того чтобы обладать столь специализированными и вы­сокоспецифическими функциями, белки в результате эволюции генов, определяющих их аминокислотную последовательность, должны были приобрести ту структуру, которую они имеют в настоящее время. В некоторых случаях в процессе принимают участие и другие гены, кодирующие синтез продуктов, модифи­цирующих сами регуляторные белки (например, путем гликозилирования). Поскольку эволюция генов, по-видимому, происхо­дила за счет таких механизмов, как мутация предсуществующих генов и рекомбинация участков различных генов (о чем говори­лось), это наложило определенные ограничения на эволюцию белка. С эволюционной точки зрения, вероятно, было бы проще видоизменить присутствующие структуры, чем создавать совер­шенно новые гены. В связи с этим существование некоторой го­мологии в аминокислотных последовательностях различных бел­ков может и не быть неожиданностью, так как их гены могли возникнуть вследствие эволюции общих предшественников. По­скольку, как отмечалось выше, участки белков, приспособленные для связывания регуляторных лигандов, таких, как цАМФ и сте­роиды или их аналоги, уже должны были существовать ко вре­мени появления этих лигандов, легко представить себе, как мо­дификация генов таких белков может привести к синтезу других белков, сохраняющих высокую специфичность связывания регу­ляторного лиганда.

На рис. 2-2 приведена одна из гипотетических схем эволю­ции примитивной глюкотрансферазы в три существующие типа регуляторных белков: бактериальный цАМФ-связывающий белок (CAP или CRP), регулирующий транскрипцию нескольких генов, кодирующих ферменты, которые принимают участие в метабо­лизме лактозы , а также цАМФ-связывающий белок млекопи­тающих, который регулирует активность цАМФ-зависимой про­теинкиназы, опосредующей действие цАМФ у человека (см. гла­ву 4), и аденилатциклазу (см. главу 4). Применительно к бактериальному белку и киназе АТФ-связывающие участки при­митивной глюкокиназы эволюционировали в направлении при­обретения большей специфичности связывания цАМФ. Бактери­альный белок приобрел также дополнительную полинуклеотид (ДНК)-связывающую способность. Эволюция киназы предполага­ет приобретение глюкофосфотрансферазной способности фосфорилировать белки. Наконец, из глюкокиназы путем замены АДФ-генерирующей функции на цАМФ-генерирующую могла бы об­разоваться и аденилатциклаза. Эти заключения не могут не быть сугубо гипотетическими; тем не менее они показывают, как могла осуществляться молекулярная эволюция перечисленных регуля­торных белков.

Рис.2-2. Предположительное происхождение цАМФ-зависимой протеинки­назы, аденилатциклазы и бактериального цАМФ-связывающего регулятор­ного белка (Baxter, MacLeod ).

Хотя многие детали в картине эволюции белков отсутствуют, имеющиеся в настоящее время сведения о структуре белков и генов дают некоторые основания для анализа вопроса о том, про­изошли ли гены некоторых полипептидных гормонов из общего гена-предшественника . Отдельные полипептидные гормоны можно сгруппировать по структурному сходству. Нет ничего уди­вительного в том, что гормоны, относящиеся к одной группе, мо­гут обладать и сходством вызываемых ими физиологических эф­фектов, а также сходным механизмом действия. Так, гормон роста (СТГ), пролактин и хорионический соматомаммотропин (плацентарный лактоген) характеризуются высокой степенью го­мологии аминокислотной последовательности. Гликопротеидные гормоны - тиротропный гормон (ТТГ), хорионический гонадо­тропин человека (ХГЧ), фолликулостимулирующий (ФСГ) и лю­теинизирующий (ЛГ) гормоны - состоят из двух субъединиц, каждый, одна из которых (А-цепь) идентична или почти иден­тична у всех гормонов данной группы . Аминокислотная после­довательность субъединиц В в различных гормонах, хотя и не идентична, но имеет структурную гомологию. Вероятно, именно эти различия В-цепей имеют решающее значение для придания специфичности взаимодействию каждого гормона с его тканью-мишенью. Инсулин обнаруживает некоторые структурные анало­ги и обладает общей биологической активностью с другими фак­торами роста, такими, как соматомедин и неподавляемая инсулиноподобная активность (НИПА) .

Что касается группы гормонов, к которой принадлежит гор­мон роста, то нуклеотидная последовательность мРНК, кодирую­щих их синтез, частично выяснена . Для каждой аминокисло­ты необходимы три нуклеотида в ДНК (и, следовательно, в транс­крибируемой с нее мРНК). Хотя данному триплету нуклеотидов; (кодон) соответствует именно данная аминокислота, для одной и той же аминокислоты могут существовать несколько кодонов. Та­кая «вырожденность» генетического кода обусловливает возмож­ность большей или меньшей гомологии нуклеотидных последова­тельностей двух данных генов, определяющих структуру двух гормонов, чем имеется в белках. Так, если два белка обладают случайной гомологией аминокислотной последовательности, то по­следовательности нуклеиновых кислот могли бы обнаруживать большие различия. Однако в отношении генов, кодирующих син­тез гормонов группы соматотропина, это не так; гомология по­следовательности нуклеиновых кислот выше, чем гомология ами­нокислотной последовательности . Гормон роста человека и хорионический соматомаммотропин, которые имеют 87% гомоло­гию аминокислотных последовательностей, в своих мРНК имеют 93% гомологию последовательностей нуклеиновых кислот. Гормо­ны роста человека и крысы обладают 70% гомологией аминокис­лотных последовательностей, а их мРНК обнаруживают 75% го­мологию последовательности нуклеиновых кислот. В некоторых участках мРНК гормона роста крысы и хорионического соматомаммотропина человека (мРНК двух разных гормонов у двух биологических видов) гомология составляет 85% (рис. 2-3). Та­ким образом, лишь минимальные изменения оснований в ДНК обусловливают различия гормонов. Следовательно, эти данные подтверждают заключение о том, что гены таких гормонов об­разовались в ходе эволюции из общего предшественника. С по­зиций изложенных представлений о символах и вызываемых ими реакциях существенно, что каждый из трех гормонов данной группы обладает влиянием на рост (см. далее). Гормон роста представляет собой фактор, определяющий линейный рост. Про­лактин играет важную роль в процессах лактации и тем самым обеспечивает рост новорожденного. Хорионический соматомаммотропин, хотя его физиологическое значение точно не установле­но, может оказывать существенное влияние на внутриутробный рост, направляя поступающие в организм матери пищевые веще­ства на рост плода .

РЕГУЛЯТОРНЫЕ БЕЛКИ

(от лат. regulo-привожу в порядок, налаживаю), группа белков, участвующих в регуляции разл. биохим. процессов. Важная группа Р. б., к-рым посвящена эта статья,-белки, взаимодействующие с ДНК и управляющие экспрессией генов (выражение гена в признаках и св-вах организма). Подавляющее большинство таких Р. б. функционирует на уровне транскрипции (синтез матричных РНК, или мРНК, на ДНК-матрице) и отвечает за активацию или репрессию (подавление) синтеза мРНК (соотв. белки-активаторы и белки-репрессоры).

Известно ок. 10 репрессоров. Наиб. изучены среди них репрессоры прокариот (бактерии, синезеленые водоросли), регулирующие синтез ферментов, участвующих в метаболизме лактозы (lac-репрессор) в Escherichia coli (E.coli), и репрессор бактериофага А,. Их действие реализуется путем связывания со специфич. участками ДНК (операторами) соответствующих генов и блокирования инициации транскрипции кодируемых этими генами мРНК.

Репрессор представляет собой обычно димер из двух идентичных полипептидных цепей, ориентированных во взаимно противоположных направлениях. Репрессоры физически препятствуют РНК-полимеразе присоединиться к ДНК в промоторном участке (место связывания ДНК-зависимой РНК-полимеразы-фермента, катализирующего синтез мРНК на ДНК-матрице) и начать синтез мРНК. Предполагают, что репрессор препятствует только инициации транскрипции и не оказывает влияния на элонгацию мРНК.

Репрессор может контролировать синтез к.-л. одного белка или целого ряда белков, экспрессия к-рых носит координированный характер. Как правило, это , обслуживающие один метаболич. путь; их гены входят в состав одного оперона (совокупность связанных между собой генов и прилегающих к ним регуляторных участков).

Мн. репрессоры могут существовать как в активной, так и в неактивной форме в зависимости от того, связаны они или нет с индукторами или корепрессорами (соотв. субстраты, в присут. к-рых специфически повышается или понижается скорость синтеза определенного фермента; см. Регуляторы ферментов ); эти взаимод. имеют нековалент-ную природу.

Для эффективной экспрессии генов необходимо не только, чтобы репрессор был инактивирован индуктором, но также реализовался и специфич. положит. сигнал включения, к-рый опосредуется Р. б., работающими "в паре" с циклич. аденозинмонофосфатом (цАМФ). Последний связывается со специфическими Р. б. (т. наз. САР-белок-активатор ката-болитных генов, или белковый активатор катаболизма-БАК). Это димер с мол. м. 45 тыс. После связывания с цАМФ он приобретает способность присоединяться к специфич. участкам на ДНК, резко увеличивая эффективность транскрипции генов соответствующего оперона. При этом САР не влияет на скорость роста цепи мРНК, а контролирует стадию инициации транскрипции-присоединение РНК-полимеразы к промотору. В противоположность реп-рессору САР (в комплексе с цАМФ) облегчает связывание РНК-полимеразы с ДНК и делает акты инициации транскрипции более частыми. Участок присоединения САР к ДНК примыкает непосредственно к промотору со стороны, противоположной той, где локализован оператор.

Позитивную регуляцию (напр., lac-оперона E.coli) можно описать упрощенной схемой: при понижении концентрации глюкозы (осн. источника углерода) увеличивается цАМФ, к-рый связывается с САР, а образовавшийся комплекс-с lac-промотором. В результате стимулируется связывание РНК-полимеразы с промотором и возрастает скорость транскрипции генов, к-рые кодируют , позволяющие клетке переключаться на использование др. источника углерода-лактозы. Существуют и др. специальные Р. б. (напр., белок С), функционирование к-рых описывается более сложной схемой; они контролируют узкий спектр генов и могут выступать в роли как репрессоров, так и активаторов.

Репрессоры и оперон-специфичные активаторы не влияют на специфичность самой РНК-полимеразы. Этот последний уровень регуляции реализуется в случаях, предполагающих массир. изменение спектра экспрессирующихся генов. Так, у E.coli гены, кодирующие теплового шока, к-рые экспрессируются при целом ряде стрессовых состояний клетки, считываются РНК-полимеразой только тогда, когда в ее сослав включается особый Р. б.-т. наз. фактор s 32 . Целое семейство этих Р. б. (s-факторы), изменяющие про-моторную специфичность РНК-полимеразы, обнаружены у бацилл и др. бактерий.

Др. разновидность Р. б. изменяет каталитич. св-ва РНК-полимеразы (т. наз. белки-антитерминаторы). Так, у бактериофага X известны два таких белка, к-рые модифицируют РНК-полимеразу так, что она не подчиняется клеточным сигналам терминации (окончания) транскрипции (это необходимо для активной экспрессии фаговых генов).

Общая схема генетич. контроля, включающая функционирование Р. б., приложима также к бактериям и к клеткам эукариот (все организмы, за исключением бактерий и сине-зеленых водорослей).

Эукариотич. клетки реагируют на внеш. сигналы (для них это, напр., ) в принципе так же, как бактериальные клетки реагируют на изменения концентрации питат. в-в в окружающей среде, т. е. путем обратимой репрессии или активации (дерепрессии) отдельных генов. При этом Р. б., одновременно контролирующие большого числа генов, могут использоваться в разл. комбинациях. Подобная комбинационная генетич. регуляция может обеспечивать дифференцир. развитие всего сложного многоклеточного организма благодаря взаимод. относительно небольшого числа ключевых Р. б.

В системе регуляции активности генов у эукариот имеется дополнит. уровень, отсутствующий у бактерий, а именно-перевод всех нуклеосом (повторяющихся субъединиц хроматина), входящих в состав транскрипционной единицы, в активную (деконденсированную) форму в тех клетках, где данный должен быть функционально активен. Предполагается, что здесь задействован набор специфических Р. б., не имеющих аналогов у прокариот. Эти не только узнают специфич. участки хроматина (или. ДНК), но и вызывают определенные структурные изменения в прилежащих областях. Р. б., подобные активаторам и репрессорам бактерий, по-видимому, участвуют в регуляции последующей транскрипции отдельных генов в районах активир. хроматина.

Обширный класс Р. б. эукариот -рейепторные белки стероидных гормонов.

Аминокислотная последовательность Р. б. кодируется т. наз. регуляторными генами. Мутационная инактивация репрессора приводит к неконтролируемому синтезу мРНК, и, следовательно, определенного белка (в результате транс-ляции- синтеза белка на мРНК-матрице). Такие организмы наз. конститутивными мутантами. Утрата в результате активатора приводит к стойкому снижению синтеза регулируемого белка.

Лит.: Страйер Л., Биохимия, пер. с англ., т. 3, М., 1985, с. 112-25.

П. Л. Иванов.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "РЕГУЛЯТОРНЫЕ БЕЛКИ" в других словарях:

    белки - специфичные для пуфов Разнородная группа ядерных белков, участвующих в процессе активации генов в пуфах политенных хромосом; к этим белкам относятся факторы собственно транскрипции (РНК полимераза II, регуляторные белки и др.), а также ряд… … Справочник технического переводчика

    Белки специфичные для пуфов - Белки, специфичные для пуфов * бялкі, спецыфічныя для пуфаў * puff specific proteins разнородная группа ядерных белков, участвующих в процессе активации генов в пуфах политенных хромосом. К этим белкам относятся ферменты, осуществляющие… …

    У этого термина существуют и другие значения, см. Белки (значения). Белки (протеины, полипептиды) высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа аминокислот. В живых организмах… … Википедия

    Высокомол. прир. полимеры, построенные из остатков аминокислот, соединенных амидной (пептидной) связью ЧСОЧNHЧ. Каждый Б. характеризуется специфич. аминокислотной последовательностью и индивидуальной пространств, структурой (конформацией). На… … Химическая энциклопедия

    БЕЛКИ, высокомолекулярные органические соединения, биополимеры, построенные из 20 видов L a аминокислотных остатков, соединенных в определенной последовательности в длинные цепи. Молекулярная масса белков варьируется от 5 тыс. до 1 млн. Название… … Энциклопедический словарь

    Белки регуляторные - * бялкі рэгуляторныя * regulatory proteins белки, осуществляющие регуляцию матричных процессов путем их посадки на регуляторные области ДНК. Белки, связывающиеся с поврежденной ДНК * бялкі, якія звязваюцца з пашкоджанай ДНК * DNA damage binding… … Генетика. Энциклопедический словарь

    Протеины, высокомолекулярные органич. соединения, построенные из остатков аминокислот. Играют первостепенную роль в жизнедеятельности, выполняя многочисл. функции в их строении, развитии и обмене веществ. Мол. м. Б. от БЕЛКИ’ 5000 до мн.… …

    - (Sciurus), род беличьих. Дл. тела 20 31 см. Хорошо лазают и передвигаются по деревьям. Длинный (20 30 см) пышный хвост служит рулём при прыжках. Ок. 40 видов, в Сев. полушарии и на С. Юж. Америки, в горных и равнинных лесах, включая островные… … Биологический энциклопедический словарь

    БЕЛКИ́, протеины, высокомолекулярные органич. соединения, построенные из остатков аминокислот. Играют первостепенную роль в жизнедеятельности всех организмов, участвуя в их строении, развитии и обмене веществ. Мол. м. Б. от 5000 до мн. миллионов … Биологический энциклопедический словарь

    белки - белки, протеины, высокомолекулярные органические вещества, построенные из остатков аминокислот. Играют важнейшую роль в жизнедеятельности всех организмов, входя в состав их клеток и тканей и выполняя каталитические (ферменты), регуляторные… … Сельское хозяйство. Большой энциклопедический словарь

(от лат. regulo-привожу в порядок, налаживаю), группа белков, участвующих в регуляции разл. биохим. процессов. Важная группа Р. б., к-рым посвящена эта статья,-белки, взаимодействующие с ДНК и управляющие экспрессией генов (выражение гена в признаках и св-вах организма). Подавляющее большинство таких Р. б. функционирует на уровне транскрипции (синтез матричных РНК, или мРНК, на ДНК-матрице) и отвечает за активацию или репрессию (подавление) синтеза мРНК (соотв. белки-активаторы и белки-репрессоры).

Известно ок. 10 репрессоров. Наиб. изучены среди них репрессоры прокариот (бактерии, синезеленые водоросли), регулирующие синтез ферментов, участвующих в метаболизме лактозы (lac-репрессор) в Escherichia coli (E.coli), и репрессор бактериофага А,. Их действие реализуется путем связывания со специфич. участками ДНК (операторами) соответствующих генов и блокирования инициации транскрипции кодируемых этими генами мРНК.

Репрессор представляет собой обычно димер из двух идентичных полипептидных цепей, ориентированных во взаимно противоположных направлениях. Репрессоры физически препятствуют РНК-полимеразе присоединиться к ДНК в промоторном участке (место связывания ДНК-зависимой РНК-полимеразы-фермента, катализирующего синтез мРНК на ДНК-матрице) и начать синтез мРНК. Предполагают, что репрессор препятствует только инициации транскрипции и не оказывает влияния на элонгацию мРНК.

Репрессор может контролировать синтез к.-л. одного белка или целого ряда белков, экспрессия к-рых носит координированный характер. Как правило, это ферменты, обслуживающие один метаболич. путь; их гены входят в состав одного оперона (совокупность связанных между собой генов и прилегающих к ним регуляторных участков).

Мн. репрессоры могут существовать как в активной, так и в неактивной форме в зависимости от того, связаны они или нет с индукторами или корепрессорами (соотв. субстраты, в присут. к-рых специфически повышается или понижается скорость синтеза определенного фермента; см. Регуляторы ферментов ); эти взаимод. имеют нековалент-ную природу.

Для эффективной экспрессии генов необходимо не только, чтобы репрессор был инактивирован индуктором, но также реализовался и специфич. положит. сигнал включения, к-рый опосредуется Р. б., работающими "в паре" с циклич. аденозинмонофосфатом (цАМФ). Последний связывается со специфическими Р. б. (т.наз. САР-белок-активатор ката-болитных генов, или белковый активатор катаболизма-БАК). Это димер с мол. м. 45 тыс. После связывания с цАМФ он приобретает способность присоединяться к специфич. участкам на ДНК, резко увеличивая эффективность транскрипции генов соответствующего оперона. При этом САР не влияет на скорость роста цепи мРНК, а контролирует стадию инициации транскрипции-присоединение РНК-полимеразы к промотору. В противоположность реп-рессору САР (в комплексе с цАМФ) облегчает связывание РНК-полимеразы с ДНК и делает акты инициации транскрипции более частыми. Участок присоединения САР к ДНК примыкает непосредственно к промотору со стороны, противоположной той, где локализован оператор.

Позитивную регуляцию (напр., lac-оперона E.coli) можно описать упрощенной схемой: при понижении концентрации глюкозы (осн. источника углерода) увеличивается концентрация цАМФ, к-рый связывается с САР, а образовавшийся комплекс-с lac-промотором. В результате стимулируется связывание РНК-полимеразы с промотором и возрастает скорость транскрипции генов, к-рые кодируют ферменты, позволяющие клетке переключаться на использование др. источника углерода-лактозы. Существуют и др. специальные Р. б. (напр., белок С), функционирование к-рых описывается более сложной схемой; они контролируют узкий спектр генов и могут выступать в роли как репрессоров, так и активаторов.

Репрессоры и оперон-специфичные активаторы не влияют на специфичность самой РНК-полимеразы. Этот последний уровень регуляции реализуется в случаях, предполагающих массир. изменение спектра экспрессирующихся генов. Так, у E.coli гены, кодирующие белки теплового шока, к-рые экспрессируются при целом ряде стрессовых состояний клетки, считываются РНК-полимеразой только тогда, когда в ее сослав включается особый Р.б.-т.наз. фактор s 32 . Целое семейство этих Р.б. (s -факторы), изменяющие про-моторную специфичность РНК-полимеразы, обнаружены у бацилл и др. бактерий.

Др. разновидность Р.б. изменяет каталитич. св-ва РНК-полимеразы (т.наз. белки-антитерминаторы). Так, у бактериофага X известны два таких белка, к-рые модифицируют РНК-полимеразу так, что она не подчиняется клеточным сигналам терминации (окончания) транскрипции (это необходимо для активной экспрессии фаговых генов).

Общая схема генетич. контроля, включающая функционирование Р.б., приложима также к бактериям и к клеткам эукариот (все организмы, за исключением бактерий и сине-зеленых водорослей).

Эукариотич. клетки реагируют на внеш. сигналы (для них это, напр., гормоны) в принципе так же, как бактериальные клетки реагируют на изменения концентрации питат. в-в в окружающей среде, т.е. путем обратимой репрессии или активации (дерепрессии) отдельных генов. При этом Р.б., одновременно контролирующие активность большого числа генов, могут использоваться в разл. комбинациях. Подобная комбинационная генетич. регуляция может обеспечивать дифференцир. развитие всего сложного многоклеточного организма благодаря взаимод. относительно небольшого числа ключевых Р. б.

В системе регуляции активности генов у эукариот имеется дополнит. уровень, отсутствующий у бактерий, а именно-перевод всех нуклеосом (повторяющихся субъединиц хроматина), входящих в состав транскрипционной единицы, в активную (деконденсированную) форму в тех клетках, где данный ген должен быть функционально активен. Предполагается, что здесь задействован набор специфических Р. б., не имеющих аналогов у прокариот. Эти белки не только узнают специфич. участки хроматина (или. ДНК), но и вызы вают определенные структурные изменения в прилежащих областях. Р.б., подобные активаторам и репрессорам бактерий, по-видимому, участвуют в регуляции последующей транскрипции отдельных генов в районах активир. хроматина.

Обширный класс Р.б. эукариот -рейепторные белки стероидных гормонов.

Аминокислотная последовательность Р.б. кодируется т.наз. регуляторными генами. Мутационная инактивация репрессора приводит к неконтролируемому синтезу мРНК, и, следовательно, определенного белка (в результате транс-ляции- синтеза белка на мРНК-матрице). Такие организмы наз. конститутивными мутантами. Утрата в результате мутации активатора приводит к стойкому снижению синтеза регулируемого белка.


===
Исп. литература для статьи «РЕГУЛЯТОРНЫЕ БЕЛКИ» :
Страйер Л., Биохимия, пер. с англ., т. 3, М., 1985, с. 112-25.

П.Л.Иванов.

Страница «РЕГУЛЯТОРНЫЕ БЕЛКИ» подготовлена по материалам химической энциклопедии.

Постоянно открывают всё новые и новые регуляторные белки, в настоящее время известна, вероятно, только малая их часть.

Существует несколько разновидностей белков, выполняющих регуляторную функцию:

  • белки-рецепторы , воспринимающие сигнал;
  • сигнальные белки-гормоны и другие вещества, осуществляющие межклеточную сигнализацию (многие из них, хотя далеко не все, являются белками или пептидами);
  • регуляторные белки, которые регулируют многие процессы внутри клеток.

Белки, участвующие в межклеточной сигнализации

Белки-гормоны (и другие белки, участвующие в межклеточной сигнализации) оказывают влияние на обмен веществ и другие физиологические процессы.

Гормоны - это вещества, которые образуются в железах внутренней секреции, переносятся кровью и несут информационный сигнал. Гормоны распространяются безадресно и действуют только на те клетки, которые имеют подходящие белки-рецепторы. Гормоны связываются со специфическими рецепторами. Обычно гормоны регулируют медленные процессы, например, рост отдельных тканей и развитие организма, однако есть и исключения: например, адреналин - гормон стресса, производное аминокислот. Он выделяется при воздействии нервного импульса на мозговой слой надпочечников . При этом начинает чаще биться сердце, повышается кровяное давление и наступают другие ответные реакции. Также он действует на печень (расщепляет гликоген). Глюкоза выделяется в кровь, и её используют мозг и мышцы как источник энергии.

Белки-рецепторы

К белкам с регуляторной функцией можно отнести также белки-рецепторы. Мембранные белки-рецепторы передают сигнал с поверхности клетки внутрь, преобразовывая его. Они регулируют функции клеток за счет связывания с лигандом, который «сел» на этот рецептор снаружи клетки; в результате активируется другой белок внутри клетки.

Большинство гормонов действуют на клетку, только если на её мембране есть определенный рецептор - другой белок или гликопротеид. Например, β2- адренорецептор находится на мембране клеток печени. При стрессе молекула адреналина связывается с β2- адренорецептором и активирует его. Далее активированный рецептор активирует G-белок , который присоединяет ГТФ . После многих промежуточных этапов передачи сигнала происходит фосфоролиз гликогена. Рецептор осуществил самую первую операцию по передаче сигнала, ведущего к расщеплению гликогена . Без него не было бы последующих реакций внутри клетки.

Внутриклеточные регуляторные белки

Белки регулируют процессы, происходящие внутри клеток, при помощи нескольких механизмов:

  • взаимодействия с молекулами ДНК (транскрипционные факторы);
  • при помощи фосфорилирования (протеинкиназы) или дефосфорилирования (протеинфосфатазы) других белков;
  • при помощи взаимодействия с рибосомой или молекулами РНК (факторы регуляции трансляции);
  • воздействия на процесс удаления интронов (факторы регуляции сплайсинга);
  • влияния на скорость распада других белков (убиквитины и др.).

Белки-регуляторы транскрипции

Транскрипционный фактор - это белок, который, попадая в ядро , регулирует транскрипцию ДНК, то есть считывание информации с ДНК на мРНК (синтез мРНК по матрице ДНК). Некоторые транскрипционные факторы изменяют структуру хроматина, делая его более доступным для РНК-полимераз. Существуют различные вспомогательные транскрипционные факторы, которые создают нужную конформацию ДНК для последующего действия других транскрипционных факторов. Еще одна группа транскрипционных факторов - это те факторы, которые не связываются непосредственно с молекулами ДНК, а объединяются в более сложные комплексы с помощью белок-белковых взаимодействий.

Факторы регуляции трансляции

Трансляция - синтез полипептидных цепей белков по матрице мРНК, выполняемый рибосомами. Регуляция трансляции может осуществляться несколькими способами, в том числе и с помощью белков-репрессоров, которые, связываются с мРНК. Известно много случаев, когда репрессором является белок, который кодируется этой мРНК. В этом случае происходит регуляция по типу обратной связи (примером этого может служить репрессия синтеза фермента треонил-тРНК-синтетазы).

Факторы регуляции сплайсинга

Внутри генов эукариот есть участки, не кодирующие аминокислот. Эти участки называются интронами . Они сначала переписываются на пре-мРНК при транскрипции, но затем вырезаются особым ферментом. Этот процесс удаления интронов, а затем последующее сшивание концов оставшихся участков называют сплайсингом (сшивание, сращивание). Сплайсинг осуществляется с помощью небольших РНК, обычно связанных с белками, которые называются факторами регуляции сплайсинга. В сплайсинге принимают участие белки, обладающие ферментативной активностью. Они придают пре-мРНК нужную конформацию. Для сборки комплекса (сплайсосомы) необходимо потребление энергии в виде расщепляемых молекул АТФ, поэтому в составе этого комплекса есть белки, обладающие АТФ-азной активностью.

Существует альтернативный сплайсинг . Особенности сплайсинга определяются белками, способными связываться с молекулой РНК в областях интронов или участках на границе экзон-интрон. Эти белки могут препятствовать удалению одних интронов и в то же время способствовать вырезанию других. Направленная регуляция сплайсинга может иметь значительные биологические последствия. Например, у плодовой мушки

Хорошо изученными примерами взаимодействия белков и ДНК, не зависящего от нуклеотидной последовательности ДНК, является взаимодействие со структурными белками. В клетке ДНК связана с этими белками, образуя компактную структуру, которая называется хроматин. У прокариот хроматин образован при присоединении к ДНК небольших щелочных белков - гистонов, менее упорядоченный хроматин прокариот содержит гистон-подобные белки . Гистоны формируют дискообразную белковую структуру - нуклеосому, вокруг каждой из которых вмещается два оборота спирали ДНК. Неспецифические связи между гистонами и ДНК образуются за счёт ионных связей щелочных аминокислот гистонов и кислотных остатков сахарофостфатного остова ДНК . Химические модификации этих аминокислот включают метилирование, фосфорилирование и ацетилирование . Эти химические модификации изменяют силу взаимодействия между ДНК и гистонами, влияя на доступность специфических последовательностей для факторов транскрипции и изменяя скорость транскрипции . Другие белки в составе хроматина, которые присоединяются к неспецифическим последовательностям - белки с высокой подвижностью в гелях, которые ассоциируют большей частью с согнутой ДНК . Эти белки важны для образования в хроматине структур более высокого порядка . Особая группа белков, присоединяющихся к ДНК это белки, которые ассоциируют с одноцепочечной ДНК. Наиболее хорошо охарактеризованный белок этой группы у человека - репликационный белок А, без которого невозможно протекание большинства процессов, где расплетается двойная спираль, включая репликацию, рекомбинацию, и репарацию. Белки этой группы стабилизируют одноцепочечную ДНК и предотвращают формирование стеблей-петель или деградации нуклеазами .

В то же время другие белки узнают и присоединяются к специфическим последовательностям. Наиболее изученная группа таких белков - различные классы факторов транскрипции, то есть белки, регулирующие транскрипцию. Каждый из этих белков узнаёт свою последовательность, часто в промоторе и активирует или подавляет транскрипцию гена. Это происходит при ассоциации факторов транскрипции с РНК-полимеразой либо напрямую, либо через белки-посредники. Полимераза ассоциирует сначала с белками, а потом начинает транскрипцию . В других случаях факторы транскрипции могут присоединяться к ферментам, которые модифицируют находящиеся на промоторах гистоны, что изменяет доступность ДНК для полимераз .



Так как специфические последовательности встречаются во многих местах генома, изменения в активности одного типа фактора транскрипции может изменить активность тысяч генов . Соответственно, эти белки часто регулируются в процессах ответа на изменения в окружающей среде, развития организма и дифференцировки клеток. Специфичность взаимодействия факторов транскрипции с ДНК обеспечивается многочисленными контактами между аминокислотами и основаниями ДНК, что позволяет им «читать» последовательность ДНК. Большинство контактов с основаниями происходит в главной бороздке, где основания более доступны .

Ферменты, модифицирующие ДНК

Топоизомеразы и хеликазы

Основные статьи : Топоизомеразы , Хеликазы

В клетке ДНК находится в компактном т. н. суперскрученном состоянии, иначе она не смогла бы в ней уместиться. Для протекания жизненно важных процессов ДНК должна быть раскручена, что производится двумя группами белков - топоизомеразами и хеликазами.

Топоизомеразы - ферменты, которые имеют и нуклеазную и лигазную активности. Эти белки изменяют степень суперскрученности в ДНК. Некоторые из этих ферментов разрезают спираль ДНК и позволяют вращаться одной из цепей, тем самым уменьшая уровень суперскрученности, после чего фермент заделывает разрыв . Другие ферменты могут разрезать одну из цепей и проводить вторую цепь через разрыв, а потом лигировать разрыв в первой цепи . Топоизомеразы необходимы во многих процессах, связанных с ДНК, таких как репликация и транкрипция .

Хеликазы - белки, которые являются одним из молекулярных моторов. Они используют химическую энергию нуклеотидтрифосфатов, чаще всего АТФ, для разрыва водородных связей между основаниями, раскручивая двойную спираль на отдельные цепочки . Эти ферменты важны для большинства процессов, где белкам необходим доступ к основаниям ДНК.

Нуклеазы и лигазы

Нуклеаза , Лигаза

В различных процессах, происходящих в клетке, например, рекомбинации и репарации участвуют ферменты, способные разрезать и восстанавливать целостность нитей ДНК. Ферменты, разрезающие ДНК, носят название нуклеаз. Нуклеазы, которые гидролизуют нуклеотиды на концах молекулы ДНК называются экзонуклеазами, а эндонуклеазы разрезают ДНК внутри цепи. Наиболее часто используемые в молекулярной биологии и генетической инженерии нуклеазы - это рестриктазы, которые разрезают ДНК около специфических последовательностей. Например, фермент EcoRV (рестрикционный фермент № 5 из E. coli ) узнаёт шестинуклеотидную последовательность 5"-GAT|ATC-3" и разрезает ДНК в месте, указанном вертикальной линией. В природе эти ферменты защищают бактерии от заражения бактериофагами, разрезая ДНК фага, когда она вводится в бактериальную клетку. В этом случае нуклеазы - часть системы модификации-рестрикции . ДНК-лигазы сшивают сахарофосфатные основания в молекуле ДНК, используя энергию АТФ. Рестрикционные нуклеазы и лигазы используются в клонировании и фингерпринтинге.

ДНК-полимераза I (кольцеобразная структура, состоящая из нескольких одинаковых молекул белка, показанных разными цветами), лигирующая повреждённую цепь ДНК

Полимеразы

ДНК-полимераза

Существует также важная для метаболизма ДНК группа ферментов, которые синтезируют цепи полинуклеотидов из нуклеозидтрифосфатов - ДНК-полимеразы. Они добавляют нуклеотиды к 3"-гидроксильной группе предыдущего нуклеотида в цепи ДНК, поэтому все полимеразы работают в направлении 5"--> 3" . В активном центре этих ферментов субстрат - нуклеозидтрифосфат - спаривается с комплементарным основанием в составе одноцепочечной полинулеотидной цепочки - матрицы.

В процессе репликации ДНК, ДНК-зависимая ДНК-полимераза синтезирует копию исходной последовательности ДНК. Точность очень важна в этом процессе, так как ошибки в полимеризации приведут к мутациям, поэтому многие полимеразы обладают способностью к «редактированию» - исправлению ошибок. Полимераза узнаёт ошибки в синтезе по отсутствию спаривания между неправильными нуклеотидами. После определения отсутствия спаривания активируется 3"--> 5" экзонуклеазная активность полимеразы и неправильное основание удаляется . В большинстве организмов ДНК-полимеразы работают в виде большого комплекса, называемого реплисомой, которая содержит многочисленные дополнительные субъединицы, например, хеликазы .

РНК-зависимые ДНК-полимеразы - специализированный тип полимераз, которые копируют последовательность РНК на ДНК. К этому типу относится вирусный фермент обратная транскриптаза, который используется ретровирусами при инфекции клеток, а также теломераза, необходимая для репликации теломер . Теломераза - необычный фермент, потому что она содержит собственную матричную РНК .

Транскрипция осуществляется ДНК-зависимой РНК-полимеразой, которая копирует последовательность ДНК одной цепочки на мРНК. В начале транскрипции гена РНК-полимераза присоединяется к последовательности в начале гена, называемой промотором, и расплетает спираль ДНК. Потом она копирует последовательность гена на матричную РНК до тех пор, пока не дойдёт до участка ДНК в конце гена - терминатора, где она останавливается и отсоединяется от ДНК. Также как ДНК-зависимая ДНК-полимераза человека, РНК-полимераза II, которая транскрибирует большую часть генов в геноме человека, работает в составе большого белкового комплекса, содержащего регуляторные и дополнительные единицы .