Как изменить фазы газораспределения двухтактного двигателя. Газораспределение двухтактных двигателей. Приспособления для установки фаз газораспределения

Простейший двухтактный двигатель

Двухтактный двигатель наиболее прост с технической точки зрения: в нем поршень выполняет работу распределительного органа. На поверхности цилиндра двигателя выполнено несколько отверстий. Их называет окнами, и они принципиальны для двухтактного цикла. Предназначение впускных и выпускных каналов достаточно очевидно — впускное окно позволяет топливовоздушной смеси попасть в двигатель для последующего сгорания, а выпускное окно обеспечивает отвод полученных в результате сгорания газов из двигателя. Продувочный канал служит для обеспечения перетекания из кривошипной камеры, в которую она поступила ранее, в камеру сгорания, где происходит сгорание. Здесь возникает вопрос, почему смесь поступает в пространство картера под поршнем, а не непосредственно в камеру сгорания над поршнем. Чтобы понять это, следует отметить, что в двухтактном двигателе кривошипная камера выполняет важную второстепенную роль, являясь своего рода насосом для смеси.

Она образует собой герметичную камеру, закрытую сверху поршнем, из чего следует, что объем этой камеры, а, следовательно, и давление внутри нее, изменяется, поскольку поршень перемешается возвратно-поступательно в цилиндре (по мере того как поршень двигается вверх, объем увеличивается, и давление падает ниже атмосферного, создается разрежение; наоборот, при движении поршня вниз объем уменьшается, и давление становится выше атмосферного).

Впускное окно на стенке цилиндра большую часть времени закрыто юбкой поршня, оно открывается, когда поршень приближается к верхней точке своего хода. Созданное разрежение всасывает свежий заряд смеси в кривошипную камеру, затем, по мере того как поршень движется вниз и создает давление в кривошипной камере, эта смесь вытесняется в камеру сгорания через продувочный канал.

Данная конструкция, в которой поршень играет роль распределительного органа по очевидным причинам, является самой простой разно¬видностью двухтактного двигателя, число перемеoающихся частей в ней не значительно. Во многих отношениях это является значительным преимуществом, однако оставляет желать лучшего с точки зрения эффективности (КПД). В свое время почти во всех двухтактных двигателях поршень выполнял роль органа распределения, но в современных конструкциях эта функция отводится более сложным и эффективным устройствам

Улучшенные конструкции двухтактного двигателя

Влияние на течение газа Одна из причин неэффективности выше-описанного двухтактного двигателя-неполная очистка от отработавших газов. Оставаясь в цилиндре, они мешают проникновению всего объема свежей смеси, и, следовательно, снижают мощность. Также существует связанная с этим проблема: свежая смесь из окна продувочного канала поступает прямо в выпускной канал, и, как было упомянуто ранее, чтобы это минимизировать, окно продувочного канала направляет смесь вверх.

Поршни с дефлектором

Эффективность очистки и топливная экономичность могут быть улучшены за счет создания более эффективного течения газа внутри цилиндра. На ранней стадии усовершенствование двухтактных двигателей было достигнуто за счет придания днищу поршня особой формы для отклонения смеси от впускного канала к головке цилиндра — данная конструкция получила название поршня с дефлектором». Однако использование поршней с дефлектором на двухтактных двигателях было непродолжительным в связи с проблемами расширения поршня. Тепловыделение в камере сгорания двухтактного двигателя обычно выше, чем у четырехтактного, потому что сгорание происходит вдвое чаше, кроме того, головка, верхняя часть цилиндра и поршня являются наиболее нагретыми частями двигателя. Это приводит к проблемам, связанным с тепловым расширением поршня. Фактически, поршню при изготовлении придается такая форма, чтобы он слегка отличался от окружности и был конусным кверху (овало-бочкообразный профиль), таким образом, когда он расширяется при изменении температуры, он становится круглыми и цилиндрическим. Добавление несимметричного металлического выступа в виде дефлектора на днище поршня, изменяет характеристики его рас¬ширения (если поршень будет чрезмерно расширяться в неправильном направлении, его может заклинить в цилиндре), а также приводит к его утяжелению со смещением массы от оси симметрии. Этот недостаток стал намного более очевидным по мере того, как двигатели усовершенствовались для работы при более высоких скоростях вращения.

Типы продувок двухтактного двигателя

Петлевая продувка

Поскольку у поршня с дефлектором слишком много недостатков, а плоское или слегка скругленное днище поршня не сильно влияет не движение поступающей смеси или вытекающих отработавших газов, был необходим другой вариант. Он был разработан в ЗО-х годах XX века доктором Е. Шнурле, который его изобрел и запатентовал (хотя, по общему признанию, он первоначально спроектировал его для двухтактного дизельного двигателя). Продувочные окна расположены напротив друг друга на стенке цилиндра и направлены под углом вверх и назад. Таким образом, поступающая смесь наталкивается на заднюю стенку цилиндра и отклоняется вверх, затем, образуя наверху петлю, падает на отработавшие газы и способствует их вытеснению через выпускное окно. Следовательно, хорошая продувка цилиндра может быть получена подбором расположения продувочных окон. Необходимо тщательно прорабатывать форму и размер каналов. Если сделать канал слишком широким,поршневое кольцо, минуя его,может попасть в окно и заклинить, тем самым вызывая поломку. Поэтому размер и форма окон выполняется так, чтобы гарантировать безударный проход колеи мимо окон, а некоторые широкие окна соединены в середине перемычкой, служащей опорой для колец. В качестве еще одного варианта можно предложить использование большего числа окон меньших размеров.

На данный момент существует множество вариантов расположения, численности и размеров окон, сыгравших большую роль в увеличении мощности двухтактных двигателей. Некоторые двигатели снабжены продувочным и окнами, служащими для единственной цели — улучшения продувки, они открываются незадолго до открытия главных продувочных окон, которые подают большую часть свежей смеси. Но пока это всё. что можно сделать для улучшения газообмена без использования дорогих в производстве деталей. Чтобы продолжать улучшать характеристики, необходимо более точно управлять фазой наполнения.

Лепестковый клапан Suzuki Lets TW

Лепестковые клапана

В любой конструкции двухтактного двигателя улучшение КПД и топливной экономичности означает, что двигатель должен работать более эффективно, это требует сгорания максимального количества топлива (следовательно, получения максимальной мощности) на каждом рабочем такте двигателя. Остается проблема сложного удаления всего объема отработавшего газа и заполнения цилиндра максимальным объемом свежей смеси. До тех пор, пока процессы газообмена совершенствуются в рамках двигателя с поршнем в роли органа распределения, нельзя гарантировать полную очистку от отработавших газов, остающихся в цилиндре, при этом нельзя увеличить объем поступающей свежей смеси, чтобы способствовать вытеснению отработавших газов. Решением может служить заполнение кривошипной камеры большим количеством смеси за счет увеличения ее объема, но на практике это приводит к менее эффективной продувке. Увеличение эффективности продувки требует уменьшения объема кривошипной камеры и, таким образом, ограничения пространства, предназнеченного для заполнения смесью. Так что компромисс уже найден, и следует искать другие способы улучшения характеристик. В двухтактном двигателе, в котором роль органа газораспределения отведена поршню, часть топливовоздушной смеси, поданной в кривошипную камеру, неизбежно будет потеряна по мере того, как поршень начинает двигаться вниз в процессе сгорания. Эта смесь вытесняется обратно во впускное окно и, таким образом, теряется. Необходим более эффективный способ управления поступающей смесью. Предотвратить потери смеси можно путем использования лепесткового или дискового (золотникового) клапана или их комбинации.

Лепестковый клапан состоит из металлического корпуса клапанов и закрепленного на его поверхности седла с уплотнением из синтетического каучука. Два или более лепестковых клапана закреплены на корпусе клапанов, при нормальных атмосферных условиях эти лепестки закрыты. Кроме того, для ограничения перемещения лепестка установлены ограничительные пластины по одной на каждый лепесток клапана, служащие для предотвращения его поломки. Тонкие лепестки клапана обычно изготавливаются из гибкой (пружинной) стали, хотя все более популярными становятся экзотические материалы на основе фенольной смолы или стеклотекстолита.

Клапан открывается за счет изгиба лепестков до ограничительных пластин, которые спроектированы таким образом, что открываются, как только появляется положительный перепад давления между атмосферой и кривошипной камерой; это происходит, когда движущийся вверх поршень создает разрежение в картере, Когда смесь подана в кривошипную камеру, и поршень начинает двигаться вниз, давление внутри картера возрастает до уровня атмосферного, и лепестки прижимаются, закрывая клапан. Таким образом, подается максимальное количество смеси, и предотвращаются любые обратные выбросы. Дополнительная масса смеси более полно заполняет цилиндр, и продувка происходит более эффективно. Сначала лепестковые клапана были приспособлены для использования на существующих двигателях с поршнем в роли органа газораспределения, это привело к существенному улучшению эффективности двигателей. В отдельных случаях производители выбирали комбинацию двух конструкций: одной — когда двигатель с поршнем в роли органа газораспределения. дополненный лепестковым клапаном для продолжения процесса наполнения через дополнительные каналы в кривошипной камере после того, как поршень перекроет основной канал, если уровень давления в картере двигателя позволяет это. В другой конструкции на поверхности юбки поршня выполнялись окна, чтобы окончательно избавиться от контроля, который поршень имеет над каналами; в таком случае они открываются и закрываются исключительно под воздействием лепесткового клапана. Развитие этой идеи означало, что клапан и впускной канал могут быть перенесены из цилиндра в кривошипную камеру. Устрашающие предостережения, что на лепестках клапана образуются трещины и лепестки могут попасть внутрь двигателя, оказались в значительной степени необоснованными. Перемещение впускного канала предоставляет ряд преимуществ, главное из которых связано с тем. что течение газа в полость картера становится более свободным.и,следовательно, большее количество смеси может поступить в кривошипную камеру. Этому до некоторой степени способствует импульс (скорость и вес) поступающей смеси. При переносе впускного канала из цилиндра можно продолжать повышать эффективность путем смешения продувочного окна (окон) в оптимальное для продувки положение. Безусловно, за последние годы основное расположение лепестковых клапанов было подвергнуто тщательному исследованию, и появились сложные конструкции. содержащие двухступенчатые лепестки и многолепестковые корпуса клапанов. Последние разработки в области лепестковых клапанов связаны с материалами, используемыми для лепестков, и с расположением и размером лепестков.

Дисковые клапана (золотниковое распределение)

Дисковый клапан состоит из тонкого стального диска, закрепленного на коленчатому валу шпонкой

Или шлицами таким образом, что они вращаются вместе, Он располагается снаружи впускного окна между карбюратором и крыш¬кой картера так. чтобы в нормальном состоянии канал перекрывался диском, Чтобы произошло наполнение в нужной области цикла двигателя, из диска вырезается сектор. При вращении коленчатого вала и дискового клапана впускное окно открывается в момент, когда вырезанный сектор проходит мимо канала, позволяя смеси проникнуть непосредственно в кривошипную камеру. Затем канал перекрывается диском, предотвращая обратный выброс смеси в карбюратор по мере того, как поршень начинает двигаться вниз.

К очевидным преимуществам использования дискового клапана можно причислить более точное управление началом и концом процесса участок, или сектор, диска минует канал), и продолжительностью процесса наполнения (то есть величиной вырезанного участка диска, пропорциональной времени открытия канала). Также дисковый клапан допускает применение впускного канала большого диаметра и гарантирует беспрепятственный проход смеси, попадающей в кривошипную камеру. В отличие от лепесткового клапана с достаточно большим корпусом клапанов, дисковый клапан не создает никаких преград во впускном канале, и поэтому газообмен в двигателе улучшается. Другое преимущество дискового клапана проявляется на спортивных мотоциклах — это время, за которое его можно заменить для подбора рабочих характеристик двигателя под различные трассы. Главным недостатком дискового клапана являются технические трудности, требующие маленьких производственных допусков и отсутствие приспособляемости, то есть неспособность клапана реагировать на изменение потребностей двигателя подобно лепестковому клапану. Кроме того, все дисковые клапана уязвимы в отношении попадания мусора, поступающего в двигатель с воздухом (мелкие частицы и пыль оседают на уплотняющих канавках и царапают диск). Несмотря на это. на практике дисковые клапана работают очень хорошо и обычно способствуют значительному приросту мощности на низких частотах вращения двигателя по сравнению с обычным двигателем с поршнем в роли органа газораспределения.

Совместное использование лепестковых и дисковых клапанов

Неспособность дискового клапана реагировать на изменение потребностей двигателя навела некоторых производителей на мысль — использовать комбинацию дискового и лепесткового клапана для получения высокой эластичности двигателя. Поэтому.когда этого требуют условия, давление в картере двигателя закрывает лепестковый клапан, таким образом, закрывая впускной канал со стороны кривошипной камеры, даже несмотря на то, что вырезанный участок (сектор) диска все еще может открывать впускной канал со стороны карбюратора.

Использование щеки коленвала в качестве дискового клапана

Интересный вариант дискового клапана использовался в течение нескольких лет на ряде двигателей мотороллеровVespa . Вместо применения отдельного клапанного устройства для выполнения его роли производители использовали стандартный коленчатый вал. Плоскость правой щеки маховика обработана с очень высокой точностью так, что при вращении коленвала зазор между ней и картером составляет несколько тысячных долей дюйма. Впускной канал находится прямо над маховиком (на этих двигателях цилиндр располагается горизонтально) и, таким образом,прикрывается краем маховика, Путем механической обработки выемки в части маховика можно в заданной точке цикла двигателя открыть канал аналогично тому, как это происходит при использовании традиционного дискового клапана. Хотя получаемый впускной канал оказывается менее прямым, чем мог бы быть, на практике эта система работает очень хорошо. В результате двигатель вырабатывает полезную мощность в широком диапазоне частот вращения двигателя, и по прежнему остается технически простым.

Расположение выпускного окна

во многих отношениях системы впуска и выпуска на двухтактном двигателе очень тесно связаны. В предшествующих параграфах мы обсудили способы подвода смеси и отвода отработавших газов из цилиндра. За эти годы проектировщики и испытатели обнаружили, что фазы выпуска могут иметь столь же существенное влияние на характеристики двигателя, как и фазы впуска. Фазы выпуска определяются высотой выпускного окна в стенке цилиндра, то есть когда оно закрывается и открывается поршнем по мере того, как он перемешается в цилиндре вверх и вниз. Конечно, как и во всех других случаях, нет одного единственного положения, которое охватывало бы все режимы двигателя. Во- первых, это зависит оттого, для чего двигатель должен использоваться, во-вторых, как этот двигатель используется. Например, для одного и того же двигателя оптимальная высота выпускного окна различна при низких и при высоких частотах вращения двигателя, а при углубленном рассмотрении можно сказать, что то же относится и к размерам канала, и непосредственно к размерам выпускной трубы. В результате на производстве разработаны различные системы с изменяющимися при работе двигателя характеристиками выпускных систем для соответствия изменяющимся частотам врашения. Такие системы появились у (YPVS), (АТАС). (KIPS), (SAPC), Cagiva (CTS) и Aprilia (RAVE). Ниже описываются системы , и .

Системе с мощностным клепаном Yamaha — YPVS

В основе этой системы лежит непосредственно мощностной клапан, который по существу является роторным клапаном, установленным в гильзе цилиндра так, чтобы его нижняя кромка соответствовала верхней кромке выпускного окна. На низких частотах вращения двигателя клапан находится в закрытом положении, ограничивая эффективную высоту окна: это улучшает характеристики на низких и средних режимах Когда частота вращения двигателя достигает заданного уровня, клапан открывается, увеличивая эффективную высоту окна, что способствует улучшению характеристик на высоких скоростях. Положение мощностного клапана контролирует серводвигатель при помощи троса и шкива. Блок управления YPVSi-получает данные об угле открытия клапана от потенциометра на серводвигателе и данные о частоте вращения двигателя от блока управления зажиганием; эти данные используются для выработки правильного сигнала к механизму привода серводвигателя (см. рис. 1.86). Замечание: На внедорожных мотоциклах компании используется несколько отличная версия системы из-за малой мощности аккумулятора: мощностной клапан приводится в действие от центробежного механизма, установленного на коленчатом валу.

Комплексная система мощностных клапанов Kawasaki — KIPS

Система имеет механический привод от установленного на коленчатом валу центробежного (шарикового) регулятора, Вертикальная тяга соединяет механизм привода с тягой управления мощностным клапаном, установленным в гильзе цилиндра. Два таких мощностных клапана расположены во вспомогательных каналах с обеих сторон от главного впускного окна и связаны с тягой привода посредством шестерни и зубчатой рейки. По мере того, как тяга привода перемещается «из стороны в сторону», клапана вращаются, открывая и закрывая вспомогательные каналы в цилиндре и камере резонатора, расположенной с левой стороны двигателя. Система рассчитана так, чтобы при низкой частоте вращения вспомогательные каналы были закрыты клапанами для обеспечения кратковременного открытия канала. Левый клапан открывает камеру резонатора покидающим отработавшим газам, таким образом увеличивая объем расширительной камеры. При высокой частоте вращения клапана поворачиваются, чтобы открыть оба вспомогательных канала и увеличить продолжительность открытия канала, следовательно, обеспечить большую пиковую мощность. Камера резонатора закрывается клапаном с левой стороны, снижая общий объем выпускной системы. Система KIPS обеспечивает улучшение характеристик на низких и средних частотах вращения за счет уменьшения высоты канала и большего объема выпускной системы а при высоких частотах вращения — за счет увеличения высоты выпускного окна и меньшего объема системы выпуска. В дальнейшем система была усовершенствована за счет введения промежуточной шестерни между тягой привода и одним из клапанов, обеспечивающей вращение клапанов во встречных направлениях, а также добавления плоского мощностного клапана на передней кромке выпускного окна. На моделях большего объема запуск и работа на низких частотах вращения была улучшены за счет добавления соплового профиля в верхней части клапанов.

Камера усиления крутящего момента с автоматическим управлением Honda — АТАС

Система, применяемая на моделях фирмы , имеет привод от автоматического центробежного регуляторе, установленного на коленчатом валу. Механизм, состоящий из рейки и валика, передает усилие от регулятора к клапану АТАС, установленному в гильзе цилиндра. Камера HERP (Резонансная Энергетическая Труба ) открывается клапаном АТАС при низких частотах вращения двигателя и закрывается при высоких.

Система впрыска топлива

Судя по всему, очевидным методом решения всех проблем, связанных с наполнением камеры сгорания двухтактного двигателя топливом и воздухом, не говоря уже о проблемах высокого расхода горючего и вредных выбросов, является использование системы впрыска топлива. Однако, если топливо не подводится непосредственно в камеру сгорания, все еще остаются характерные проблемы с фазой наполнения и эффективностью двигателя. Проблема, связанная с непосредственным впрыском топлива в камеру сгорания, заключается в том. что топливо может быть подано только после того, как впускные окна будут закрыты, следовательно, остается мало времени для распыливания и полного перемешивания топлива с воздухом, находящимся в цилиндре (который поступает из кривошипной камеры, как в традиционных двухтактных двигателях). Это порождает другую проблему, так как давление внутри камеры сгорания после закрытия выпускного окна велико, и она быстро нарастает, следовательно, топливо должно подаваться при еще более высоком давлении, иначе оно просто не будет истекать из форсунки. Это требует довольно крупногабаритного топливного насоса, что влечет за собой проблемы связанные с увеличением веса, габаритов и стоимости.Aprilia решила эти проблемы, применив систему, называемуюDITECH, основанную на конструкции австралийской компании,PeugeotиKymmcoразработали подобную систему. Форсунка в начале цикла двигателя подает струю топлива в отдельную закрытую вспомогательную камеру, содержащую сжатый воздух (подаваемый либо от отдельного компрессора, либо по каналу с обратным клапаном от цилиндра]. После того, как выпускное окно закрывается, вспомогательная камера сообщается с камерой сгорания через клапан или сопло, и смесь подается непосредственно к свече зажигания. Aprilia претендует на снижение вредных выбросов на 80 %, достигаемое за счет снижения не 60 % расхода масла и на 50 % расхода горючего, кроме того, скорость скутера с такой системой на 15 % выше скорости такого же скутера со стандартным карбюратором.

Главное преимущество применения непосредственного впрыска в том. что по сравнению с обыкновенным двухтактным двигателем исчезает необходимость предварительного перемешивания топлива с маслом для смазки двигателя. Смазка улучшается, поскольку масло не смывается топливом с подшипников и, следовательно, требуется меньшее количество масла, в результате чего снижается токсичность. Сгорание топлива также улучшается, а нагарообразование на поршнях, поршневых кольцах и в выпускной системе снижается. Воздух по-прежнему подается через кривошипную камеру (его расход определяется дроссельной заслонкой, связанной с ручкой газа мотоцикла) Это означает, что масло все еще сгорает в цилиндре, и смазка и смазка не столь эффективна, как хотелось бы. Однако результаты независимых испытаний говорят сами за себя. Все, что теперь необходимо-обеспечить подвод воздуха, минуя кривошипную камеру.

Статью прочитали: 880

Отрезки времени от начала момента открытия клапанов двигателя до их полного закрытия относительно мертвых точек движения поршня получили наименование фазы газораспределения. Их влияние на работу двигателя очень велико. Так, от продолжительности фаз зависит эффективность заполнения и очистки цилиндров в процессе работы мотора. Это напрямую определяет экономичность расхода топлива, мощность и крутящий момент.

Сущность и роль фаз газораспределения

На данный момент существуют двигатели, в которых фазы не могут изменяться принудительно, и двигатели, оснащенные механизмами (например, CVVT). Для первого типа двигателей фазы подбираются эксперементально при конструировании и расчете силового агрегата.

Нерегулируемые и регулируемые фазы газораспределения

Визуально все они отображаются на специальных диаграммах фаз газораспределения. Верхняя и нижняя мертвые точки (ВМТ и НМТ соответственно) представляют собой крайние позиции поршня, движущегося в цилиндре, которые соответствуют наибольшему и наименьшему расстоянию между произвольной точкой поршня и осью вращения коленвала мотора. Точки начала открытия и закрытия клапанов (длина фазы) показываются в градусах и рассматриваются относительно вращения коленчатого вала.

Управление фазами осуществляется при помощи (ГРМ), который состоит из следующих элементов:

  • кулачковый распредвал (один или два);
  • цепной или ременной привод от коленвала к распредвалу.

Газораспределительный механизм

Всегда состоит из тактов, каждому из которых соответствует определенное положение клапанов на впуске и выпуске. Таким образом, начало и конец фазы зависят от угла положения коленвала, который связан с распределительным валом, управляющим положением клапанов.

За один оборот распредвала коленчатый вал выполняет два оборота и его суммарный угол поворота за рабочий цикл равен 720°.

Круговая диаграмма фаз газораспределения

Работу фаз газораспределения для четырехтактного двигателя рассмотрим на следующем примере (см. картинку):

  1. Впуск . На этом этапе поршень движется от ВМТ к НМТ, а коленвал поворачивается на 180º. Осуществляется закрытие выпускного клапана и последующее открытие впускного. Последние происходит с опережением на 12º.
  2. Сжатие . Поршень перемещается от НМТ к ВМТ, а коленвал совершает еще один поворот на 180º (360º от начального положения). Выпускной клапан остается в закрытом положении, а впускной остается открытым, пока коленвал не повернется на 40º.
  3. Рабочий ход . Поршень идет от ВМТ к НМТ под действием силы воспламенения топливовоздушной смеси. Впускной клапан находится в закрытом положении, а выпускной открывается с опережением, когда коленвал еще не дошел 42º до НМТ. На этом такте полный поворот коленвала составляет также 180º (540º от начального положения).
  4. Выпуск . Поршень идет от НМТ к ВМТ и при этом выталкивает отработавшие газы. В этот момент впускной клапан закрыт (откроется за 12º до ВМТ), а выпускной остается в открытом положении и после достижения коленвалом ВМТ еще на 10º. Общая величина поворота коленвала на этом такте также 180º (720º от начальной точки).

Фазы грм также зависят от профиля и позиции кулачков распредвала. Так, если они одинаковы на впуске и выпуске, то длительность открытия клапанов также будет одинакова.

Почему выполняется запаздывание и опережение срабатывания клапанов?

Чтобы улучшить наполнение цилиндров, а также обеспечить более интенсивную очистку от отработавших газов, срабатывание клапанов происходит не в момент достижения поршня мертвых точек, а с небольшим опережением или запаздыванием. Так, открытие впускного клапана выполняется до момента прохождения поршнем ВМТ (от 5° до 30°). Это позволяет обеспечить более интенсивное нагнетание свежего заряда в камеру сгорания. В свою очередь, закрытие впускного клапана происходит с запаздыванием (после того как поршень достиг нижней мертвой точки), что позволяет продолжить наполнение цилиндра горючим за счет сил инерции, так называемый инерционный наддув.

Выпускной клапан также открывается с опережением (от 40° до 80°) до момента достижения поршнем НМТ, что позволяет обеспечить выход большей части отработавших газов под действием собственного давления. Закрытие выпускного клапана, напротив, происходит с запаздыванием (после прохождения поршнем верхней мертвой точки), что позволяет силам инерции продолжить удаление отработавших газов из полости цилиндра и делает более эффективной его очистку.

Углы опережения и запаздывания не являются общими для всех двигателей. Более мощные и быстроходные имеют большие значения этих интервалов. Таким образом, их фазы газораспределения будут шире.

Этап работы двигателя, при котором оба клапана открыты одновременно, получил название перекрытие клапанов. Как правило, величина перекрытия составляет около 10°. При этом, поскольку длительность перекрытия очень мала, а раскрытие клапанов незначительно, утечки не происходит. Это довольно благоприятный этап для наполнения и очистки цилиндров, что особенно важно при высоких оборотах.

В начале открытия впускного клапана текущий уровень давления в камере сгорания выше, чем атмосферное. В результате отработавшие газы очень быстро перемещаются к выпускному клапану. Когда двигатель перейдет на такт впуска, в камере установится высокое разрежение, выпускной клапан полностью закроется, а впускной раскроется на достаточную для интенсивного наполнения цилиндра величину сечения.

Особенности регулируемых фаз газораспределения

При высоких скоростях двигателю автомобиля необходимо больше объема воздуха. И поскольку в нерегулируемых ГРМ клапаны могут закрыться до того, как в камеру сгорания поступает его достаточное количество, работа мотора оказывается неэффективной. Для решения этой проблемы были разработаны различные способы регулировки фаз газораспределения.


Клапан регулировки фаз газораспределения

Первые моторы, имеющие подобную функцию, позволяли выполнять ступенчатую регулировку, которая позволяла менять длину фазы в зависимости от достижения двигателем определенных величин. Со временем появились бесступенчатые конструкции, позволяющие выполнить более плавную и оптимальную настройку.

Простейшим решением является система сдвига фаз (CVVT), реализуемая путем поворота распределительного вала относительно коленвала на определенный угол. Это позволяет изменить момент открытия и закрытия клапанов, но фактическая продолжительность фазы остается неизменной.

Чтобы изменить непосредственно длительность фазы, в ряде автомобилей используются несколько кулачковых механизмов, а также колеблющиеся кулачки. Для точной работы регуляторов применяются комплексы из датчиков, контроллера и исполнительных механизмов. Управление такими устройствами может быть электрическим или гидравлическим.

Одной из основных причин внедрения систем с регулировкой ГРМ является ужесточение экологических стандартов по уровню токсичности отработавших газов. Это означает, что для большинства производителей вопрос оптимизации фаз газораспределения остается одним из важнейших.

Тем, кто связан с гоночной автомобильной или мотоциклетной техникой или просто интересуется конструкцией спортивных машин, хорошо знакомо имя инженера Вильгельма Вильгельмовича Бекмана — автора книг «Гоночные автомобили» и «Гоночные мотоциклы». Не раз он выступал и на страницах «За рулем».

Недавно вышло в свет третье издание книги «Гоночные мотоциклы» (второе было выпущено в 1969 году), переработанное и дополненное сведениями о новых конструктивных решениях и анализом тенденции дальнейшего развития двухколесных машин. Читатель найдет в книге очерк об истории зарождения мотоциклетного спорта и влиянии его на развитие мотоциклетной промышленности, получит сведения о классификации машин и соревнований, познакомится с особенностями конструкции двигателей, трансмиссии, шасси и системы зажигания гоночных мотоциклов, узнает о путях их совершенствования.

Многое из того, что применяется впервые на спортивных машинах, затем внедряется на серийных дорожных мотоциклах. Поэтому знакомство с ними позволяет как бы заглянуть в будущее и представить себе мотоцикл завтрашнего дня.

Подавляющее количество строящихся ныне в мире мотоциклетных двигателей работает по двухтактному циклу, поэтому к ним мотолюбители проявляют наибольший интерес. Предлагаем вниманию читателей отрывок из книги В. В. Бекмана, посвященный одному из важнейших вопросов развития двухтактных двигателей. Мы сделали только незначительные сокращения, изменили нумерацию рисунков и привели некоторые наименования в соответствие с употребляемыми в журнале.

В настоящее время двухтактные гоночные двигатели превосходят по мощности своих четырехтактных соперников в классах от 50 до 250 см3: в классах большего рабочего объема четырехтактные двигатели пока сохраняют конкурентоспособность. так как высокая форсировка двухтактных двигателей этих классов труднее, причем более заметным становится известный недостаток двухтактного процесса — повышенный расход топлива, требующий увеличения объема топливных баков и более частых остановок для заправки.

Прототипом большинства современных двухтактных двигателей гоночного типа является конструкция, разработанная фирмой МЦ (ГДР). Работы по усовершенствованию двухтактных двигателей, выполненные этой фирмой, обеспечили гоночным мотоциклам МЦ классов 125 и 250 см3 высокие динамические качества, и их конструкция в той или иной степени была скопирована многими фирмами в других странах мира.

Гоночные двигатели МЦ (рис. 1) имеют простую конструкцию и похожи как по устройству, так и по внешнему виду на обычные двухтактные двигатели.

А — общий вид; б — расположение газораспределительных каналов

За 13 лет мощность гоночного двигателя МЦ 125 см3 выросла с 8 до 30 л. с.; уже в 1962 году была достигнута литровая мощность 200 л. с./л. Одним из существенных элементов двигателя является дисковый вращающийся золотник, предложенный Д. Циммерманом. Он позволяет получить несимметричные фазы впуска и выгодную форму впускного тракта: благодаря этому возрастает коэффициент наполнения картера. Дисковый золотник изготовляют из тонкой (около 0,5 мм) листовой пружинной стали. Оптимальная толщина диска найдена опытным путем. Дисковый золотник работает как мебранный клапан, прижимаясь к отверстию впускного канала, когда в картере происходит сжатие горючей смеси. При увеличенной или уменьшенной толщине золотника наблюдается ускоренный износ диска. Слишком тонкий диск прогибается в сторону впускного канала, что влечет за собой увеличение силы трения между диском и крышкой картера; увеличенная толщина диска также ведет к увеличенным потерям на трение. В результате доводки конструкции срок службы дискового золотника был увеличен с 3 до 2000 часов.

Дисковый золотник не вносит особого усложнения в устройство двигателя. Золотник устанавливается на валу посредством скользящего шпоночного или шлицевого соединения, чтобы диск мог занимать свободное положение и не защемляться в узком пространстве между стенкой картера и крышкой.

По сравнению с классической системой управления впускным окном нижней кромкой поршня золотник дает возможность раньше открыть впускное окно и долго держать его открытым, что способствует повышению мощности как на высоких, так и на средних частотах вращения. При обычном устройстве газораспределения раннее открытие впускного окна неизбежно связано с большим запаздыванием его закрытия: это полезно для получения максимальной мощности, но связано с обратным выбросом горючей смеси на средних режимах и соответствующим ухудшением характеристики крутящего момента и пусковых качеств двигателя.

На двухцилиндровых двигателях с параллельными цилиндрами дисковые золотники устанавливают по концам коленчатого вала, что при выступающих справа и слева карбюраторах дает большие габариты по ширине двигателя, увеличивает лобовую площадь мотоцикла и ухудшает его внешнюю форму. Для устранения этого недостатка иногда применяли конструкцию в виде двух спаренных под углом одноцилиндровых двигателей с общим картером и воздушным охлаждением («Дерби», Ява).

В отличие от двигателя Ява цилиндры спаренных двигателей могут занимать вертикальное положение: при этом требуется водяное охлаждение, так как задний цилиндр заслонен передним. По такой схеме был изготовлен один из гоночных двигателей МЦ 125 см3.

Трехцилиндровый двигатель Suzuki (50 см3, литровая мощность около 400 л. с./л) с дисковыми золотниками по существу состоял из объединенных в одном блоке трех одноцилиндровых двигателей с самостоятельными коленчатыми валами: два цилиндра были горизонтальными. один вертикальным.

Двигатели с золотнинами на впуске конструировались и в четырехцилиндровых вариантах. Типичным примером могут служить двигатели Yamaha, изготовленные в виде двух спаренных шестеренной передачей двухцилиндровых двигателей с параллельными цилиндрами; одна пара цилиндров расположена горизонтально, вторая — под углом вверх. Двигатель 250 см3 развивал до 75 л. с., а мощность варианта 125 см3 достигала 44 л. с. при 17 800 об/мин.

По аналогичной схеме сконструирован и четырехцилиндровый двигатель Ява (350 см3, 48x47) с золотниками на впуске, представляющий собой два спаренных двухцилиндровых двигателя с водяным охлаждением. Он развивает мощность 72 л. с. при 1300 об /мин. Еще больше мощность четырехцилиндрового двигателя «Морбиделли» класса 350 см3 такого же типа — 85 л. с.

Ввиду того, что дисковые золотники устанавливаются по концам коленчатого вала, отбор мощности в многоцилиндровых конструкциях с такой системой впуска обычно производится через шестерню на средней шейке вала между отсеками картера. При дисковых золотниках рассматриваемого типа увеличение числа цилиндров двигателя свыше четырех нецелесообразно, так как дальнейшее спаривание двухцилиндровых двигателей привело бы к очень громоздкой конструкции; даже в четырехцилиндровом исполнении двигатель получается на пределе допустимых габаритов.

В последнее время на некоторых гоночных двигателях «Ямаха» применяют автоматические мембранные клапаны во впускном канале между карбюратором и цилиндром (рис. 2, а). Клапан представляет собой тонкую эластичную пластинку, отгибающуюся под действием разрежения в картере и освобождающую проход для горючей смеси. Во избежание поломки клапанов предусмотрены ограничители их хода. При средних режимах работы клапаны достаточно быстро закрываются, чтобы предупредить обратный выброс горючей смеси, что улучшает характеристику крутящего момента двигателя. Такие клапаны на основании практических наблюдений могут нормально функционировать при скоростных режимах до 10 000 об/мин. При более высоких числах оборотов их работоспособность проблематична.

: а — схема устройства; б —начало наполнения картера; в — подсос смеси через клапаны в цилиндр; 1 — ограничитель; 2 — мембрана; 3 — окно в поршне

В двигателях с мембранными клапанами для улучшения наполнения целесообразно поддерживать сообщение между впускным каналом и подпоршневым пространством или продувочным каналом при положении поршня вблизи Н.М.Т. Для этого в стенке поршня со стороны впуска предусматривают соответствующие окна 3 (рис. 2, б). Мембранные клапаны обеспечивают дополнительный подсос горючей смеси, когда во время продувки в цилиндрах и картере образуется разрежение (рис. 2, в).

Высокую мощность развивают также двухтактные двигатели, у которых процессом впуска горючей смеси в картер управляет поршень, как у подавляющего большинства обычных двигателей массового производства. В основном это относится к двигателям рабочим объемом 250 см3 и более. Примерами могут служить мотоциклы «Ямаха» и «Харлей-Давидсон» (250 см3 — 60 л. с.;

350 см3 — 70 л. с.), а также мотоцикл «Сузуки» с двухцилиндровым двигателем класса 500 см3 мощностью 75 л. с., занявший первое место в гонке Т.Т. (Турист Трофи) 1973 года. Форсирование этих двигателей осуществляется так же, как и в случае использования дисковых золотников, тщательной конструктивной проработкой органов газораспределения и на основе изучения взаимного влияния впускного и выпускного трактов.

Двухтактные двигатели независимо от системы управления впуском имеют выпрямленную форму впускного тракта, который направлен в подпоршневое пространство, куда поступает горючая смесь; по отношению к оси цилиндра впускной тракт может быть перпендикулярным или с наклоном снизу вверх или сверху вниз. Такая форма впускного тракта благоприятна для использования эффекта резонансного наддува. Поток горючей смеси во впускном тракте непрерывно пульсирует, причем в нем возникают волны разрежения и повышенного давления. Настройка впускного тракта за счет подбора его размеров (длины и проходных сечений) позволяет обеспечить в определенном интервале чисел оборотов закрытие впускного окна в момент входа в картер волны повышенного давления, что увеличивает коэффициент наполнения и повышает мощность двигателя.

При значениях коэффициента наполнения картера, превышающих единицу, двухтактный двигатель должен был бы развивать вдвое большую мощность по сравнению с четырехтактным. В действительности этого не происходит вследствие существенных потерь свежей смеси в выхлоп н перемешивания поступившего в цилиндр заряда с остаточными газами от предыдущего рабочего цикла. Несовершенство рабочего цикла двухтактного двигателя обусловлено одновременным протеканием процессов наполнения цилиндра и его очистки от продуктов сгорания, тогда как в четырехтактном двигателе эти процессы разделены во времени.

Процессы газообмена в двухтактном двигателе отличаются большой сложностью и до сих пор плохо поддаются расчету. Поэтому форсирование двигателей ведется, главным образом, путем экспериментального подбора соотношений и размеров конструктивных элементов органов газораспределения от впускного патрубка карбюратора до концевого патрубка выхлопной трубы. Со временем был накоплен большой опыт по форсированию двухтактных двигателей, описанный в различных исследованиях.

В первых конструкциях гоночных двигателей МЦ была использована возратно-петлевая продувка типа «Шнюрле» с двумя продувочными каналами. Значительное улучшение мощностных показателей было получено благодаря добавлению третьего продувочного канала (см рис. 1), расположенного спереди напротив выпускных окон. Для перепуска через этот канал на поршне предусмотрено специальное окно. Дополнительный продувочный канал устранил образование подушки горячих газов под дном поршня. Благодаря этому каналу удалось увеличить наполнение цилиндра, улучшить охлаждение и смазку свежей смесью игольчатого подшипника верхней головки шатуна, а также облегчить температурный режим работы дна поршня. В результате мощность двигателя повысилась на 10 процентов, а прогары поршней и поломки подшипника верхней головки шатуна были устранены.

Качество продувки зависит от степени сжатия горючей смеси в картере; на гоночных двигателях этот параметр выдерживается в пределах 1,45 — 1,65, что требует весьма компактной конструкции кривошипно-шатунного механизма.

Получение высоких литровых мощностей возможно за счет широких фаз распределения и большой ширины газораспределительных окон.

Ширина окон гоночных двигателей, измеренная центральным углом в поперечном сечении цилиндра, достигает 80 — 90 градусов, что создает тяжелые условия работы для поршневых колец. Зато при такой ширине окон в современных двигателях обходятся без склонных к перегреву перемычек. Увеличение высоты продувочных окон сдвигает максимальный крутящий момент в область более низкого числа оборотов, а увеличение высоты выпускных окон создает обратный эффект.

Рис. 3. Системы продувки: а — с третьим продувочным окном, б — с двумя дополнительными продувочными каналами; в — с разветвляющимися продувочными каналами.

Система продувки с третьим дополнительным продувочным каналом (см. рис. 1) удобна для двигателей с золотником, у которых впускной канал расположен сбоку, а зона цилиндра напротив выпускного окна свободна для размещения в ней продувочного окна; последнее может иметь перемычку, как показано на рис. 3, а. Дополнительное продувочное окно способствует образованию потока горючей смеси, огибающего полость цилиндра (петлевая продувка). Весьма существенное значение для эффективности процесса газообмена имеют углы входа продувочных каналов; от них зависят форма и направление потока смеси в цилиндре. Горизонтальный угол а, колеблется в пределах 50 — 60 градусов, причем большее значение соответствует более высокому форсированию двигателя. Вертикальный угол a2, равен 45 — 50 градусов. отношение сечений дополнительного и основного продувочных окон составляет около 0,4.

На двигателях без золотника карбюраторы и впускные окна, как правило, расположены на задней стороне цилиндров. В этом случае обычно применяют иную систему продувки — с двумя боковыми дополнительными продувочными каналами (рис. 3,б). Горизонтальный угол входа а, (см. рис. 3,а) дополнительных каналов — около 90 градусов. Вертикальный угол входа продувочных наналов колеблется для различных моделей в довольно широких пределах: на модели «Ямаха» ТД2 класса 250 см3 он составляет для главных продувочных каналов 15 градусов, а для дополнительных — 0 градусов; на модели «Ямаха» ТД2 класса 350 см3 соответственно 0 и 45 градусов.

Иногда применяется вариант этой системы продувки с разветвляющимися продувочными каналами (рис. 3,в). Дополнительные продувочные окна расположены напротив выпускного окна, и, следовательно, подобное устройство приближается к первой из рассмотренных систем, имеющей три окна. Вертикальный угол входа дополнительных продувочных каналов 45 — 50 градусов. Отношение сечений дополнительных и основных продувочных окон также около 0,4.

Рис. 4. Схемы движения газов в цилиндре: а — с разветвляющимися ка налами; б — с параллельными.

На рис. 4 показаны схемы движения газов в цилиндре во время процесса продувки. При остром угле входа дополнительных продувочных каналов поступающий из них поток свежей смеси удаляет клубок отработавших газов в середине цилиндра, не захватываемый потоком смеси из основных продувочных каналов. Возможны и другие варианты систем продувки по количеству продувочных окон.

Следует заметить, что на многих двигателях продолжительность открытия дополнительных продувочных окон на 2 — 3 градуса меньше, чем у основных.

На некоторых двигателях «Ямаха» дополнительные продувочные каналы были выполнены в виде желобков на внутренней поверхности цилиндра; внутренней стенкой канала является здесь стенка поршня при его положениях вблизи от Н.М.Т.

На процессе продувки сказывается и профиль продувочных каналов. Плавная форма без резких изгибов дает меньшие перепады давления и улучшает показатели работы двигателя, в особенности на промежуточных режимах.

Приведенные в этом разделе сведения показывают, что двухтактные двигатели выделяются простотой своего устройства.

Повышение удельной мощности двигателей этого типа в течение последнего десятилетия не сопровождалось какими-либо существенными изменениями базовой конструкции; оно явилось следствием тщательного экспериментального подбора соотношений и размеров ранее известных конструктивных элементов.

Выпускной клапан начинает открываться в конце про­цесса расширения с опережением относительно н.м.т. на угол φ о.в. = 30ч-75° (рис. 20) и закрывается после в.м.т. с запаздыванием на угол φ з.в., когда поршень движется в такте наполнения в направлении к н.м.т. Начало откры­тия и закрытие впускного клапана также сдвинуты отно­сительно мертвых точек: открытие начинается до в.м.т. с опережением на угол φ 0 . вп, а закрытие происходит пос­ле н.м.т. с запаздыванием на угол φ з.вп. в начале такта сжатия. Большая часть процессов выпуска и наполнения протекает раздельно, но около в.м.т. впускной и выпуск­ной клапаны открыты некоторое время одновременно. Продолжительность перекрытия клапанов, равная сумме углов φ з.в + φ о.вп, невелика у поршневых двигателей (рис. 20, а), а у комбинированных может быть значи­тельной (рис. 20, б). Общая продолжительность газооб­мена составляет φ о.в + 360 о + φ з.вп =400-520 о; у высоко­оборотных двигателей она больше.

Периоды газообмена в двухтактных двигателях

В двухтактном двигателе процессы газообмена про­исходят при перемещении поршня вблизи н.м.т. и зани­мают часть хода поршня в тактах расширения и сжатия.

В двигателях с петлевой схемой газообмена и впуск­ные, и выяускные окна открываются поршнем, поэтому фазы газораспределения и диаграммы площади попереч­ного сечения окон симметричны относительно н.м.т. (рис. 24, а). Во всех двигателях с прямоточными схема­ми газообмена (рис. 24, б) фазы открытия выпускных окон (или клапанов) выполняют несимметричными отно­сительно н.м.т., достигая тем самым лучшего наполнения цилиндра. Обычно впускные окна и выпускные окна (или клапаны) закрываются одновременно или с небольшой разницей по углу. Осуществить несимметричные фазы возможно и в двигателе с петлевой схемой газообмена,

если установить (на впуске или выпуске) дополнитель­ные устройства - золотники или клапаны. Из-за недоста­точной надежности подобных устройств в настоящее вре­мя их не применяют.

Общая продолжительность процессов газообмена в двухтактных двигателях соответствует 120-150° угла поворота коленчатого вала, что в 3-3,5 раза меньше, чем в четырехтактных. Угол открытия выпускных окон (или клапанов) φ о.в. = 50-90° до н.м.т., а угол предва­рения их открытия φ пр = 10-15 0 . В высокооборотных двигателях с выпуском через клапаны эти углы больше, а в двигателях с выпуском через окна - меньше.

В двухтактных двигателях процессы выпуска и на­полнения происходят в большей части совместно - при одновременно открытых впускных (продувочных) и вы­пускных окнах (или выпускных клапанах). Поэтому воз­дух (или горючая смесь) поступает в цилиндр, как пра­вило, при условии, что давление перед впускными окна­ми больше давления за выпускными окнами (клапа­нами) .

Литература:

    Наливайко В.С., Ступаченко А.Н. Сыпко С.А. Методические указания к проведению лабораторных работ по курсу «Судовые ДВС», Николаев, НКИ, 1987, 41с.

    Судовые двигатели внутреннего сгорания. Учебник/ Ю.Я. Фомин, А.И. Горбань, В.В. Добровольский, А.И. Лукин и др.-Л.:Судостроение, 1989 – 344 с.:ил.

    Двигатели внутреннего сгорания. Теория поршневых и комбинированных двигателей: Под ред. А.С. Орлина, М.Г. Круглова –М.: Машиностроение,1983ю – 372стр.

    Ваншейдт В.А. Судовые двигатели внутреннего сгорания. Л. Судостроение, 1977.-392с.

Итак, что же это такое и для чего нужно. Расписывать основы работы 2Т двигателей не буду, так как их все знают, но не все понимают, что такое фазы газораспределения и почему они именно такие, а не другие.
Фазы газораспределения - это промежуток времени, за который открываются и закрываются окна в цилиндре при движении поршня вверх-вниз. Считаются они в градусах поворота колен вала двигателя. К примеру, фаза выпуска в 180 градусов означает, что выпускное окно начнет открываться, будет открыто, а затем закроется при половине оборота (180 из 360) колен вала двигателя. Также надо сказать, что окна открываются при движении поршня вниз. И открываются на максимум в нижней мертвой точке (НМТ). Затем при движении поршня вверх закрываются. Из-за такой особенности конструкции 2Т двигателей фазы газораспределения получаются симметричными относительно мертвых точек.

Для полноты картины процесса газораспределения надо также сказать и о площади окон. Фаза, как я уже писал это время, в течение которого открываются и закрываются окна, но не менее важную роль играет и площадь окна. Ведь при одном и том же времени открытия окна, смеси (продувка) пройдет больше через то окно, которое больше по площади и наоборот. Тоже самое и для выпуска, отработавших газов больше уйдет из цилиндра, если площадь окна больше.
Общий термин, характеризующий весь процесс протекания газов через окна, называется время-сечение.
И чем он больше, тем выше мощность двигателя и наоборот. Именно поэтому мы видим такие огромные по сечению каналы продувки, впуска и выпуска, а также высокие фазы газораспределения на современных высокофорсированных 2Т двигателях.

Итак, мы видим, что функции газораспределения выполняют окна цилиндра и поршень, который их открывает и закрывает. Однако из-за этого теряется время, в течение которого поршень совершал бы полезную работу. По сути, мощность двигателя формируется только до открытия выпускного окна и при дальнейшем движении поршня вниз создание крутящего момента не происходит либо очень незначительно. В общем, объем двигателя 2Т в отличие от 4Т используется не полностью. Поэтому первостепенной задачей конструкторов является увеличение времени - сечения при минимальных фазах. Это дает лучшие показатели кривых момента и экономичности, чем притом же времени – сечении, но более высоких фазах.
Но поскольку диаметр цилиндра ограничен, а также ограничены и ширина окон, то для достижения высокого уровня форсирования двигателя приходится повышать фазы газораспределения.
Многие люди, желая достичь большей мощности начинают увеличивать окна в цилиндре либо наугад, либо по чьему то совету или где то вычитав совет, но не очень то понимают, что получат в итоге, и правильно ли делают. А может им совсем другое надо?
Допустим у нас имеется какой либо двигатель и мы хотим получить от него большей отдачи. Что нам делать с фазами? Первое что многим приходит на ум – пропилить выпускные окна вверх, либо поднять цилиндр за счет прокладки, а также пропилить впуск вниз или подрезать поршень со стороны впуска. Да, таким образом мы добьемся увеличения фаз и как следствие времени - сечение, но какой ценой. Мы уменьшили время, в течение которого поршень будет делать полезную работу. Почему же вообще увеличивается мощность при увеличении фаз, а не уменьшается? Увеличивается время – сечение скажите вы, да это так. Но не забываем что это 2Т двигатель и в нем весь принцип работы построен на резонансных волнах давления и разряжения. И по большей части ключевую роль здесь играет выпускная система. Именно она создает разряжение в цилиндре при начале выпуска, вытягивая отработавшие газы, а также вслед вытягивает и смесь из продувочных каналов, увеличивая время-сечение продувки. А также дозаправляет обратно вылетевшую смесь из цилиндра назад в цилиндр. В результате мы имеем увеличение мощности при увеличении фаз. Но нельзя забывать также что выпускная система настроена на определенные обороты, за пределами которых смесь, вылетевшая из цилиндра не возвращается обратно, а полезный ход поршня уменьшен из-за высоких фаз. Вот и выходит провал мощности и перерасход топлива на нерезонансных частотах двигателя.
Так можно ли получить ту же мощность и уменьшить провал и расход топлива? Да, если добиться того же время - сечения без увеличения фаз газораспределения!
Но что это означает на практике? Увеличение ширины окон и сечение каналов ограничено толщиной стенок каналов и предельными величинами ширины окон из-за работы колец. Но пока есть резерв, его надо использовать, а только затем повышать фазы.
Итак, если вы сами толком не знаете, чего хотите и как многие говорят - хочу мощности, но и чтобы низы не пропали, тогда увеличиваете пропускную способность каналов и окон без увеличения фаз. Если вам этого окажется мало, повышаете фазы постепенно. К примеру, оптимально будет на 10 градусов выпуск, на 5 градусов продувку.
Хотелось бы немного отступить и отдельно сказать о фазе впуска. Тут нам очень повезло, когда люди придумали обратный пластинчатый клапан, в простонароде лепестковый клапан (ЛК). Плюс его в том, что он автоматически изменяет фазу впуска и площадь впуска. Таким образом, он изменяет время-сечение впуска по потребностям двигателя в данный конкретный момент. Главное изначально правильно его подобрать и установить. Площадь клапана должна быть больше площади сечения карбюратора в 1,3 раза, чтобы не создать лишнего сопротивления потоку смеси.

Сами впускные окна должны быть еще больше, а фаза впуска должна быть максимально большой, чтобы ЛК начинал работать как можно раньше. В идеале с самого начала движения поршня вверх.
Примером того, как можно добиться максимальной фазы впуска, могут служить следующие фото доработок впуска(не Ява, но суть от этого не меняется):

Это один из лучших вариантов доработки впуска. По сути, впуск здесь представляет комбинированный вариант впуска в цилиндр и впуска в картер(впускной канал постоянно соединён с кривошипно-шатунной камерой, КШК). Это также увеличивает ресурс НГШ за счет лучшего обдува свежей смесью.

Для формирования этого канала, соединяющего впускной канал с КШКв картере выбирается максимально возможное количество металла, который расположен со стороны впуска возле гильзы.

В самой гильзе делаются дополнительные окна ниже основных.

В рубашке цилиндра также выбирается металл возле гильзы.
Правильно установленный ЛК позволяет один раз и навсегда решить проблему с подбором фазы впуска.
Кто же все-таки решился добиться большей мощности и знает на что нацелен, готов пожертвовать низами ради взрывного подхвата на верхах, тот может смело увеличивать фазы газораспределения. Лучшим решением будет использование чужого опыта в этом деле.
К примеру, в зарубежной литературе даются такие рекомендации:

Вариант Road race я бы исключил, так фазы очень экстремальные, рассчитанные на шоссейно-кольцевые гонки и при езде на обычных дорогах не практичны. Да и скорей всего рассчитаны под мощностной клапан, уменьшающий фазу выпуска на низких и средних оборотах до приемливого уровня. В любом случае делать фазу выпуска больше 190 градусов не стоит. Оптимальный же вариант как по мне 175-185градусов.

По поводу продувки… тут все более - менее указано оптимально. Однако как понять сколько будет крутить ваш двигатель? Можно поискать уже доработки людей и выяснить у них, а можно просто взять усредненные числа. Это в районе 120-130 градусов. Оптимально 125 градуса. Более высокие числа относятся к меньшим кубатурам двигателей.
И ещё, с повышением фаз продувки также надо поднять и её давление, т.е. картерное сжатие. Для этого нужно максимально уменьшать объём кривошипно-шатунной камеры убирая лишние пустоты. Например, для начала заглушив балансировочные отверстия в коленчатом валу. Заглушки нужно делать из максимально лёгкого материала, чтобы те не повлияли на балансировку КВ. Обычно их вырезают из винных пробок(пробковое дерево) и загоняют в балансировочные отверстия, после чего с обоих сторон промазывают эпоксидкой.

По поводу впуска я писал выше, что лучше поставить ЛК и не ломать себе голову с подбором фазы.

Итак, допустим, вы определились, как будете дорабатывать свой двигатель, какие фазы газораспределения у него будут. Теперь, как же проще всего посчитать, сколько это в мм.? Очень просто. Есть математические формулы определения хода поршня, которые можно приспособить к нашим целям, что я и сделал. Один раз занес формулы в программу Exсel и получил программу по высчитыванию фаз газораспределения продувки и выпуска (ссылка для скачивания программы в конце статьи ).
Нужно только знать длину шатуна (Ява 140мм, ИЖ юпитер, восход, минск 125мм, ИЖ пс 150мм. При желании в интернете можно найти длину практически любого шатуна) и ход поршня.
Программа сделана таким образом что определяет расстояние от верхней кромки окна до края гильзы. Почему так, а не скажем просто высоту окна? Потому что это наиболее точное определение фаз. В верхней мертвой точке днище поршня ОБЯЗАНО находиться на одном уровне с краем гильзы из-за сквиша (особенности формы камеры сгорания для бездетонационной работы), и если оно вдруг не на одном уровне, то прийдеться подогнать цилиндр по высоте(например, подбором толщины прокладки под цилиндром). А вот в нижней мертвой точке днище поршня как правило находится не на одном уровне с кромками окон, а чуть выше, т.е. поршень не полностью открывает окна! Такие конструктивные особенности, ничего не поделаешь. Но это означает, что окна работают не на всю свою высоту, а поэтому фазы по ним определятся, не могут!