Как подключать светодиоды. Какая схема подключения светодиодов лучше - последовательная или параллельная Питание мощных светодиодов от 12 вольт

Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.

Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом. В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.

Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие.
Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:

    * Низкое электропотребления – в 10 раз экономичней лампочек
    * Долгий срок службы – до 11 лет непрерывной работы
    * Высокий ресурс прочности – не боятся вибраций и ударов
    * Большое разнообразие цветов
    * Способность работать при низких напряжениях
    * Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.

Маркировка светодиодов

Рис. 1. Конструкция индикаторных 5 мм светодиодов

В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания.
Затем свет проходит через корпус из эпоксидной смолы. Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.

Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние - в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках.
Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.

Рис. 2. Виды корпусов светодиодов

Цвета светодиодов

Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

Таблица 1. Маркировка светодиодов

Многоцветные светодиоды

Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.

При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.

Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.

Напряжение питания

Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА, так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

Напряжение питания - параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
Напряжение, указанное на упаковке светодиодов - это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).

Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:

R
Uпит — напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
0,75 — коэффициент надёжности для светодиода.

Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:

P — мощность резистора в ваттах.
Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
R — сопротивление резистора в омах.

Расчет токогораничивающего резистора и его мощности для одного светодиода

Типичные характеристики светодиодов

Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.

Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт.
Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

Таблица падения напряжений светодиодов в зависимости от цвета

По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.

Последовательное и параллельное включение светодиодов

При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:

При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.

Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой

    * Nmax – максимально допустимое количество светодиодов в гирлянде
    * Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах.
    * Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.
    * При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.

При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.

Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =

Все остальные действия по расчетам производятся в аналогии расчета резистора при одиночном включении светодиода.

Если напряжения источника питания не хватает даже для двух последовательно соединённых светодиодов, тогда на каждый светодиод нужно ставить свой ограничительный резистор.

Параллельное включение светодиодов с общим резистором - плохое решение. Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый, что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

Последовательное соединение светодиодов предпочтительнее ещё и с точки зрения экономного расходования источника питания: вся последовательная цепочка потребляет тока ровно столько, сколько и один светодиод. А при параллельном их соединении ток во столько раз больше, сколько параллельных светодиодов у нас стоит.

Рассчитать ограничительный резистор для последовательно соединённых светодиодов так же просто, как и для одиночного. Просто суммируем напряжение всех светодиодов, отнимаем от напряжения источника питания получившуюся сумму (это будет падение напряжения на резисторе) и делим на ток светодиодов (обычно 15 — 20 мА).

А если светодиодов у нас много, несколько десятков, а источник питания не позволяет соединить их все последовательно (не хватит напряжения)? Тогда определяем исходя из напряжения источника питания, сколько максимально светодиодов мы можем соединить последовательно. Например для 12 вольт — это 5 двухвольтовых светодиодов. Почему не 6? Но ведь на ограничительном резисторе тоже должно что-то падать. Вот оставшиеся 2 вольты (12 — 5х2) и берём для расчёта. Для тока 15 мА сопротивление будет 2/0.015 = 133 Ома. Ближайшее стандартное — 150 Ом. А вот таких цепочек из пяти светодиодов и резистора каждая, мы уже можем подключить сколько угодною Такой способ называется параллельно-последовательным соединением.

Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление.

Далее рассмотрим стабилизированную схему включения светодиодов. Коснёмся изготовления стабилизатора тока. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напягать их так и подавать максимум 20 вольт. При таком включении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток на светодиоде будет соответствовать неизменному значению в 20 мА. При напряжении 20В получаем, что к такому стабилизатору можно подключить последовательно 5 белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет протекать 20мА (лишнее напряжение погасится на стабилизаторе).

Важно! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания. В этом случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые). Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.

Каждую цепочку следует собирать из светодиодов одинаковых параметров и одного производителя.
Тоже важно! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно изготавливать устройство так, чтобы протекающий ток через светодиод был равен не 20мА, а 17-18 мА. Потеря яркости будет незначительная, зато долгий срок службы обеспечен.

Как запитать светодиод от сети 220 В.

Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину — в обратную) к нему приложится полное амплитудное напряжение сети — 315 вольт! Откуда такая цифра? 220 В — это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.
Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.

Еще один вариант подключения светодиода к электросети 220в:

Или же поставить два светодиода встречно-параллельно.

Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так — вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение — не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I — необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.

Наиболее распространённые ошибки при подключении светодиодов

1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться - в зависимости от настройки тока ограничивающим резистором.

4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

Мигающие светодиоды

Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален — напряжение питания такого светодиода может лежать в пределах от З до 14 вольт — для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

Отличительные качества мигающих сеетодиодое:

    Малые размеры
    Компактное устройство световой сигнализации
    Широкий диапазон питающего напряжения (вплоть до 14 вольт)
    Различный цвет излучения.

В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно — 3) разноцветных светодиода с разной периодичностью вспышек.
Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию — мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.

Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
Чип генератора размещён на основании анодного вывода.
Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.

Чип генератора состоит из высокочастотного задающего генератора — он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.
Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.

В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

ВАЖНО: Все светодиоды имеют один главный электрический параметр, при котором обеспечивается его нормальная работа. Это номинальный ток (I) протекающий через светодиод. Светодиод нельзя считать ни трехвольтовым, ни двухвольтовым. Через светодиод нужно пропустить ток (согласно техническим характеристикам) и измерить напряжение на его выводах. Это напряжение и будет обеспечивать протекание требующегося тока через кристал светодиода!

Для обеспечения протекания через кристал светодиода номинального тока подключение светодиодов к низковольтным источникам постоянного напряжения можно произвести через ограничивающее сопротивление.

Немного понятий из школьных уроков физики:

Напряжение "U" измеряется в вольтах (В),

ток "I"- измеряется в амперах (А),

сопротивление "R" измеряется в омах (Ом).

Закон Ома: U = R * I .

Научимся подключать светодиоды к популярному напряжению - 12 В.

Рассмотрим вариант, когда в распоряжении имеется постоянное напряжение, без помех (например, позаимствованный на время заряженный аккумулятор с напряжением на клеммах 12 В), а потом рассмотрим вопрос подключения к менее идеальным источникам (помехи, нестабильное напряжение и тп.).

Рассмотрим наиболее распространенные светодиоды, рассчитанные на ток 20 мА (т.е. 0,02 А). Например, сверхяркие светодиоды SMD 3528 белого свечения.

Смотрим на шильдик аккумулятора (не только смотрим, но и еще очень энергично пользуемся измерительным прибором): есть 12,0 В, а падение напряжения на светодиоде SMD 3528 = 3,5 В. Значит надо куда-то деть лишних 9,5 В (12,0 - 3,5= 9,5). Самый простой способ - использование резистора (он же - сопротивление). Выясняем какое надо сопротивление.

Закон Ома гласит:
U = R * I
R = U / I

Ток, протекающий в цепи I = 0,02 А. Сопротивление нужно подобрать такое, чтобы на нем погасилось 9,5 В, а нужные 3,5 В дошли до светодиода. Отсюда находим требуемое R:
R = 6,5 / 0,02 = 325 Ом
Напряжение на сопротивлении превращается в тепло. Для того, что-бы сопротивление выдержало нагрузку и выделяемое тепло не привело к его выходу из строя, надо вычислить рассеиваемую мощность сопротивления. Как известно (мысленно возвращаемся к школьным урокам физики) мощность: P = U * I
На сопротивлении у нас 9,5 В при токе 0,02А. Считаем:
P = 9,5 * 0,02 А = 0,19 Вт.
При покупке сопротивления просим у продавца 330 Ом, мощностью не менее 0,25 Вт (лучше больше, с запасом, чтобы на душе было спокойнее, 0,5 Вт например, но следует учесть - чем больше мощность, тем больше размеры). Подключаем светодиод (не забыв про полярность) через сопротивление и ощущаем волну радости - светодиод светится! Теперь разрываем цепь межу сопротивлением и светодиодом, включаем измерительный прибор и измеряем протекающий в цепи ток. Если ток менее 20 мА, надо немного уменьшить сопротивление, если больше 20 мА - увеличить. Вот и все! Получив ток в 20 мА, мы достигли оптимальной работы светодиода, а при таком режиме производитель гарантирует 10 лет непрерывной работы. Садимся и ждем 10 лет, если что не так - пишем претензию на завод. По мере того, как аккумулятор будет "садиться", яркость светодиода будет уменьшаться. После этого будет уместным вернуть аккумулятор на прежнее место для подзарадки.

Теперь определимся с подключением нескольких светодиодов.

Подключаем 2 красных последовательно.

У красных светодиодов напряжение питания ниже, чем у белых, и равно 2 В.

2 шт * 2,0 = 4,0 В. Питающее напряжение - 12 В, следовательно лишних - 8,0 В. R = 8,0 / 0,02 = 400 Ом. P= 8,0 * 0,2 = 0,16 Вт.
А если 6 штук - 6шт. * 2,0В = 12 В. Сопротивление вообще не требуется.
Аналогично, например, с синими (3В) : 3шт x 3,0 В = 9,0В. 12,0 В - 9,0 В = 3,0 В.
R = 3,0 / 0,02 = 150 Ом. P = 3,0 * 0,02 = 0,06 Вт.

По такому принципу изготовлены , где каждый кластер имеет последовательную цепочку из 3 светодиодов и токоограничивающий резистор. Каждый кластер подключен в ленте параллельно всем кластерам. Вся лента или отдельный кластер подключается к 12 Вольтам. От количества кластеров, подключеных к источнику питания, зависит потребляемый лентой ток.
* Напоминаю, что все эти схемы действительны при постоянном и стабильном напряжении, например от аккумулятора 12 В.
Теперь рассмотрим более сложный вариант. Надо подключить к 12 Вольтам 30 штук красных с падением напряжения по 2,0 В. На 12В можем подключить только 6 штук без сопротивлений, следовательно соединяем 6 штук последовательно. Подключаем - светится. Соединяем еще 6 штук и параллельно подсоединяем к первой цепочке. При этом через каждые 6 шт будет течь ток в 0,02А. Для подключения 30 красных светодиодов у нас получится 5 цепочек по 6 светодиодов с общим током 5 * 0,02А = 0,1А (батареек хватит не на долго!).
Если надо подключить к 12Вольтам 30 штук зеленых с падением напряжения по 3,5В, то на 12 Вольт мы можем подключить: 12В / 3,5В = 3,43 штуки. Мы не будем отрезать от четвертого светодиода 0,43 части, а подключим 3 штуки + сопротивление:
3штуки * 3,5В = 10,5 В. Лишнее напряжение: 12,0 В - 10,5 В = 1,5 В. Сопротивление R = 1,5В / 0,02А = 75 Ом при мощности P = 1,5 * 0,02 = 0,03 Вт. Получается 10 параллельных цепочек светодиодов. А если вдруг одному светодиоду в процессе монтажа случайно пришлось погибнуть и их осталось всего 29 штук, то соединяем 9 цепочек по 3 штуки, и одну цепочку из 2-х штук + сопротивление R = 250 Ом, P = 0,1Вт.

Вот мы и вспомнили слегка основы физики.

Напомню, что все вышеперечисленные схемы расчитаны на идеальный источник питания, и в большинстве случаев далеки от реальных условий эксплуатации светодиодов. Например, в бортовой сети автомобиля нет стабильных 12 Вольт, так как при работе генератора наблюдаются значительные скачки напряжения. А понижающий с 220 на 12 Вольт блок питания точно так же повторяет на выходе все колебания сети.

Теперь рассмотрим стабилизированную схему включения светодиодов.

Техническая проблема стабилизации тока давно решена мировыми умами, разрабатывающими интегральные микросхемы. Коснёмся изготовления стабилизатора тока c использованием . Это достаточно просто, главное немного потратиться на микросхему.


Микросхема LM317 при различном продключении может работать как стабилизатор напряжения, или как линейный стабилизатор тока.. Для подключения светодиода (см. рисунок) нужно всего лишь одно сопротивление, задающее ток. Величина сопротивления рассчитывается по формуле:
R = 1.2 / I (1.2 - падение напряжения на микросхеме-стабилизаторе). Т.е., при токе 20 мА,
R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. При таком включении, например, белого светодиода SMD 3528 с падением напряжения в 3,3 Вольта возможна подача напряжения на стабилизатор от 4,5 до 35 вольт, при этом ток на светодиоде будет соответствовать неизменному значению в 20 мА!

Например, при 12 Вольтах питания к стабилизатору можно подключить последовательно 3 белых светодиодоа SMD 3528, не заботясь о напряжении на каждом из них, ток в цепи будет протекать 20мА (а лишнее напряжение погасится на стабилизаторе: 1,25 Вольта потребляет микросхема).

* Чем больше напряжение будет гаситься на микросхеме, тем больше она будет греться, поэтому рекомендуется микросхему устанавливать на радиатор.

Вот образец стабилизации тока микросхемой LM317 для сверхяркого . Сверхяркие светодиоды 10 Вт расчитаны на питание 9 -12 вольт с током 900 мА (номинал резистора 1,3 Ом), поэтому такую схему можно подключить и к бортовой сети автомобиля, и на выход понижающего сетевого блока питания. Главное не забывать, что на микросхеме тоже падает 1,25~2,0 Вольт.

Самым надежным способом подключения светодиодов к 12 Вольтам является использование готовых светодиодных шим-драйверов, которые кроме стабилизации тока дополнительно обладают массой полезных функций: - схема с защитой от перегрузки по току, короткого замыкания, обрыва в цепи защиты ...


Драйвер имеет защиту от переполюсовки, защиту от перегрузки по току, защиту от короткого замыкания и обеспечивает необходимый стабильный ток при значительных колебаниях в сети 12 Вольт!

А, например, шт светодиодов мощностью 1 W служит сразу и стабилизатором и блоком питания мощностью 3 W, работает при входном напряжении AC 85-​​265V, обеспечивает выходной ток 300 мА и выходное напряжение DC 9-12V .

В предыдущих статьях были описаны различные вопросы подключения светодиодов. Но в одной статье всего не написать, поэтому придется эту тему продолжить. Здесь речь пойдет о различных способах включения светодиодов.

Как было сказано в упомянутых статьях, т.е. ток через него должен быть ограничен с помощью резистора. Как рассчитать этот резистор, было уже рассказано, повторяться здесь не будем, но формулу, на всякий случай, приведем еще раз.

Рисунок 1.

Здесь Uпит. - напряжение питания, Uпад. - падение напряжение на светодиоде, R - сопротивление ограничивающего резистора, I - ток через светодиод.

Однако, несмотря на всю теорию, китайская промышленность выпускает всевозможные сувениры, брелоки, зажигалки, в которых светодиод включен без ограничительного резистора: просто две-три дисковых батарейки и один светодиод. В этом случае ток ограничивается внутренним сопротивлением батареи, мощности которой просто не хватает, чтобы спалить светодиод.

Но тут, кроме перегорания, есть и еще одно неприятное свойство - деградация светодиодов, более всего присущее светодиодам белого и синего цветов: через некоторое время яркость свечения становится совсем незначительной, хотя ток через светодиод протекает вполне достаточный, на уровне номинального.

Нельзя сказать, что не светит вовсе, свечение еле заметно, но это уже не фонарик. Если при номинальном токе деградация происходит не ранее, чем через год непрерывного свечения, то при завышенном токе дождаться этого явления можно через полчаса. Такое включение светодиода следует назвать плохим.

Подобную схему можно объяснить лишь стремлением сэкономить на одном резисторе, припое, и трудозатратах, что при массовых масштабах производства, видимо, оправдано. Кроме того, зажигалка или брелок вещь одноразовая, копеечная: кончился газ или села батарейка - сувенир просто выкинули.

Рисунок 2. Схема плохая, но применяется достаточно часто.

Очень интересные вещи получаются (конечно, случайно), если по такой схеме подключить светодиод к блоку питания с выходным напряжением 12В и током не менее 3А: происходит ослепительная вспышка, раздается достаточно громкий хлопок, дымок, и остается удушливый запах. Так и вспоминается вот такая притча: «Можно ли посмотреть на Солнце в телескоп? Да, но только два раза. Один раз левым глазом, другой правым». Кстати, подключение светодиода без ограничительного резистора наиболее распространенная ошибка у начинающих, и о ней хотелось бы предупредить.

Чтобы исправить это положение, продлить срок службы светодиода, схему следовало бы чуточку изменить.

Рисунок 3. Хорошая схема, правильная.

Именно такую схему следует считать хорошей или правильной. Чтобы проверить, правильно ли указан номинал резистора R1, можно воспользоваться формулой, показанной на рисунке 1. Будем считать, что падение напряжения на светодиоде 2В, ток 20мА, напряжение питания 3В обусловлено применением двух пальчиковых батареек.

А вообще не надо стремиться ограничить ток на уровне предельно допустимых 20мА, можно запитать светодиод меньшим током, ну, хотя бы, миллиампер 15…18. При этом произойдет совсем незначительное уменьшение яркости, который глаз человека, в силу особенностей устройства, не заметит совсем, а вот срок службы светодиода намного увеличится.

Еще один пример плохого включения светодиодов можно встретить в различных фонариках, уже более мощных, нежели брелоки и зажигалки. В этом случае некоторое количество светодиодов, иногда достаточно большое, просто включено параллельно, и тоже без ограничительного резистора, в роли которого опять же выступает внутреннее сопротивление батареи. Такие фонарики достаточно часто попадают в ремонт именно по причине выгорания светодиодов.

Рисунок 4. Совсем плохая схема включения.

Казалось бы, исправить положение может схема, показанная на рисунке 5. Всего один резистор, и дело, казалось бы, пошло на поправку.

Рисунок 5. Так уже немного лучше.

Но и такое включение поможет мало. Дело в том, что в природе просто не найти двух одинаковых полупроводниковых приборов. Именно поэтому, например, транзисторы одного типа имеют различный коэффициент усиления, даже если они из одной производственной партии. Тиристоры и симисторы тоже бывают разные. Некоторые открываются легко, а другие настолько тяжко, что от их применения приходится отказаться. То же можно сказать и о светодиодах - двух абсолютно одинаковых, тем более трех или целой кучи, найти просто невозможно.

Замечание на тему. В DataSheet на светодиодную сборку SMD-5050 (три независимых светодиода в одном корпусе) включение, показанное на рисунке 5, не рекомендуется. Мол, из-за разброса параметров отдельных светодиодов, может быть заметна разница в их свечении. А казалось бы, в одном корпусе!

Никакого коэффициента усиления у светодиодов, конечно же, нет, зато есть такой важный параметр, как прямое падение напряжения. И если даже светодиоды взяты из одной технологической партии, из одной упаковки, то двух одинаковых в ней просто не будет. Поэтому ток у всех светодиодов будет разный. Тот светодиод, у которого ток будет больше всех, и рано или поздно превысит номинальный, сгорит раньше всех.

В связи с этим прискорбным событием весь возможный ток пойдет через два оставшихся в живых светодиода, естественно, превышая номинальный. Ведь резистор-то рассчитывался «на троих», на три светодиода. Повышенный ток вызовет и повышенный нагрев кристаллов светодиодов, и тот, который окажется «слабее», тоже сгорает. Последнему светодиоду также не остается ничего иного, как последовать примеру своих товарищей. Такая вот цепная реакция получается.

В данном случае под словом «сгорит» подразумевается просто разрыв цепи. Но может произойти, что в одном из светодиодов получится элементарно короткое замыкание, шунтирующее остальные два светодиода. Естественно, что они обязательно погаснут, хотя и останутся в живых. Резистор при такой неисправности будет усиленно греться и в конце концов, может быть, сгорит.

Чтобы такого не произошло, схему надо немного изменить: для каждого светодиода установить свой резистор, что и показано на рисунке 6.

Рисунок 6. А вот так светодиоды прослужат очень долго.

Здесь все, как требуется, все по правилам схемотехники: ток каждого светодиода будет ограничен своим резистором. В такой схеме токи через светодиоды не зависят друг от друга.

Но и это включение не вызывает особого восторга, поскольку количество резисторов равно количеству светодиодов. А хотелось бы, чтобы светодиодов было побольше, а резисторов поменьше. Как же быть?

Выход из этого положения достаточно простой. Каждый светодиод надо заменить цепочкой последовательно включенных светодиодов, как показано на рисунке 7.

Рисунок 7. Параллельное включение гирлянд.

Платой за такое усовершенствование будет увеличение напряжения питания. Если для одного светодиода достаточно всего трех вольт, то даже два светодиода, включенных последовательно, от такого напряжения уже не зажечь. Так какое же напряжение понадобится для включения гирлянды из светодиодов? Или по-другому, сколько светодиодов можно подключить к источнику питания с напряжением, например, 12В?

Замечание. Под названием «гирлянда» здесь и далее следует понимать не только елочное украшение, но также любой осветительный светодиодный прибор, в котором светодиоды соединены последовательно или параллельно. Главное, что светодиод не один. Гирлянда, она и в Африке гирлянда!

Чтобы получить ответ на этот вопрос, достаточно напряжение питания просто разделить на падение напряжения на светодиоде. В большинстве случаев при расчетах это напряжение принимается 2В. Тогда получается 12/2=6. Но не надо забывать, что какая-то часть напряжения должна остаться для гасящего резистора, хотя бы вольта 2.

Получается, что на светодиоды остается только 10В, и количество светодиодов станет 10/2=5. При таком положении дел, чтобы получить ток 20мА, ограничительный резистор должен иметь номинал 2В/20мА=100Ом. Мощность резистора при этом составит P=U*I=2В*20мА=40мВт.

Такой расчет вполне справедлив, если прямое напряжение светодиодов в гирлянде, как было указано, 2В. Именно это значение часто принимается при расчетах, как некоторое среднее. Но на самом деле это напряжение зависит от типа светодиодов, от цвета свечения. Поэтому при расчетах гирлянд следует ориентироваться на тип светодиодов. Падения напряжения для светодиодов разных типов приведены в таблице, показанной на рисунке 8.

Рисунок 8. Падение напряжения на светодиодах разных цветов.

Таким образом, при напряжении источника питания 12В, за вычетом падения напряжения на токоограничивающем резисторе, всего можно подключить 10/3,7=2,7027 белых светодиодов. Но кусочек от светодиода не отрежешь, поэтому подключить возможно только два светодиода. Такой результат получается если из таблицы взять максимальное значение падения напряжения.

Если же в расчет подставить 3В, то совершенно очевидно, что подключить возможно три светодиода. При этом каждый раз придется кропотливо пересчитывать сопротивление ограничительного резистора. Если реальные светодиоды окажутся с падением напряжения 3,7В, а может выше, три светодиода могут и не зажечься. Так что лучше остановиться на двух.

Принципиально не важно, какого цвета будут светодиоды, просто при расчете придется учитывать разные падения напряжений в зависимости от цвета свечения светодиода. Главное, чтобы они были рассчитаны на один ток. Нельзя собрать последовательную гирлянду из светодиодов, часть которых с током 20мА, а другая часть из 10-ти миллиамперных.

Понятно, что при токе 20мА светодиоды с номинальным током 10мА попросту сгорят. Если же ограничить ток на уровне 10мА, то 20-ти миллиамперные засветятся недостаточно ярко, примерно как в выключателе со светодиодом: ночью видно, днем нет.

Чтобы облегчить себе жизнь, радиолюбители разрабатывают различные программы-калькуляторы, облегчающие всевозможные рутинные расчеты. Например, программы для расчета индуктивностей, фильтров различного типа, стабилизаторов тока. Есть такая программа и для расчета светодиодных гирлянд. Скриншот такой программы приведен на рисунке 9.

Рисунок 9. Скриншот программы «Расчет_сопротивления_резистора__Ledz_».

Программа работает без установки в системе, просто ее надо скачать и пользоваться. Все настолько просто и понятно, что никаких пояснений к скриншоту совсем не требуется. Естественно, что все светодиоды должны быть одного цвета и с одинаковым током.

Ограничительные резисторы это, конечно, хорошо. Но только тогда, когда известно, что вот эта гирлянда будет питаться от постоянного напряжения 12В, и ток через светодиоды не превысит расчетного значения. А как быть, если просто нет источника с напряжением 12В?

Такая ситуация может возникнуть, например, в грузовом автомобиле с напряжением бортовой сети 24В. Выйти из такой кризисной ситуации поможет стабилизатор тока, например, «SSC0018 - Регулируемый стабилизатор тока 20..600мА». Его внешний вид показан на рисунке 10. Такое устройство можно купить в интернет-магазинах. Цена вопроса 140…300 рублей: все зависит от фантазии и наглости продавца.

Рисунок 10. Регулируемый стабилизатор тока SSC0018

Технические характеристики стабилизатора показаны на рисунке 11.

Рисунок 11. Технические характеристики стабилизатора тока SSC0018

Изначально стабилизатор тока SSC0018 был разработан для применения в светодиодных светильниках, но может также применяться для зарядки малогабаритных аккумуляторов. Пользоваться устройством SSC0018 достаточно просто.

Сопротивление нагрузки на выходе стабилизатора тока может быть нулевым, попросту можно замкнуть накоротко выходные клеммы. Ведь стабилизаторы и источники тока не боятся коротких замыканий. При этом ток на выходе будет номинальным. Уж если установили 20мА, то столько и будет.

Из сказанного можно сделать вывод, что к выходу стабилизатора тока можно «напрямую» подключить миллиамперметр постоянного тока. Начинать такое подключение следует с самого большого предела измерений, ведь какой там отрегулирован ток никому не известно. Далее простым вращением подстроечного резистора установить требуемый ток. При этом, конечно, не забыть подключить стабилизатор тока SSC0018 к блоку питания. На рисунке 12 показана схема включения SSC0018 для питания светодиодов, соединенных параллельно.

Рисунок 12. Подключение для питания светодиодов, соединенных параллельно

Здесь все понятно из схемы. Для четырех светодиодов с током потребления 20мА на каждый на выходе стабилизатора надо выставить ток 80мА. При этом на входе стабилизатора SSC0018 потребуется напряжение чуть большее, чем падение напряжения на одном светодиоде, о чем было сказано выше. Конечно, подойдет и большее напряжение, но это приведет только к дополнительному нагреву микросхемы стабилизатора.

Замечание. Если для ограничения тока с помощью резистора напряжение источника питания должно превышать общее напряжение на светодиодах незначительно, всего вольта на два, то для нормальной работы стабилизатора тока SSC0018 это превышение должно быть несколько выше. Никак не меньше, чем 3…4В, иначе попросту не откроется регулирующий элемент стабилизатора.

На рисунке 13 показано подключение стабилизатора SSC0018 при использовании гирлянды из нескольких последовательно соединенных светодиодов.

Рисунок 13. Питание последовательной гирлянды через стабилизатор SSC0018

Рисунок взят из технической документации, поэтому попробуем рассчитать количество светодиодов в гирлянде и постоянное напряжение, потребное от блока питания.

Указанный на схеме ток, 350мА, позволяет сделать вывод, что гирлянда собрана из мощных белых светодиодов, ведь как было сказано чуть выше, основное назначение стабилизатора SSC0018 это источники освещения. Падение напряжения на белом светодиоде находится в пределах 3…3,7В. Для расчета следует взять максимальное значение 3,7В.

Максимальное входное напряжение стабилизатора SSC0018 составляет 50В. Вычитаем из этого значения 5В, необходимых для работы самого стабилизатора, остается 45В. Этим напряжением можно «засветить» 45/3,7=12,1621621… светодиодов. Очевидно, что это надо округлить до 12.

Количество светодиодов может быть и меньше. Тогда входное напряжение придется уменьшить (при этом выходной ток не изменится, так и останется 350мА как был отрегулирован), зачем на 3 светодиода, пусть даже мощных, подавать 50В? Такое издевательство может закончиться плачевно, ведь мощные светодиоды отнюдь недешевы. Какое потребуется напряжение для подключения трех мощных светодиодов желающие, а они всегда найдутся, могут посчитать сами.

Регулируемый стабилизатор тока SSC0018 устройство достаточно хорошее. Но весь вопрос в том, всегда ли оно нужно? Да и цена девайса несколько смущает. Каков же может быть выход из создавшегося положения? Все очень просто. Прекрасный стабилизатор тока получается из интегральных стабилизаторов напряжения, например, серии 78XX или LM317.

Для создания такого стабилизатора тока на базе стабилизатора напряжения потребуется всего 2 детали. Собственно сам стабилизатор и один единственный резистор, сопротивление и мощность которого поможет рассчитать программа StabDesign, скриншот которой показан на рисунке 14.

Рисунок14. Расчет стабилизатора тока с помощью программы StabDesign.

Особых пояснений программа не требует. В выпадающем меню Type выбирается тип стабилизатора, в строке Iн задается требуемый ток и нажимается кнопочка Calculate. В результате получается сопротивление резистора R1 и его мощность. На рисунке расчет проведен для тока 20мА. Это для случая, когда светодиоды соединены последовательно. Для параллельного соединения ток подсчитывается так же, как показано на рисунке 12.

Светодиодная гирлянда подключается вместо резистора Rн, символизирующего нагрузку стабилизатора тока. Возможно даже подключение всего одного светодиода. При этом катод подключается к общему проводу, а анод к резистору R1.

Входное напряжение рассмотренного стабилизатора тока находится в пределах 15…39В, поскольку применен стабилизатор 7812 с напряжением стабилизации 12В.

Казалось бы, на этом рассказ о светодиодах можно закончить. Но есть еще светодиодные ленты, о которых будет рассказано в следующей статье.

С тех пор, как сверхъяркие светодиоды (LED) стали доступны широкому кругу потребителей, к ним сразу проявился большой интерес. На основе LED можно создавать множество интересных светотехнических конструкций. Однако, подключение светодиода к 12 вольтам, принципиально отличается от подключения к 12 вольтам той же лампы накаливания. В этом материале будет подробно рассказано о подключении светоизлучающих диодов к источникам питания, имеющим различное напряжение.

Какие светодиоды подключают к 12 вольтам?

Если коротко ответить на вопрос, вынесенный в качестве подзаголовка, то ответ будет звучать так: никакие! Неспециалисту такой ответ покажется парадоксальным, ведь в продаже имеются светодиоды, которые, как заявляют продавцы, рассчитаны на питание от источника 12 вольт.

Возьмемся утверждать, что на конкретное напряжение могут быть рассчитаны только изделия на основе светодиодов. Говорить о конкретном рабочем напряжении LED не корректно. Это связанно с физическими процессами, протекающими в нем при испускании света.

Главными характеристиками этих процессов являются рабочий ток и максимально допустимый ток прибора. В справочниках и даташитах указывают напряжения на светодиодах при протекании рабочего тока. Эти величины используют для расчетов LED конструкций, а не для выбора источника питания.

Кстати, напряжение в рабочем режиме лежит всего лишь в пределах от 1.5 В до 3.5 В. Величина зависит, в основном, от цвета испускаемого LED. Меньшие напряжения падают на красных светодиодах, большие значения относятся к сверхъярким. Имеющиеся в продаже светоизлучающие диоды на 12 вольт не являются единичными приборами.

Двенадцативольтовые LED это матрицы, состоящие из нескольких светоизлучающих диодов. Матрицы представляют собой светодиодные сборки, собранные из цепочек последовательно подключенных приборов.

В каждой матрице имеется несколько цепочек, которые подключены параллельно между собой. Когда говорят, что светодиод рассчитан на двенадцать вольт, то подразумевают, что падение напряжения на последовательной цепочке из них при протекании рабочего тока составляет примерно 12 В.

Подключение сверхярких и мощных LED к 12В

Сначала рассмотрим способ подключения одного мощного сверхъяркого светодиода к 12 Вольтам. Допустим, в нашем распоряжении имеется прибор, рабочий ток которого 350 мА. При этом падение напряжения на нем в рабочем режиме составляет примерно 3.4 Вольта. Нетрудно подсчитать, что потребляемая мощность такого прибора составляет 1 W.

Понятно, что подключать его напрямую к 12 Вольтам нельзя. Нам придется, каким-то образом, «погасить» часть напряжения. В простейших случаях для этих целей применяются гасящие (токоограничивающие) резисторы. Его соединяют со светодиодом последовательно. Схема питания одного LED показана на фото.

R=(U пит – U раб)/I раб.

В нашем примере мощность составит около 3 ватт. Найти сопротивление такой мощности довольно трудно, поэтому в качестве гасящего резистора можно применить два резистора по 100 Ом мощностью 2 Вт, соединенные параллельно.

В принципе на основе этих расчетов уже можно создавать практическую конструкцию. Выполнив подключение светодиода к 12В через выключатель, можно организовать дополнительную подсветку подкапотного пространства автомобиля, багажника или перчаточного бокса.

Мы показали, что создание такой схемы возможно, но применение ее нерационально. Нетрудно заметить, что две трети мощности потребляемой конструкцией приходится на гасящий резистор и, следовательно, тратится впустую. Ниже мы расскажем, как избежать ненужных потерь.

Сколько LED можно подключить к 12В?

Очевидно, что по простейшей схеме к источнику 12 Вольт можно подключить сколько угодно. Главное, чтобы у подключаемого источника питания хватало мощности. Однако мы видели, что при такой схеме подключения много энергии расходуется бесполезно.

Простейшим выходом из этой ситуации является снижение мощности рассеиваемой на токоограничивающем резисторе. Для снижения бесполезно рассеиваемой мощности, несколько светодиодов подключают последовательно и питают через один гасящий резистор. В этом случае падение напряжения на сопротивлении оказывается значительно меньше. Следовательно, существенно снижаются потери энергии. Расчет сопротивления для последовательного подключения светоизлучающих диодов выполняют по формуле:

R=(U пит – nU раб)/I раб.

Где n – количество последовательно подключенных LED.

В случае источника 12 Вольт разумно подключать последовательно три светодиода и один гасящий резистор. Падение напряжения на светодиодах не превысит 10.5 Вольта и на долю резистора останется всего 1,5 Вольт.

Такое техническое решение широко применяют, когда количество подключаемых к 12 Вольтам светодиодов кратно трем. Т. е. так можно подключить 6, 9, 12, …, 3N LED. Например, так поступают производители светодиодных лент. В них светодиоды сгруппированы по три и питаются через одно общее сопротивление.

Если нужно подключить 4 светодиода к 12 Вольтам, то целесообразно сгруппировать их по 2, и каждую пару питать через токоограничивающий резистор.

Последовательно следует подключать светодиоды с одинаковым рабочим током. Иначе разные приборы будут светить с различной яркостью или будет превышен ток какого-либо LED, и он выйдет из строя.

Что касается подключения светодиодов «рассчитанных на 12 В» то лучше установить их «рабочее напряжение» опытным путем. Для этого их надо подключить к лабораторному блоку питания и, постепенно поднимая напряжение, контролировать потребляемый ток. Напряжение, при котором рабочий ток будет достигнут, можно использовать для расчета токоограничивающего резистора.

Как подключить LED к 3 или 5 вольтам

Большинство маломощных светодиодов нормально работают и от 3 и тем более от 5 вольт. Выполнить для них расчет токоограничивающих сопротивлений можно по приведенной выше формуле.

При изготовлении конструкций с автономными источниками питания, особенно если в них используются сверхъяркие «мощные» LED, такой подход не приемлем. Мощность, рассеиваемая на гасящем резисторе, значительно сокращает время работы устройства.

Поэтому в современных ручных фонарях, работающих от низковольтных батарей применяют электронные преобразователи напряжения – драйверы. Потери в драйверах намного ниже, чем на токоограничивающих резисторах. Сейчас драйверы доступны и их можно легко найти в магазинах.

Имея некоторые познания в электронике и навыки работы с паяльником, простой драйвер можно изготовить самостоятельно. Одна из простых схем преобразователя для мощного светодиода приведена ниже.

Как подключить к 12 вольтам автомобиля

Подключение светодиодов к бортовой сети автомобиля не имеет существенных отличий от подключения к другим источникам питания. Просто не нужно забывать, что аккумуляторная батарея автомобиля в нормальном состоянии выдает не 12 Вольт, а примерно 14 Вольт.

Еще при подключении надо помнить, что не в каждом автомобиле надежно работает система стабилизации напряжения бортовой сети. Поэтому при расчетах гасящих резисторов лучше принимать напряжение питания равным 15 – 17 вольт. Это несколько снизит яркость свечения, но зато значительно продлит срок службы, так как светодиод будут работать в «щадящем» режиме.

Видео о подключении

Перед подключением советуем посмотреть хорошее видео для закрепления полученных знаний. Автор подробно и доступным языком рассказывает, как подключить светодиод к 12 вольтам от блока питания компьютера, как рассчитать резистор и другие нюансы.

Итоги

В заключении можно сказать, что при подключении сверхъярких светодиодах нужно принимать во внимание следующие соображения:

  • важнейшим параметром светодиода является его рабочий ток;
  • на гасящих резисторах бесполезно рассеивается энергия;
  • применяя последовательное подключение можно уменьшить потери, одновременно уменьшив количество и мощность применяемых резисторов;
  • в бортовой сети автомобиля не 12 Вольт, а несколько больше, и для надежной работы подключаемых светоизлучающих диодов нужно обязательно учитывать этот фактор.

Запомнив все вышеперечисленные аспекты подключения, Вы с легкостью запитаете любой светодиод, в любом количестве, от любого источника питания постоянного тока 12 Вольт.

Лампы накаливания постепенно уходят в прошлое, как и люминесцентные светильники. Сегодня никого не удивить мягкой подсветкой с функцией регулировки или основным освещением на световых диодах, что неудивительно. Такие приборы более долговечны и менее энергозатратны. В этой статье поговорим о том, что такое светодиодная лента 12 Вольт, какие виды существуют. Стоит рассмотреть характеристики и способы расчётов длины. Однако самое главное - понять, каковы области её применения и особенности подключения к сети..

Читайте в статье:

Светодиоды на ленте: преимущества и недостатки

Рассматривая светодиодные LED-ленты на 12В, можно отметить, что недостаток здесь всего один – довольно высокая стоимость, по сравнению с другими источниками освещения. Что же касается достоинств, то их достаточно много. Рассмотрим их подробнее:

  • простота монтажа – наличие клеящегося слоя на обратной стороне и гибкость изделия позволяют монтаж в самых сложных местах;
  • расход электроэнергии при эксплуатации значительно ниже, чем у КЛЛ или ламп накаливания;

  • долговечность в работе. Если монтаж произведён правильно, а условия эксплуатации не нарушаются, такие диоды перегорают очень редко;
  • ещё один плюс к монтажу – ленту легко разрезать на части по специальным меткам, что упрощает процесс;
  • возможность выбрать любой цвет или вовсе приобрести разноцветную ленту с контроллером, управляемую с ПДУ;
  • возможность диммирования, позволяющая менять интенсивность освещения в зависимости от пожелания.

Области применения светодиодных лент 12В

Диодные ленты 12 Вольт сегодня получили достаточно широкое распространение в различных областях. Благодаря безопасности низкого напряжения они с успехом применяются в освещении помещений с повышенной влажностью (ванная комната или кухня). Также широко применяются в качестве основного освещения или подсветки потолков в гостиных, спальнях и прихожих. Не обошло вниманием такие световые приборы и современное автомобилестроение, где ленты используются в виде дневных ходовых огней.


Полезная информация! Область применения световой ленты на SMD-элементах может быть ограничена лишь фантазией мастера. К примеру, при использовании светодиодной ленты на батарейках можно выполнить подсветку выдвижных шкафчиков, не подводя к ним электропроводку, что очень удобно.

Типы светодиодных лент и особенности их маркировки

Подобные световые приборы различаются по множеству параметров, которые можно узнать из маркировки. Обычно она имеет подобный вид − LED-CW-SMD-5050/60 IP68. Рассмотрим, какая информация зашифрована в маркировке, начиная с первого обозначения:

  1. Источник света, в нашем случае – LED-светодиоды.
  2. Цвет свечения. Может иметь обозначения CW (белый), RGB (многоцветный), R (красный), G (зелёный), B (синий). Стоит отметить, что сегодня в продаже появились жёлтые светодиодные ленты, имеющие маркировку LS.
  3. Тип вывода контактов чипа на печатную плату. SMD означает «монтируемый на поверхности». Именно такие чипы устанавливаются на светодиодные ленты.
  4. Размер чипа. В нашем случае − 5×5 мм.
  5. Количество чипов, располагаемых на 1 м полосы.
  6. Класс защиты устройства от агрессивной внешней среды.

Каждый из типов световых полос имеет свои характеристики, отличающиеся по интенсивности свечения, области применения и вариантам монтажа.

Характеристики светодиодных лент

Различают три основных вида характеристик световых полос:

  • по типу устройства чипа;
  • по цвету свечения и количеству единиц на метр;
  • по степени защищённости к внешним воздействиям.

Рассмотрим подробно каждый из этих пунктов.


Светодиодная лента 12 Вольт: тип устройства чипа

Разделяют 2 типа устанавливаемых световых диодов – DIP и SMD. По сути, световые полосы на DIP-элементах (цепочка из элементов в виде цилиндров с контактами-ножками) в наше время уже практически не применяются. Более удобны для монтажа SMD-ленты. Они занимают меньше места, более долговечны.

Виды светодиодных лент по цвету свечения и количеству чипов на метр

Цвет свечения светодиодной полосы каждый мастер выбирает в зависимости от своих предпочтений.. Однако в последнее время наиболее популярными в качестве декоративной подсветки становятся RGB-полосы, дающие возможность изменять оттенок в зависимости от пожелания. Для основного освещения используются чипы с маркировкой CW (белый цвет).


Мнение эксперта

Спросить у специалиста

“Количество элементов на метр полосы имеет значение для интенсивности свечения. Чем это количество больше, тем ярче будет освещение и выше потребляемая мощность”.

Степень защищённости от внешних факторов

Степень защищённости IP играет важную роль и влияет не только на то, в каком помещении будет монтироваться световой прибор, но и на его стоимость. Попробуем расшифровать цифры этого параметра. Для этого обратимся к таблице ниже (цифры в первой колонке обозначают расположение показателя в маркировке светодиодной ленты).

Как рассчитать мощность светодиодной ленты на метр

Расчёт светодиодной ленты по мощности производится исходя из маркировки чипа, а,следовательно исходя из мощности одного светодиода, умноженной на количество элементов на метр полосы. Рассмотрим мощность лент с различными чипами в табличном варианте.

Тип светодиода SMD Количество чипов в 1 метре, шт. Потребляемая мощность на 1 метр, Вт
3528 60 4,8
3528 120 9,6
3528 240 19,2
5050 30 7,2
5050 60 15
5050 120 25

Если говорить о светодиодной ленте 5730, то её характеристики практически не отличаются от 5630, а мощность чипов находится между 3528 и 5050 – 0,5Вт на один чип. Рассчитать общую мощность на 1 метр несложно, умножив показатель одного светодиода на их количество в метре.


Светодиодные ленты 12 Вольт для авто: особенности применения

Умельцы давно облюбовали такой вид тюнинга автомобиля. Прекрасно смотрится RGB-подсветка вдоль порогов автомашины, придавая ей в тёмное время суток фантастический вид. Используют светодиоды и для дополнительной подсветки приборной панели.

Важно! Отечественные автомобили старых образцов не оборудуются дневными ходовыми огнями, а значит, и в этом случае светодиодная лента вполне подойдёт. Однако следует помнить, что для ДХО применимы только белые или жёлтые светодиоды.


Единственной проблемой использования световых лент на авто становится нестабильность напряжения бортовой сети. Хотя и считается, что она всегда составляет 12В, на самом деле может доходить и до 14В. Для светодиодов, требующих стабильного питания, это губительно. Специалисты в таких случаях советуют установить стабилизатор напряжения, который можно приобрести в специализированных магазинах автозапчастей и оборудования или на интернет-ресурсах. Конечно, можно смонтировать питание полосы через сопротивление, но такой способ требует сложных расчётов. К тому же сопротивление в процессе эксплуатации чувствительно греется.

Статья по теме:
Зачем нужны, принцип работы, критерии выбора, обзор моделей, как подключить LED-элементы к преобразователю, как сделать своими руками – читайте в публикации.

Рекомендации редакции сайт по выбору светодиодной ленты

При выборе таких световых приборов первое, на что следует обратить внимание, – это режимы использования. Если полоса необходима для основного освещения, то лучше выбрать белый или жёлтый цвет. Для разграничения световых зон помещения при помощи вспомогательной подсветки используются ленты синего, жёлтого, зелёного или красного оттенка. Если же есть желание сделать меняющуюся подсветку, выбирают RGB-ленту с контроллером и пультом дистанционного управления. Для такой светодиодной ленты 12 Вольт диммер отдельно приобретать уже не нужно. При помощи ПДУ не только изменяются оттенки, но и регулируется интенсивность свечения. Следующее – помещение, в котором будет использоваться полоса.


Мнение эксперта

Инженер-проектировщик ЭС, ЭМ, ЭО (электроснабжение, электрооборудование, внутреннее освещение) ООО "АСП Северо-Запад"

Спросить у специалиста

“По классу защищённости IP выбирают не только полосу, но и адаптер для светодиодной ленты 12 Вольт. Для ванной комнаты не стоит приобретать оборудование с классом IP ниже 65”.

Особое внимание при выборе следует обратить на фирму-производителя и качество сборки изделия. Китайские «аналоги» крайне недолговечны, чипы быстро выходят из строя и деградируют, что приводит к снижению силы светового потока. К тому же они редко соответствуют заявленным характеристикам. Приобретая световую полосу, нужно проверить всю техническую документацию и сертификат соответствия на товар. Качественные SMD-элементы (по силе светового потока) должны обладать следующими параметрами:

  • 3528 – 5 Лм (Люмен);
  • 5050 – 15 Лм;
  • 5630 – 18 Лм.

Как подключить светодиодную ленту 12 Вольт

К сожалению, даже в такой, казалось бы, элементарной работе, как подключение светодиодной ленты через блок питания, начинающие домашние мастера часто допускают ошибки. Это приводит к быстрому выходу осветительного прибора из строя. Разберёмся с основными ошибками при монтаже.


Длина отрезка, подключаемого к блоку питания

В продаже такие световые полосы продаются в катушках по 5 м. Но как быть, если требуется монтаж 10 или 15 м? Вот здесь многие и делают первую ошибку, просто соединив начало одного отрезка с другим (последовательно), чего делать категорически нельзя. Токоведущие дорожки светодиодной ленты рассчитаны на определённую нагрузку. Соединив 2 полосы, получим нагрузку на начало светодиодной ленты в 2 раза выше допустимой. В результате − обгорание и выход из строя.



В случае необходимости подобного монтажа следует поступить так. Берём дополнительный провод сечением 1,5 мм 2 и подключаем один его конец к выводу питания из блока (перед первой лентой), а второй к питанию второй полосы. Это и называется параллельное подключение, являющееся правильным.

Подключение световой полосы к бытовой сети 220В

Подобное подключение производится через блок питания с трансформатором 220/12В и выпрямителем. Такое устройство называют адаптером. Для RGB-лент используется специальный контроллер, в схему которого, помимо трансформатора, включается микросхема. Именно она позволяет владельцу управлять изменением цветов вручную или запрограммировать режимы.


Важно! К бытовой сети LED-лента монтируется только через адаптер, который должен соответствовать по техническим параметрам требуемым показателям мощности. Без адаптера подключение светодиодной ленты допускается только к батарее с постоянным и стабильным напряжением.

Стоимость светодиодных лент на российском рынке

Приобрести качественную LED-ленту сегодня довольно сложно – рынок заполонили подделки, которые по виду практически не отличаются от фирменных изделий, но при этом имеют более низкую стоимость.. В таблице ниже приведена средняя стоимость на качественные светодиодные ленты, по состоянию на май 2018 года, с некоторыми техническими характеристиками.

Производитель Тип чипа Цвет Степень защиты Стоимость, руб./м

5050 Холодный белый IP20 450

2835 Синий IP20 700

5050 Холодный белый IP65 500

2835 Белый IP20 850

3528 Тёплый белый IP33 400

Существуют и более дорогие изделия. В частности, это касается RGB-лент, однако, и здесь многое зависит от известности бренда.


Подведём итог

Не вызывает сомнения, что изобретение светодиодной ленты открыло новые горизонты в оформлении интерьеров квартир и частных домов. При правильном выборе LED-полоса неприхотлива в использовании и проста в монтаже. Она долговечна (при соблюдении некоторых правил подключения) и экономична в процессе эксплуатации. А значит, начинающим мастерам, ищущим варианты освещения своего жилья, стоит обратить на неё внимание.