Какой выигрыш в силе дает подвижный блок. Чем отличается подвижный блок от неподвижного? Золотое правило механики

Чаще всего простые механизмы используют, чтобы получить выигрыш в силе. То есть меньшей силой переместить больший по-сравнению с ней вес. При этом выигрыш в силе достигается не «бесплатно». Расплатой за него является потеря в расстоянии, то есть требуется сделать большее перемещение, чем без использования простого механизма. Однако когда силы ограничены, то «обмен» расстояния на силу выгоден.

Подвижный и неподвижный блоки являются одними из видов простых механизмов. Кроме того, они являются видоизмененным рычагом, который также является простым механизмом.

Неподвижный блок не дает выигрыш в силе, он просто изменяет направление ее приложения. Представьте, что вам надо поднять за веревку тяжелый груз вверх. Вам придется тянуть его вверх. Но если использовать неподвижный блок, то тянуть надо будет вниз, в то время как груз будет подниматься вверх. В этом случае вам будет проще, так как необходимая сила будет складываться из силы мышц и вашего веса. Без использования неподвижного блока надо было бы прикладывать такую же силу, но она достигалась бы исключительно за счет силы мышц.

Неподвижный блок представляет собой колесо с желобом для веревки. Колесо закреплено, оно может вращаться вокруг своей оси, но не может перемещаться. Концы веревки (троса) свисают вниз, к одному прикреплен груз, а к другом прикладывается сила. Если тянуть за трос вниз, то груз поднимается вверх.

Так как здесь нет выигрыша в силе, то нет и проигрыша в расстоянии. На какое расстояние поднимется груз, на такое же расстояние надо опустить веревку.

Использование подвижного блока дает выигрыш в силе в два раза (в идеале). Это значит, что если вес груза равен F, то чтобы его поднять, надо приложить силу F/2. Подвижный блок состоит всё из того же колеса с желобом для троса. Однако здесь закреплен один конец троса, а колесо подвижно. Колесо движется вместе с грузом.

Вес груза - это сила, направленная вниз. Его уравновешивают две силы, направленные вверх. Одну создает опора, к которой прикреплен трос, а другую тянущий за трос. Сила натяжения троса одинакова с обоих сторон, значит, между ними поровну распределяется вес груза. Поэтому каждая из сил в 2 раза меньше веса груза.

В реальных ситуациях выигрыш в силе меньше, чем в 2 раза, так как поднимающая сила частично «тратится» на вес веревки и блока, а также трение.

Подвижный блок, давая почти двойной выигрыш в силе, дает двойной проигрыш в расстоянии. Чтобы поднять груз на определенную высоту h, надо чтобы веревки с каждой стороны блока уменьшились на эту высоту, то есть в сумме получается 2h.

Обычно используют комбинации из неподвижных и подвижных блоков - полиспасты. Они позволяют получить выигрыш в силе и направлении. Чем больше в полиспасте подвижных блоков, тем больше будет выигрыш в силе.

Блок представляет собой устройство, имеющее форму колеса с желобом, по которому пропускают веревку, трос или цепь. Различают два основных вида блоков - подвижный и неподвижный. У неподвижного блока ось закреплена и при подъеме грузов не поднимается и не опускается (рис. 54), а у подвижного блока ось перемещается вместе с грузом (рис. 55).

Неподвижный блок не дает выигрыша в силе. Его применяют для того, чтобы изменить направление действия силы. Так, например, прикладывая к веревке, перекинутой через такой блок, силу, направленную вниз, мы заставляем груз подниматься вверх (см. Рис. 54). Иначе обстоит дело с подвижным блоком. Этот блок позволяет небольшой силой уравновесить силу, в 2 раза большую. Для доказательства этого обратимся к рисунку 56. Прикладывая силу F , мы стремимся повернуть блок вокруг оси, проходящей через точку О . Момент этой силы равен произведению Fl , где l - плечо силы F , равное диаметру блока ОВ . Одновременно с этим прикрепленный к блоку груз своим весом Р создает момент, равный, где - плечо силы Р , равное радиусу блока ОА . Согласно правилу моментов (21.2)

что и требовалось доказать.

Из формулы (22.2) следует, что P/F = 2. Это означает, что выигрыш, в силе, получаемый с помощью подвижного блока, равен 2 . Опыт, изображенный на рисунке 57, подтверждает этот вывод.

На практике часто применяют комбинацию подвижного блока с неподвижным (рис. 58). Это позволяет изменить направление силового воздействия с одновременным двукратным выигрышем в силе.

Для получения большего выигрыша в силе применяют грузоподъемный механизм, называемый полиспастом . Греческое слово «полиспаст» образовано из двух корней: «поли» - много и «спао» - тяну, так что в целом получается «многотяг».

Полиспаст представляет собой комбинацию из двух обойм, одна из которых состоит из трех неподвижных блоков, а другая - из трех подвижных блоков (рис. 59). Поскольку каждый из подвижных блоков удваивает силу тяги, то в целом полиспаст дает шестикратный выигрыш в силе.

1. Какие два вида блоков вы знаете? 2. Чем отличается подвижный блок от неподвижного? 3. Для какой цели применяют неподвижный блок? 4. Для чего используют подвижный блок? 5. Что представляет собой полиспаст? Какой выигрыш в силе он дает?

Темы кодификатора ЕГЭ: простые механизмы, КПД механизма.

Механизм - это приспособление для преобразования силы (её увеличения или уменьшения).
Простые механизмы - это рычаг и наклонная плоскость.

Рычаг.

Рычаг - это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 1 ) изображён рычаг с осью вращения . К концам рычага (точкам и ) приложены силы и . Плечи этих сил равны соответственно и .

Условие равновесия рычага даётся правилом моментов: , откуда

Рис. 1. Рычаг

Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.

Например, чтобы усилием 100 Н поднять груз весом 700 Н, нужно взять рычаг с отношением плеч 7: 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз большую дугу, чем конец короткого плеча (то есть груз).

Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца - это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).

Неподвижный блок.

Важной разновидностью рычага является блок - укреплённое в обойме колесо с жёлобом, по которому пропущена верёвка. В большинстве задач верёвка считается невесомой нерастяжимой нитью.

На рис. 2 изображён неподвижный блок, т. е. блок с неподвижной осью вращения (проходящей перпендикулярно плоскости рисунка через точку ).

На правом конце нити в точке закреплён груз весом . Напомним, что вес тела - это сила, с которой тело давит на опору или растягивает подвес. В данном случае вес прило жен к точке , в которой груз крепится к нити.

К левому концу нити в точке приложена сила .

Плечо силы равно , где - радиус блока. Плечо веса равно . Значит, неподвижный блок является равноплечим рычагом и потому не даёт выигрыша ни в силе, ни в расстоянии: во-первых, имеем равенство , а во-вторых, в процессе движении груза и нити перемещение точки равно перемещению груза.

Зачем же тогда вообще нужен неподвижный блок? Он полезен тем, что позволяет изменить направление усилия. Обычно неподвижный блок используется как часть более сложных механизмов.

Подвижный блок.

На рис. 3 изображён подвижный блок , ось которого перемещается вместе с грузом. Мы тянем за нить с силой , которая приложена в точке и направлена вверх. Блок вращается и при этом также движется вверх, поднимая груз, подвешенный на нити .

В данный момент времени неподвижной точкой является точка , и именно вокруг неё поворачивается блок (он бы "перекатывается" через точку ). Говорят ещё, что через точку проходит мгновенная ось вращения блока (эта ось направлена перпендикулярно плоскости рисунка).

Вес груза приложен в точке крепления груза к нити. Плечо силы равно .

А вот плечо силы , с которой мы тянем за нить, оказывается в два раза больше: оно равно . Соответственно, условием равновесия груза является равенство (что мы и видим на рис. 3 : вектор в два раза короче вектора ).

Следовательно, подвижный блок даёт выигрыш в силе в два раза. При этом, однако, мы в те же два раза проигрываем в расстоянии: чтобы поднять груз на один метр, точку придётся переместить на два метра (то есть вытянуть два метра нити).

У блока на рис. 3 есть один недостаток: тянуть нить вверх (за точку ) - не самая лучшая идея. Согласитесь, что гораздо удобнее тянуть за нить вниз! Вот тут-то нас и выручает неподвижный блок.

На рис. 4 изображён подъёмный механизм, который представляет собой комбинацию подвижного блока с неподвижным. К подвижному блоку подвешен груз, а трос дополнительно перекинут через неподвижный блок, что даёт возможность тянуть за трос вниз для подъёма груза вверх. Внешнее усилие на тросе снова обозначено вектором .

Принципиально данное устройство ничем не отличается от подвижного блока: с его помощью мы также получаем двукратный выигрыш в силе.

Наклонная плоскость.

Как мы знаем, тяжёлую бочку проще вкатить по наклонным мосткам, чем поднимать вертикально. Мостки, таким образом, являются механизмом, который даёт выигрыш в силе.

В механике подобный механизм называется наклонной плоскостью. Наклонная плоскость - это ровная плоская поверхность, расположенная под некоторым углом к горизонту. В таком случае коротко говорят: "наклонная плоскость с углом ".

Найдём силу, которую надо приложить к грузу массы , чтобы равномерно поднять его по гладкой наклонной плоскости с углом . Эта сила , разумеется, направлена вдоль наклонной плоскости (рис. 5 ).


Выберем ось так, как показано на рисунке. Поскольку груз движется без ускорения, действующие на него силы уравновешены:

Проектируем на ось :

Именно такую силу нужно приложить, что двигать груз вверх по наклонной плоскости.

Чтобы равномерно поднимать тот же груз по вертикали, к нему нужно приложить силу, равную . Видно, что , поскольку . Наклонная плоскость действительно даёт выигрыш в силе, и тем больший, чем меньше угол .

Широко применяемыми разновидностями наклонной плоскости являются клин и винт.

Золотое правило механики.

Простой механизм может дать выигрыш в силе или в расстоянии, но не может дать выигрыша в работе.

Например, рычаг с отношением плеч 2: 1 даёт выигрыш в силе в два раза. Чтобы на меньшем плече поднять груз весом , нужно к большему плечу приложить силу . Но для поднятия груза на высоту большее плечо придётся опустить на , и совершённая работа будет равна:

т. е. той же величине, что и без использования рычага.

В случае наклонной плоскости мы выигрываем в силе, так как прикладываем к грузу силу , меньшую силы тяжести. Однако, чтобы поднять груз на высоту над начальным положением, нам нужно пройти путь вдоль наклонной плоскости. При этом мы совершаем работу

т. е. ту же самую, что и при вертикальном поднятии груза.

Данные факты служат проявлениями так называемого золотого правила механики.

Золотое правило механики. Ни один из простых механизмов не даёт выигрыша в работе. Во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии, и наоборот.

Золотое правило механики есть не что иное, как простой вариант закона сохранения энергии.

КПД механизма.

На практике приходится различать полезную работу A полезн, которую нужно совершить при помощи механизма в идеальных условиях отсутствия каких-либо потерь, и полную работу A полн,
которая совершается для тех же целей в реальной ситуации.

Полная работа равна сумме:
-полезной работы;
-работы, совершённой против сил трения в различных частях механизма;
-работы, совершённой по перемещению составных элементов механизма.

Так, при подъёме груза рычагом приходится вдобавок совершать работу по преодолению силы трения в оси рычага и по перемещению самого рычага, имеющего некоторый вес.

Полная работа всегда больше полезной. Отношение полезной работы к полной называется коэффициентом полезного действия (КПД) механизма:

=A полезн/А полн.

КПД принято выражать в процентах. КПД реальных механизмов всегда меньше 100%.

Вычислим КПД наклонной плоскости с углом при наличии трения. Коэффициент трения между поверхностью наклонной плоскости и грузом равен .

Пусть груз массы равномерно поднимается вдоль наклонной плоскости под действием силы из точки в точку на высоту (рис. 6 ). В направлении, противоположном перемещению, на груз действует сила трения скольжения .


Ускорения нет, поэтому силы, действующие на груз, уравновешены:

Проектируем на ось X:

. (1)

Проектируем на ось Y:

. (2)

Кроме того,

, (3)

Из (2) имеем:

Тогда из (3) :

Подставляя это в (1) , получаем:

Полная работа равна произведению силы F на путь, пройденный телом вдоль поверхности наклонной плоскости:

A полн=.

Полезная работа, очевидно, равна:

А полезн=.

Для искомого КПД получаем.

Команда «Физические пираты»

Исследовательское задание

Применяя систему блоков, получите выигрыш в силе в 2,3,4 раза. Какой выигрыш ещё получился? Представьте схемы соединения блоков и фото .

Цель: Применяя систему блоков, получить выигрыш в силе в 2,3,4 раза.

План:

    Изучить, что такое блоки, для чего они нужны.

    Провести эксперименты с блоками, получить выигрыш в силе в 2,3,4 раза.

    Оформить работу.

    Сделать фотоотчёт.

Отчёт:

Изучили, что неподвижный блок не даёт выигрыша в силе, а подвижный блок даёт выигрыш в силе в 2 раза.

Выдвинули гипотезу :

Опыт№1. Получение выигрыша в силе в 2 раза с помощью подвижного блока .

Оборудование: штатив, 2 муфты, 1 лапка, стержень, 1 подвижный блок, 1 неподвижный блок, гиря массой 1 кг (весом 10 Н), динамометр, верёвка.

Проведение эксперимента:

1.На штативе закрепить неподвижный блок, стержень, так, чтобы плоскость неподвижного блока и конец стержня лежали в одной плоскости.

2. Один конец верёвки закрепить на стержне, верёвку перебросить через подвижный блок и через неподвижный блок.

3. К крючку подвижного блока подвесить гирю, к свободному концу верёвки прицепить динамометр.

5.Сделать вывод.

Результаты измерений:

Вывод: F = Р/2, выигрыш в силе в 2 раза.

Оборудование. Установка для опыта № 1.

Проведение опыта№1.

Опыт №2. Получение выигрыша в силе в 4 раза с помощью 2-х подвижных блоков.

Оборудование: штатив, 2 подвижных блока, 2 неподвижных блока, 2 гири массой 1 кг (весом 10 Н) каждая, динамометр, верёвка.

Проведение эксперимента:

1.На штативе с помощью 3 муфт и 2 лапок закрепить 2 неподвижных блока и стержень, так, чтобы плоскости блоков и конец стержня лежали в одной плоскости.

2. Один конец верёвки закрепить на стержне, верёвку перебросить последовательно через 1-й подвижный блок, 1-й неподвижный блок, 2-й подвижный блок, 2-й неподвижный блок.

3. К крючку каждого подвижного блока подвесить гирю, к свободному концу верёвки прицепить динамометр.

4. Измерить силу тяги (руки) динамометром, сравнить её с весом гирь.

5.Сделать вывод.

Установка для опыта №2.

Результаты измерений:

Вывод: F = Р/4, выигрыш в силе в 4 раза.

Опыт № 3. Получение выигрыша в силе в 3 раза с помощью 1-ого подвижного блока.

Для получения выигрыша в силе в 3 раза, надо использовать 1,5 подвижного блока. Так как нельзя отделить от подвижного блока половину, то следует использовать верёвку дважды: один раз перекинуть верёвку через него полностью, второй раз прицепить конец верёвки к его половине, т.е. к центру.

Оборудование: штатив, 1 подвижный блок с двумя крючками, 1 неподвижный блок, 1 гиря массой 1 кг (весом 10 Н), динамометр, верёвка.

Проведение эксперимента:

1.На штативе с помощью муфты закрепить 1 неподвижный блок.

2. Один конец верёвки прицепить к верхнему крючку подвижного блока, к нижнему крючку подвижного блока прицепить гирю.

3. Верёвку перекинуть последовательно от верхнего крючка подвижного блока через неподвижный блок, снова вокруг подвижного блока и снова через неподвижный блок, к свободному концу верёвки подцепить динамометр. Должно получиться 3 верёвки, на которые опирается подвижный блок – 2 по краям (полный блок) и одна к его центру (половина блока). Таким образом, мы используем 1,5 подвижного блока.

4. Измерить силу тяги (руки) динамометром, сравнить её с весом гири.

5.Сделать вывод.

Установка к опыту № 3. Проведение опыта№ 3.

Результаты измерений:

Вывод: F = Р/3, выигрыш в силе в 3 раза.

Вывод:

Проделав опыты №№1-3, мы проверили гипотезу, выдвинутую перед исследованием. Она подтвердилась. По результатам опытов, мы выяснили, следующие факты:

    чтобы получить выигрыш в силе в 2 раза, нужно применить 1 подвижный блок;

    чтобы выиграть в силе в 4 раза, надо применить 2 подвижных блока;

    чтобы выиграть в 3 раза, надо применить 1,5 подвижных блока.

Также заметили, что выигрыш в силе равен числу верёвок, на которые опираются подвижные блоки:

    в опыте №1: 1подвижный блок опирается на 2 верёвки – выигрыш в силе в 2 раза;

    в опыте №2: 2 подвижных блока опираются на 4 верёвки – выигрыш в силе в 4 раза;

    в опыте №3 подвижный блок опирается на 3 верёвки – выигрыш в силе в 3 раза.

Эту закономерность можно применять для получения любого числа выигрыша в силе. Например, для получения выигрыша в 8 раз надо применить 4 подвижных блока, чтобы они опирались на 8 верёвок.

Приложение:

Схемы блоков для опытов №№1-3.

См. на следующей странице.