Lm317 схема включения 5 вольт. Стабилизаторы тока на lm317, lm338, lm350 и их применение для светодиодов. Напряжение на выходе рассчитывается по формуле

Если вы решили переоборудовать ваш автомобиль под светодиодное освещение, вам понадобится как минимум стабилизатор тока на lm317 для светодиодов. Собрать элементарный стабилизатор совершенно несложно, но чтобы избежать плачевных оплошностей даже при такой простой задаче не помешает минимальный ликбез. Многие люди, не связанные с радиоэлектроникой, часто смешивают такие понятия, как стабилизатор тока и стабилизатор напряжения.

Легко о простом. Сила тока, напряжение и их стабилизация

От напряжения зависит, насколько стремительно электроны движутся по проводнику. Многие страстные любители жёсткого компьютерного разгона увеличивают напряжение ядра центрального процессора, благодаря чему тот начинает функционировать быстрее.

Сила тока – это плотность движения электронов внутри электрического проводника. Данный параметр чрезвычайно важен радиоэлементам, работающим по принципу термоэлектронной вторичной эмиссии, в частности, источникам света. Если площадь поперечного сечения проводника не в состоянии пропустить поток электронов, избыток тока начинает выделяться в виде тепла, вызывая значительный перегрев детали.

Для лучшего понимания процесса проанализируем плазменную дугу (на её основе работает электроподжег газовых плит и котлов). При очень высоком напряжении скорость свободных электронов до такой степени велика, что они могут легко «пролетать» расстояние между электродами, формируя плазменный мостик.

А это электронагреватель. При прохождении через него электронов они передают свою энергию нагревательному элементу. Чем выше сила тока, тем плотнее поток электронов, тем сильнее нагревается термоэлемент.

Для чего необходима стабилизация тока и напряжения

Любой радиоэлектронный компонент, будь то лампочка или центральный процессор компьютера, требует для оптимальной работы чётко лимитированное количество электронов, которое течёт по проводникам.

Поскольку речь в нашей статье идёт о стабилизаторе для светодиодов, о них и поговорим.

При всех своих преимуществах светодиоды имеют один минус – высокая чувствительность к параметрам питания. Даже умеренное превышение силы и напряжения может привести к выгоранию светоизлучающего материала и выходу из строя диода.

Сейчас очень модно переделывать систему освещения автомобиля под LED освещение. Их цветовая температура намного ближе к естественному освещению, чем у ксенона и ламп накаливания, что значительно меньше утомляет водителя при длительных поездках.

Однако это решение требуется особый технический подход. Номинальный ток питания автомобильного LED-диода – 0,1-0,15 мА, а пусковой аккумулятора – сотни ампер. Этого хватит, чтобы выжечь очень много дорогостоящих элементов освещения. Что бы этого избежать используют стабилизатор 12 вольт для светодиодов в авто.

Ампераж в автомобильной сети постоянно меняется. Например, автомобильный кондиционер «кушает» до 30 ампер, при его отключении электроны, «выделенные» на его работу уже не вернутся назад в генератор и аккумулятор, а перераспределятся между остальными электроприборами. Если лампе накаливания, рассчитанной на 1-3 А дополнительные 300 мА роли не сыграют, то диоду с током питания 150 мА несколько таких скачков могут стать фатальными.

Ради гарантии длительной работы автомобильных светодиодов используют стабилизатор тока на lm317 для мощных светодиодов.

Типы стабилизаторов

По способу ограничения силы тока выделяют два типа устройств:

  • Линейный;
  • Импульсный.

Работает по принципу делителя напряжения. Он выпускает из себя ток заданного параметра, рассеивая избытки в виде тепла. Принцип работы такого прибора можно сравнить с лейкой оснащённой дополнительным сливным отверстием.

Преимущества

  • доступная цена;
  • простая схема монтажа;
  • легко собрать своими руками.

Недостаток — из-за нагрева плохо приспособлен к работе с большой нагрузкой.

Как овощерезка через специальный каскад нарезает входящий ток, выдавая строго дозированную норму.

Преимущества

  • предназначен для высоких нагрузок;
  • не греется во время работы.

Недостатки

  • требует источника питания для собственной работы;
  • создает электромагнитное излучения;
  • относительно высокая цена;
  • сложен для самостоятельного изготовления.

Учитывая малую силу тока в автомобильных светодиодах можно собрать простой стабилизатор для светодиодов своими руками. Наиболее доступный и простой драйвер светодиодных ламп и лент собирают на микросхеме lm317.

Краткое описание lm317

Радиоэлектронный модуль LM317 является микросхемой, применяемой в семах стабилизации тока и напряжения.

  • Диапазон стабилизации напряжения от 1,7 до 37 В обеспечит устойчивую яркость светодиода, не зависящую от частоты оборота двигателя;
  • Поддержка выходного тока до 1,5 А позволит подключить несколько фотоизлучателей;
  • Высокая стабильность допускает колебания выходных параметров лишь 0,1% от номинала;
  • Имеет встроенную защиту по ограничению тока и каскад отключения при перегреве;
  • Корпус микросхемы является землёй, поэтому при креплении саморезом к корпусу автомобиля уменьшается количество монтажных проводов.

Область применения

  • Стабилизатор напряжения и тока для светодиодов в бытовых условиях (в том числе для светодиодных лент);
  • Стабилизатор напряжения и тока для светодиодов в авто;

Схемы стабилизаторов тока для светодиодов


Схема простейшего стабилизатора

Самый простой стабилизатор напряжения на 12 вольт можно собрать по такой схеме. Резистор R1 ограничивает выходящую силу тока, R2 – выходящее напряжение. Конденсаторы, применяемые в данной схеме, уменьшают пульсации напряжения и увеличивают стабильность работы.

Потребности автомобилиста удовлетворит простейший механизм стабилизации, поскольку напряжение питания в сети автомобиля достаточно стабильно.

Чтобы сделать стабилизатор для диодов в авто потребуется:

  • Микросхема lm317;
  • Резистор как регулятор тока для светодиодов;
  • Инструменты пайки и монтажа.

Собираем по вышеприведенной схеме

Расчет резистора для драйвера светодиода

Мощность и сопротивление резистора рассчитывают исходя из силы тока источника питания и тока, необходимого светодиодам. Для автомобильного светодиода мощностью 150 мА сопротивление резистора должно быть 10-15 Ом, а расчетная мощность 0,2-0,3 Вт.

Как собрать своими руками смотрите в видео:


Доступность и простота конструкции драйвера на микросхеме lm317 позволяет безболезненно переоснастить системы электрического освещения любого автомобиля.

Микросхема уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На основе этой микросхемы можно собрать регулируемый блок питания на LM317, стабилизатор тока, светодиодный драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, для LM317 схема включения работает сразу, настройки не требуется.

Микросхемы ЛМ317 и LM317T datasheet полностью одинаковые, отличаются только корпусом. Никаких отличий или разницы нет, совсем нет.

Так же написал обзоры и datasheet других популярных ИМС , . C хорошими иллюстрациями, понятными и простыми схемами.


  • 1. Характеристики
  • 2. Аналоги
  • 3. Типовые схемы включения
  • 4. Калькуляторы
  • 5. Схемы включения
  • 6. Радиоконструкторы
  • 7. Datasheet, даташит

Характеристики

Основное назначение это стабилизация положительного напряжения. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.

Так же популярна LM317T, с ней не встречался, поэтому пришлось долго искать правильный даташит на неё. Оказалось, что они полностью идентичны по параметрам, букв «T» в конце маркировки обозначает корпус TO-220 на 1,5 Ампер.

Скачать даташиты:

  1. полный ;

Характеристики

Даже при наличии интегрированных систем защиты не следует эксплуатировать на пределе возможностей. Если выйдет из строя, неизвестно сколько Вольт будет на выходе, можно будет спалить дорогостоящую нагрузку.

Приведу основные электрические характеристики из LM317 datasheet на русском. Не все знают технические термины на английском.

В даташите указана огромная сфера применения, проще написать где она не используется.

Аналоги

Микросхем которые имеют практически такой же функционал много, отечественных и зарубежных. Добавлю в список более мощные аналоги, чтобы избежать включения нескольких параллельно. Самый известный LM317 аналог, это отечественная КР142ЕН12.

  1. LM117 LM217 – расширенный диапазон рабочих температур от -55° до +150°;
  2. LM338, LM138, LM350 — аналоги на 5А, 5А и 3А соответственно;
  3. LM317HV, LM117HV — напряжение на выходе до 60V, если вам не достаточно стандартных 40V.

Полные аналоги:

  • GL317;
  • SG317;
  • UPC317;
  • ECG1900.

Типовые схемы включения

Регулятор 1,25 — 20 Вольт с регулируемым током

Калькуляторы

..

Для максимального облегчения расчётов на основе LM317T разработано множество программ LM317 калькуляторов и онлайн калькуляторов. Указав исходные параметры сразу можно просчитать несколько вариантов и увидеть характеристики требуемых радиодеталей.

Программа для расчета источников напряжения и тока с учётом LM317 характеристик LM317T . Расчёт схем включения мощных преобразователей с использованием транзисторов, TL431, M5237. Так же ИМС 7805, 7809, 7812.

Схемы включения

Стабилизатор LM317 зарекомендовал себя универсальной микросхемой способной стабилизировать напряжение и Амперы. За десятки лет разработаны сотни схем включения LM317T различного применения. Основное назначение, это стабилизатор напряжения в блоках питания. Для увеличения силы количества Ампер на выходе есть несколько вариантов:

  1. подключение параллельно;
  2. установка на выходе силовых транзисторов, получим до 20А;
  3. замена на мощные аналоги LM338 до 5A или LM350 до 3А.

Для построения двухполярного блока питания применяются стабилизаторы отрицательного напряжение LM337.

Считаю, что параллельное подключение не самый лучший вариант из-за разницы в характеристиках стабилизаторов. Невозможно настроить несколько штук точно на одинаковые параметры, чтобы распределить нагрузку равномерно. Благодаря разбросу, на один нагрузка всегда будет больше чем на другие. Вероятность выхода из строя нагруженного элемента выше, если он сгорит, то резко возрастёт нагрузка на другие, которые могут не выдержать её.

Чтобы не подключать параллельно, лучше использовать для силовой части DC-DC преобразователя напряжения транзисторы на выходе. Они рассчитаны на большой ток и отвод тепла у них лучше из-за больших размеров.

Современные импульсные микросхемы уступают по популярности, её простоту трудно превзойти. Стабилизатор тока на lm317 для светодиодов прост в настройке и расчётах, в настоящее время до сих пор применяется на небольших производствах электронных блоков.

Двухполярный БП LM317 и LM337, для получения положительного и отрицательного напряжения.


Радиоконструкторы

Для начинающих радиолюбителей могу порекомендовать радиоконструкторы от китайцев на Aliexpress. Такой конструктор оптимальный способ собрать устройство по схеме включения, не надо изготавливать плату и подбирать детали. Любой конструктор можно доработать по своему усмотрению, главное чтобы плата была. Стоимость конструктора от 100 руб с доставкой, готовый модуль в сборе от 50 руб.

Datasheet, даташит

Микросхема очень популярная, выпускает множеством производителей, включая китайских. Мои коллегам попадались ЛМ317 с плохими параметрами, которые не тянут заявленный ток. Покупали у китайцев, которые любят всё подделывать и копировать, при этом ухудшая характеристики.

Стабилизатор тока для светодиодов применяется во многих светильниках. Как и всем диодам, LED присуще нелинейная вольт-амперная зависимость. Что это значит? При повышении напряжения, сила тока медленно начинает набирать мощь. И только при достижении порогового значения, яркость светодиода становится насыщенной. Однако если ток не перестанет расти, то лампа может сгореть.

Правильная работа LED может быть обеспечена только благодаря стабилизатору. Эта защита необходима еще и по причине разброса пороговых значений напряжения светодиода. При подключении по параллельной схеме лампочки могут просто на просто сгореть, так как им приходится пропускать недопустимую для них величину тока.

Виды стабилизирующих устройств

По способу ограничения силы тока выделяются устройства линейного и импульсного типа.

Так как напряжение на светодиоде – неизменная величина, то стабилизаторы тока часто считают стабилизаторами мощности LED. Фактически последняя прямо пропорциональна изменению напряжения, что характерно для линейной зависимости.

Линейный стабилизатор нагревается тем больше, чем больше прилагается к нему напряжения. Это его главный недочёт. Преимущества данной конструкции обусловлены:

  • отсутствием электромагнитных помех;
  • простотой;
  • низкой стоимостью.

Более экономичными устройствами являются стабилизаторы на основе импульсного преобразователя. В этом случае мощность прокачивается порционно – по мере необходимости для потребителя.

Схемы линейных устройств

Самая простейшая схема стабилизатора – это схема, построенная на основе LM317 для светодиода. Последний являются аналогом стабилитрона с определенным рабочим током, который он может пропускать. Учитывая малую силу тока можно собрать простой аппарат самостоятельно. Наиболее простой драйвер светодиодных ламп и лент собирают именно таким способом.

Микросхема LM317 уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На её основе можно собрать регулируемый блок драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, модуль работает сразу, настройки не требуется.

Интегральный стабилизатор LM317 как никакой другой подходит для создания несложных регулируемых блоков питания, для электронных устройств с разными характеристиками, как с регулируемым выходным напряжением, так и с заданными параметрами нагрузки.

Основное назначение это стабилизация заданных параметров. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.

Выпускаются LM317 в монолитных корпусах, исполненных в нескольких вариациях. Самая распространённая модель TO-220 с маркировкой LM317Т.

Каждый вывод микросхемы имеет свое предназначение:

  • ADJUST. Ввод для регулирования выходного напряжения.
  • OUTPUT. Ввод для формирования выходного напряжения.
  • INPUT. Ввод для подачи питающего напряжения.

Технические показатели стабилизатора:

  • Напряжение на выходе в пределах 1,2–37 В.
  • Защита от перегрузки и КЗ.
  • Погрешность выходного напряжения 0,1%.
  • Схема включения с регулируемым выходным напряжением.

Мощность рассеяния и входное напряжение устройства

Максимальная «планка» входного напряжения должна быть не более заданной, а минимальная – выше желаемой выходной на 2 В.

Микросхема рассчитана на стабильную работу при максимальном токе до 1,5 А. Это значение будет ниже, если не применять качественный теплоотвод. Максимально допустимое рассеивание мощности без последнего равно примерно 1,5 Вт при температуре окружающей среды не более 30 0 С.

При установке микросхемы требуется изоляция корпуса от радиатора, к примеру, с помощью слюдяной прокладки. Также эффективный отвод тепла достигается путём применения теплопроводной пасты.

Краткое описание

Коротко описать достоинства радиоэлектронного модуля LM317, применяемого в стабилизаторах тока, можно так:

  • яркость светового потока обеспечивается диапазоном выходного напряжения 1, – 37 В;
  • выходные показатели модуля не зависят от частоты вращения вала электродвигателя;
  • поддерживание выходного тока до 1,5 А позволяет подключать несколько электроприёмников;
  • погрешность колебаний выходных параметров равна 0,1% от номинального значения, что является гарантией высокой стабильности;
  • имеется функция защиты по ограничению тока и каскадного отключения при перегреве;
  • корпус микросхемы заменяет землю, поэтому при внешнем креплении уменьшается количество монтажных кабелей.

Схемы включения

Безусловно, наипростейшим способом токового ограничения для светодиодных ламп станет последовательное включение добавочного резистора. Но данное средство подходит лишь только для маломощных LED.

Простейший стабилизированный блок питания

Чтобы сделать стабилизатор тока потребуется:

  • микросхемка LM317;
  • резистор;
  • монтажные средства.

Собираем модель по нижеприведенной схеме:

Модуль можно применять в схемах разных зарядных устройств либо регулируемых ИБ.

Блок питания на интегральном стабилизаторе

Этот вариант более практичный. LM317 ограничивает потребляемый ток, который задается резистором R.

Помните, что максимально допустимое значение тока, которое нужно для управления LM317, составляет 1,5 А с хорошим радиатором.

Схема стабилизатора с регулируемым блоком питания

Ниже изображена схема с регулируемым выходным напряжением 1.2–30 В/1,5 А.

Переменный ток преобразуется в постоянный с помощью моста-выпрямителя (BR1). Конденсатор С1 фильтрует пульсирующий ток, С3 улучшает переходную характеристику. Это означает, что стабилизатор напряжения может отлично работать при постоянном токе на низких частотах. Выходное напряжение регулируется ползунком Р1 от 1.2 вольта до 30 В. Выходной ток составляет около 1,5 А.

Подбор резисторов по номиналу для стабилизатора должен осуществляться по точному расчету с допустимым отклонением (небольшим). Однако разрешается произвольное размещение резисторов на монтажном плате, но желательно для лучшей стабильности размещать их подальше от радиатора LM317.

Область применения

Микросхема LM317 является отличным вариантом для использования в режиме стабилизации основных технических показателей. Она отличается простотой в исполнении, недорогой стоимостью и отличными эксплуатационными характеристиками. Единственный недостаток – пороговое значение напряжения составляет лишь 3 В. Корпус в стиле ТО220 – это одна из самых доступных моделей, которая позволяет рассеивать тепло довольно хорошо.

Микросхема применима в устройствах:

  • стабилизатор тока для LED (в том числе для LED-лент);
  • Регулируемый .

Стабилизирующая схема, построенная на основе LM317 простая, дешёвая, и в то же время надежная.

Блок питания - одно из самых важных устройств, в мастерской радиолюбителя. Тем более с батарейками и с аккумуляторами каждый раз мучиться как-то надоело. Рассмотренный здесь БП Регулирует напряжение от 1.2 вольта до 24 вольта. И нагрузку до 4 А. Для большей силы тока, было решено установить два одинаковых трансформатора. Трансформаторы подключаются параллельно.

Детали для регулируемого блока питания

  1. Стабилизатор LM317 ТО-220 корпусе.
  2. Кремниевый транзистор, p-n-p КТ818.
  3. Резистор 62 Ом.
  4. Конденсатор электролитический 1 мкф*43В.
  5. Конденсатор электролитический 10 мкф*43В.
  6. Резистор 0,2 Ом 5W.
  7. Резистор 240 Ом.
  8. Подстроечный резистор 6.8 Ком.
  9. Конденсатор электролитический 2200 мкф*35В.
  10. Любой светодиод.

Схема блока питания

Схема блока защиты

Схема блока выпрямителя

Детали для построения защиты от КЗ

  1. Кремниевый транзистор, n-p-n КТ819.
  2. Кремниевый транзистор, n-p-n КТ3102.
  3. Резистор 2 Ом.
  4. Резистор 1 Ком.
  5. Резистор 1 Ком.
  6. Любой светодиод.

Для корпуса регулируемого блока питания, были использованы два корпуса, от обычного компьютерного блока питания. В места из под кулера, были поставлены вольтметр и амперметр.

Для дополнительного охлаждения, был установлен кулер.

Но можно спаять схему просто навесным монтажом. Соединяются корпуса, с помощью двух болтов.

Гайки были приклеены, к крышке корпуса термо клеем. Для охлаждения стабилизатора и транзисторов был использован радиатор от компьютера, который обдувал кулер.

Для удобства переноса блока питания, была прикручена ручка от шуфлядки письменного стола. В общем, получившийся блок питания очень нравится. Мощности его хватает для питания почти всех схем, проверки микросхем, и зарядки небольших аккумуляторов.

Схема ИП не нуждается в настройке, и при правильной спайке она заработает сразу. Автор статьи 4ei3 e-mail [email protected]

Обсудить статью БП НА LM317 С БЛОКОМ ЗАЩИТЫ

Справочники по компонентам (или datasheets) являются необходимейшим элементом
при разработке электронных схем. Однако, у них есть одна, но неприятная особенность.
Дело в том, что документация на любой электронный компонент (например, микросхему)
всегда должна быть готова еще до того, как эта микросхема начнет выпускаться.
В итоге, реально мы имеем ситуцию, когда микросхемы уже поступили в продажу,
а еще ни одно изделие на их основе не было создано.
А, значит, все рекомендации и особенно схемы приложений, приводимые в datasheets,
носят теоретический, рекомендательный характер.
Эти схемы в основном демонстрируют принципы работы электронных компонентов,
но они не проверены на практике и не должны поэтому слепо приниматься во внимание
при разработке.
Это нормальное и логичное положение дел, если только со временем и по мере
накопления опыта в документацию вносятся изменения и дополнения.
Практика же показывает обратное,- в большинстве случаев все схемные решения,
приводимые в datasheet, так и остаются на теоретическом уровне.
И, к сожалению, частенько это не просто теории, а грубые ошибки.
И еще большее сожаление вызывает несоответствие реальных (и важнейших)
параметров микросхемы, заявленным в документации.

В качестве типичного примера подобных datasheets приведем справочник на LM317,-
трех-выводной регулируемый стабилизатор напряжения, который, кстати, выпускается
уже лет 20. А схемы и данные в его datasheet все те же …

Итак, недостатки LM317, как микросхемы и ошибки в рекомендациях по ее использованию.

1. Защитные диоды.
Диоды D1 и D2 служат для защиты регулятора,-
D1 для защиты от короткого замыкания на входе, а D2 для защиты от разряда
конденсатора C2 “через низкое выходное сопротивление регулятора” (цитата).
На самом деле, диод D1 не нужен, поскольку никогда не бывает ситуации, когда
напряжение на входе регулятора меньше, чем напряжение на выходе.
Поэтому, диод D1 никогда не открывается, а значит и не защищает регулятор.
Кроме, конечно, случая короткого замыкания на входе. Но это – нереальная ситуация.
Диод D2 может открываться, конечно, Но, конденсатор C2 прекрасно разряжается
и без него, через резисторы R2 и R1 и через сопротивление нагрузки.
И как-то специально его разряжать нет необходимости.
Кроме того, упоминание в Datasheet о “разряде С2 через выход регулятора”
не более, чем ошибка, потому, как схема выходного каскада регулятора –
это эмиттерный повторитель.
И конденсатору C2 просто нет может разряжаться через выход регулятора.

2. Теперь — о самом неприятном, а именно о несоответствии реальных
электрических характеристик заявленным.

В Datasheets всех производителей есть параметр Adjustment Pin Current
(ток по входу подстройки). Параметр весьма интересный и важный, определяющий,
в частности, максимальную величину резистора в цепи входа Adj.
А также и значение конденсатора C2. Заявленное типовое значение тока Adj равно 50 мкА.
Что весьма впечатляет и полностью устраивало бы меня, как схемотехника.
Если бы на самом деле оно не было бы в 10 раз больше, т.е. 500 мкА.

Это — реальное несоответствие, проверенное на микросхемах разных производителей
и на протяжении многих лет.
А началось все с недоумения — почему это на выходе во всех схемах такой низкоомный делитель?
А вот потому и низкоомный, что иначе невозможно получить на выходе LM317
минимальный уровень напряжения.

Самое интересное, что в методике измерения тока Adj низкоомный делитель
на выходе так же присутствует. Что фактически означает, что этот делитель включен
параллельно с электродом Adj.
Только с таким хитрым подходом и можно «влезть» в рамки типовой величины в 50 мкА.
Но это — довольно изящная, но уловка. «Особые условия измерения».

Я понимаю, весьма трудно добиться стабильного тока заявленной величины в 50 мкА.
Так не пишите липу в Datasheet. Иначе — это обман покупателя. А честность — лучшая политика.

3. Еще о самом неприятном.

В Datasheets LM317 есть параметр Line Regulation, который определяет
рабочий диапазон напряжений. И диапазон указан таки не плохой — от 3 до 40 Вольт.
Вот только одно маленькое НО …
Внутренняя часть LM317 содержит стабилизатор тока, в котором использован
стабилитрон на напряжение 6,3 В.
Поэтому, эффективное регулирование начинается с напряжения Вход-Выход в 7 Вольт.
Кроме того, выходной каскад LM317 — это транзистор n-p-n, включенный по схеме
эмиттерного повторителя. И на «раскачке» у него — такие же повторители.
Поэтому эффективная работа LM317 при напряжении в 3 В невозможна.

4. О схемах, обещающих получить на выходе LM317 регулируемое напряжение от ноля Вольт.

Минимальная величина напряжения на выходе LM317 составляет 1,25 В.
Можно было бы получить и меньше, если бы не встроенная схема защиты от
короткого замыкания на выходе. Не самая хорошая схема, мягко говоря …
В других микросхемах схема защиты от КЗ срабатывает при превышении тока нагрузки.
А в LM317 — при снижении выходного напряжение ниже 1,25 В. Простенько и со вкусом,-
закрылся себе транзистор при напряжении база-эмиттер ниже 1,25 В и все тут.
Вот поэтому, все схемы приложений, которые обещают получить на выходе
LM317 регулируемое напряжение, начиная аж от ноля вольт — не работают.
Все эти схемы предлагают подключить контакт Adj через резистор к источнику
отрицательного напряжения.
Но уже при напряжении между выходом и контактом Adj менее 1,25 В
сработает схема защиты от КЗ.
Все эти схемы — чистая теоретическая фантазия. Их авторы не знают, как работает LM317.

5. Способ защиты от КЗ на выходе, используемый в LM317, также накладывает
известные ограничения на запуск регулятора,- в ряде случаев запуск будет затруднен,
поскольку невозможно различить режим короткого замыкания и режим нормального включения,
когда выходной конденсатор еще не заряжен.

6. Рекомендации по номиналам конденсатора на выходе LM317 очень впечатляют,-
это диапазон от 10 до 1000 мкФ. Что в сочетании с величиной выходного сопротивления
регулятора порядка одной тысячной Ома является полным бредом.
Даже студенты знают, что конденсатор на входе стабилизатора существенно,
мягко говоря, эффективнее, чем на выходе.

7. О принципе регулирования выходного напряжения LM317.

LM317 представляет собой операционный усилитель, в котором регулирование
выходного напряжения осуществляется по НЕ инвертирующему входу Adj.
Другими словами — по цепи Положительной обратной связи (ПОС).

Чем это плохо? А тем, что все помехи с выхода регулятора через вход Adj проходят внутрь LM317,
а затем — опять на нагрузку. Хорошо еще, что коэффициент передачи по цепи ПОС меньше единицы …
А то получили бы автогенератор.
И не удивительно в связи с этим, что в цепи Adj рекомендуется ставить конденсатор С2.
Хоть как-то отфильтровывать помехи и повышать устойчивость к самовозбуждению.

Весьма занятным представляется и тот факт, что в цепи ПОС, внутри LM317,
имеется конденсатор 30 пФ. Что увеличивает уровень пульсаций на нагрузке с повышением частоты.
Правда, это честно показано на диаграмме Ripple Rejection. Вот только зачем этот конденсатор?
Он был бы весьма полезен, если бы регулирование осуществлялось по цепи
Отрицательной обратной связи. А в цени ПОС он только ухудшает устойчивость.

Кстати, и с самим понятием Ripple Rejection не все «по понятиям».
В общепринятом понимании эта величина означает, насколько хорошо регулятор
фильтрует пульсации со ВХОДА.
А для LM317 она фактически означает степень собственной ущербности
и показывает, как же хорошо LM317 борется с пульсациями, которые сама же
берет с выхода и опять загоняет внутрь самой себя.
В других регуляторах регулирование осуществляется по цепи
Отрицательной обратной связи, что максимально улучшает все параметры.

8. О минимальном токе нагрузки для LM317.

В Datasheet указан минимальный ток нагрузки в 3,5 мА.
При меньшем токе LM317 неработоспособна.
Весьма странная особенность для стабилизатора напряжения.
Значит, надо следить не только за максимальным током нагрузки, но и за минимальным тоже?
Это так же означает, что при токе нагрузки, равном 3,5 мА КПД регулятора не превышает 50 %.
Большое Вам спасибо, господа разработчики …

1. Рекомендации по применению защитных диодов для LM317 носят обще-теоретический характер и рассматривают ситуации, которых не бывает на практике.
А, поскольку, в качестве защитных диодов предлагается использовать мощные диоды Шоттки, то получаем ситуацию, когда стоимость (ненужной) защиты превышает цену самой LM317.

2. В Datasheets LM317 приведен неверный параметр на ток по входу Adj.
Он измерен в «особых» условиях при подключении низкоомного выходного делителя.
Эта методика измерения не соответствует общепринятому понятию «ток по входу» и показывает неспособность достичь при изготовлении LM317 заданных параметров.
А также и является обманом покупателя.

3. Параметр Line Regulation указан как диапазон от 3 до 40 Вольт.
На некоторых схемах приложений LM317 «работает» при напряжении вход-выход аж в два вольта.
На самом деле, диапазон эффективного регулирования равен 7 — 40 Вольт.

4. Все схемы получения на выходе LM317 регулируемого напряжения, начиная с ноля вольт, — практически не работоспособны.

5. Способ защиты от короткого замыкания LM317 на практике иногда применяется.
Он прост, но не является лучшим. В ряде случаев запуск регулятора будет вообще невозможен.

7. В LM317 реализован ущербный принцип регулирования выходного напряжения,-
по цепи Положительной обратной связи. Надо бы хуже, да некуда.

8. Ограничение на минимальный ток нагрузки свидетельствует о плохой схемотехнике LM317 и явно ограничивает варианты ее использования.

Суммируя все недостатки LM317 можно дать рекомендации:

а) Для стабилизации постоянных «типовых» напряжений 5, 6, 9, 12, 15, 18, 24 В целесообразно использовать трех-выводные стабилизаторы серии 78xx, а не LM317.

б) Для построения действительно эффективных стабилизаторов напряжения следует использовать микросхемы типа LP2950, LP2951, способных работать при напряжении вход-выход менее 400 милливольт.
В сочетании с мощными транзисторами при необходимости.
Эти же микросхемы эффективно работают и в качестве стабилизаторов тока.

в) В большинстве случаев операционный усилитель, стабилитрон и мощный транзистор (особенно полевой) дадут гораздо лучшие параметры, чем LM317.
И уж точно — лучшую регулировку, а также и широчайший диапазон по типам и номиналам резисторов и конденсаторов.

г). И, не доверяйте слепо Datasheets.
Любые микросхемы делаются и, что характерно, продаются людьми …