Разъем рхх ваз. Неправильное питание на рхх. РХХ: что это такое и его принцип работы

Регулятор холостого хода (РХХ) или как его еще называют — регулятор дополнительного воздуха (РДВ) крепится к ресиверу двигателя ЗМЗ-409 через резинометаллический держатель. Назначение регулятора холостого хода на двигателе — управление дополнительным байпасным каналом воздуха, выполненным в обход дроссельной заслонки.

Общее устройство, принцип работы и применяемые типы регуляторов на двигателе ЗМЗ-409.

Регулятор холостого хода представляет собой двухобмоточный поворотный соленоид со щелевым проходным отверстием, сечение которого изменяется по программе электронного блока управления. Конструктивно он состоит из цилиндрического корпуса, с впускным и повернутым на 90 градусов выпускным штуцерами, внутри которого размещены двухобмоточный электродвигатель постоянного тока и подпружиненный клапан в виде сектора, и вилки соединителя опрессованной в корпусе.

К выходному штуцеру регулятора подводится резиновый шланг от , а ко входному штуцеру — резиновый шланг от бокового штуцера дроссельного устройства. Все соединения шлангов уплотняются хомутами. Подключение регулятора к жгуту проводов производится посредством трехконтактной розетки с защелкой.

РХХ выполняет следующие основные функции:

автоматический запуск и прогрев двигателя на холостом ходу
— стабилизация минимальных оборотов холостого хода
— управление цикловым наполнением воздуха на частичных нагрузках
— демпфирование воздушного потока при резком открытии и закрытии дроссельной заслонки.

Электропитание электромагнитных обмоток регулятора осуществляется от бортовой сети через , а включение обмоток производится путем замыкания их на массу через силовые каналы блока управления. Направление воздушного потока указано стрелкой на корпусе регулятора.

При взаимодействии постоянного магнитного поля ротора регулятора с переменным магнитным полем статора, которое формируется импульсами управления изменяемой скважности с частотой 125 Гц, ротор вместе с клапаном поворачивается на заданный угол и изменяет проходное сечение байпасного канала, через который всасываемый воздух попадает в задроссельное пространство двигателя, минуя дроссельную заслонку.

Степень открытия регулятора холостого хода изменяется от полного открытия (240 шагов) на запуске двигателя до полного закрытия в режиме принудительного холостого хода, на холостом ходу регулятор открыт примерно на 85-100 шагов (35-45%) для прогретого двигателя.

На двигателях ЗМЗ-409 устанавливается регулятор холостого хода Bosch ZWD-5 0 280 140 545 или его аналоги регуляторы дополнительного воздуха РХХ-60 и РХХ-60 9Е.573.000 различных производителей.

Внешние проявления неисправности регулятора холостого хода двигателя ЗМЗ-409.

Признаками неисправности РХХ или его цепей в большинстве случаев являются повышенные обороты хода прогретого двигателя, или двигатель запускается и глохнет или запускается только при частично нажатой педали газа. В таких случаях надо проверить состояние байпасного канала и затвора регулятора, при необходимости очистить их от грязи и промыть.

Если двигатель запускается при пережатом шланге регулятора, то значит есть воздуха через неплотно прикрытый дроссель, следовательно надо отрегулируйте привод и заслонку дроссельного устройства на полное закрытие. При неисправности электрических цепей регулятора система самодиагностики включает сигнальную лампу неисправностей и выдает ошибок.

Микас-7.2

161, 164 - короткое замыкание обмотки 1 или 2, соответственно, регулятора дополнительного воздуха

— короткое замыкание на бортсеть цепи управления регулятора
— неисправность, замыкание обмотки регулятора
— неисправность блока управления

162, 165 - обрыв цепи 1 или 2, соответственно, управления регулятором дополнительного воздуха

Возможные причины неисправности:

— регулятор не подключен к жгуту проводов
— обрыв провода электропитания регулятора
— обрыв цепи управления регулятора
— неисправность, обрыв обмотки регулятора

163, 166 - короткое замыкание на «массу» цепи 1 или 2, соответственно, управления регулятором дополнительного воздуха

Возможные причины неисправности:

— замыкание на массу цепи управления РДВ
— неисправность, короткое замыкание на корпус обмотки РДВ
— неисправность блока управления.

Микас-11

0505 - неисправность цепи регулятора холостого хода
0506 - низкие обороты холостого хода, регулятор холостого хода заблокирован
0507 - высокие обороты холостого хода, регулятор холостого хода заблокирован
0508 - короткое замыкание цепи управления шаговым регулятором холостого хода на массу
0509 - короткое замыкание цепи управления шаговым регулятором холостого хода на бортсеть
0511 - обрыв цепи управления шаговым регулятором холостого хода
1509 - перегрузка цепи управления регулятора холостого хода
1513 - короткое замыкание на массу цепи управления регулятором холостого хода
1514 - короткое замыкание на бортсеть или обрыв цепи управления регулятором холостого хода
1750 - короткое замыкание на бортсеть цепи № 1 управления моментным регулятором холостого хода
1751 - обрыв цепи № 1 управления моментным регулятором холостого хода
1752 - короткое замыкание на массу цепи № 1 управления моментным регулятором холостого хода
1753 - короткое замыкание на бортсеть цепи № 2 управления моментным регулятором холостого хода
1754 - обрыв цепи № 2 управления моментным регулятором холостого хода
1755 - короткое замыкание на массу цепи № 2 управления моментным регулятором холостого хода

Проверка работы регулятора холостого хода по его типовому параметру.

Возможна при помощи подключенного бортового или , которые могут считывать и выводить в режиме реального времени на свой дисплей это значение. Положение или открытие регулятора холостого хода (FSM) на прогретом до температуры 80-100 градусов и находящимся в режиме холостого хода двигателе ЗМЗ-409 должно быть в пределах 22-34 %. При контроле этого типового параметра все потребители электроэнергии, в том числе электровентилятор и , должны быть выключены.

Если положение регулятора холостого хода занижено, то вероятнее всего приоткрыта дроссельная заслонка в нормально закрытом положении или ее привод не отрегулирован. Если положение РХХ повышено, то значит занижено поступление воздуха через нормально закрытое дроссельное устройство, закоксован сектор регулятор или он неисправен.

При появлении любых кодов неисправностей, следует определить что именно неисправно — РХХ, его цепь питания или блок управления двигателем. Для этого надо отключить зажигание и отсоедините регулятор от жгута проводов. Затем включить зажигание, сбросить все кода ошибок и через 10-20 секунд снова проверить их наличие. Если фиксируется прежний ошибки, то неисправен блок управления или жгут проводов, если фиксируется другой код, то значит неисправность в регуляторе.

Для проверки подачи электропитания на регулятор, надо отсоединить защитный чехол розетки жгута проводов, включить зажигание и проверить напряжение между выводом «2» регулятора и массой двигателя. Напряжение должно быть примерно равно напряжению аккумулятора. Если измеренное напряжение близко к нулю, то вероятно имеет место обрыв цепи электропитания.

Активное сопротивление обмотки регулятора дополнительного воздуха проверяется при выключенном зажигании и отсоединенном жгуте проводов. Оно должно быть в пределах 11-13 Ом без учета переходного сопротивления контактов омметра. Если сопротивление меньше, то вероятнее всего имеет место внутреннее короткое замыкание обмотки регулятора.

Дополнительно надо проверить сопротивление между контактом «3» вилки РДВ и металлическими деталями двигателя. Если это сопротивление близко к нулю, то скорее всего присутствует внутреннее короткое замыкание обмотки регулятора дополнительного воздуха на ее корпус.

Да и еще допустим по своей неопытности я не смогу понять как минус приходящий с ЭБУ в компании с минусом на кузове показывает напряжение,вот что хотелось узнать естли на заведенной машине все становится в норму значит минус появляется так сказать,болячка проявляется именно при старте, напряжение на обоих ногах одинаково.и еще если мы определились что нет минуса от мозгов в режиме Зажигания и запуска что приводит к неоткрыванию РХХ,то где проверить этот минус от мозгов или это мозгам хана?

Примерно начинаю догонять получается что минус вообще как таковой не идет от ЭБУ на РХХ а сидит гдето в мозгах и регулиреет напряжение которое насквозняк проходит от реле перегрузки через катушку РХХ,поэтому на второй ноге значение напряжения меньше чем на входе так как его садит катушка РХХ типо сопротивления?

Самая распространенная система с РХХ (2-х контактный) . машины с 87 года, как правило оборудованные катализатором и электронной системой зажигания EZL

Входные сигналы системы :
-температура двигателя,
-текущий расход воздуха (сигнал с потенциометра расходомера),
-обороты двигателя (сигнал TD от системы зажигания),
-состояние дроссельной заслонки (микрик "ДЗ закрыта" в составе датчика на оси ДЗ)
-сигнал с датчика скорости "признак движения автомобиля" (с 9/88 года)
Исполнительные устройства :
-регулятор холостого хода (далее РХХ), представляет собой исполнительный механизм, который изменяет количество воздуха, проходящего в обход дросселя, для работы двигателя на холостом ходу. Управление ХХ в KE производится путем стабилизации расхода воздуха, а не оборотов двигателя. В памяти контроллера есть таблица зависимости расхода воздуха от температуры двигателя.

При замыкании микрика "ДЗ закрыта", блок управления (БУ) по температуре двигателя вычисляет расход воздуха, который должен быть стабилизирован и, управляя РХХ, пытается получить такой расход. ЭБУ пытается стабилизировать ХХ только когда автомобиль стоит, т.е. в движении на нейтрали могут наблюдаться повышенные обороты и только после полной остановки где-то через секунду они падают до нормы.
Т.е. если в текущем режиме работы двигателя (на горячем t=90град.) расход воздуха 0.7В, то мозги через РХХ начнут прикрывать заслонку (опускать обороты), но не ниже 750, т.е. что наступит раньше - либо расход воздуха станет 0.6В, допустим при 750 оборотах, либо обороты упадут до 750.

Надо понимать, что есть не точное значение стабилизируемого расхода воздуха, а некий диапазон, так же есть компенсации при наличии АКПП, кондиционера и т.п.(устройства, повышающие нагрузку на двигатель, которая требует компенсации)
Со временем, напыление на дорожках потенциометра в зоне ХХ истирается, и при тех же отклонениях лопаты расходомера сигнал увеличивается, т.е. если у нового двигателя при 800 оборотах было 0.55В, то к старости оно и 0.7В и выше может стать, в связи с чем обороты держатся всегда минимальными (т.е. система упирается в нижнее ограничение - обороты 700)...

Теперь об аварийном режиме: он возникает когда сигнал расхода воздуха перестает удовлетворять какому-то диапазону напряжений, тогда система должна перестать регулировать ХХ и отключить РХХ, но просто так это сделать нельзя т.к. двигатель заглохнет (кто знает устройство РХХ - поймет), поэтому система увеличивает обороты и обесточивает регулятор, без напряжения там зазор всегда 2мм -аварийное окно , (при запуске открыт на всю, далее прикрытие по мере прогрева двигателя) .Для водителя это выглядит так: сначала ХХ нормальный, потом вдруг обороты плавно повышаются до 1500(аварийное окно в регуляторе).
Это можно смоделировать на работающем движке просто отсоединением разъема с РХХ
Проверка

Мерить относительно массы оба контакта, когда РХХ подключен (чуть приспустить разъем, но не снимать). Мотор работает, на одном будет около 12-14В , на другом, примерно на 5В меньше . Если на одном из контактов 12-14В нет- проверять реле перегрузки.

Подробнее

1. Относительно массы, (черный щуп на двигателе) тыкаем в оба контакта. на одном из них будет 12В (такая же напруга как в сети). а на другом примерно на меньше. 2. Между ног померить - на ХХ прогретого мотора.

Неисправности

1. Нет питания - не увидишь напряжения относительно кузова ни на одной ноге. Проверять реле перегрузки и пред в нем.

2. На обоих контактах 12В, либо между ног 0В (обе ситуации равнозначны) - нет управления РХХ мозгом. Например, при снятом потенце на ЭБУ Бош будет такая ситуация. С ЭБУ VDO не будет.

Реле перегрузки дает напряжение аккумулятора на один из выводов РХХ. Даже без ЭБУ, дает. Т.е. при включении зажигания на РХХ хотя бы на один контакт должен приходить плюс. Нет плюса - реле перегрузки не дает плюса (либо проводка).

ЭБУ "рулят" РХХ по минусу (массе). Если мозги не рулят - плюс будет на обоих выводах РХХ (нет массы от мозгов).

Министерство сельского хозяйства РФ

ФГОУ ВПО «Орел ГАУ»

Факультет Агротехники и энергообеспечения

Кафедра «ЭМТП и тракторы»

Жосан А.А. Головин С.И.

Принцип работы, диагностика и тестирование регулятора холостого хода

Методические указания к выполнению лабораторной работы

по дисциплине «Техническая эксплуатация машин» и «Электроника на тракторах и автомобилях»

для студентов специальностей : 110301 – «Механизация сельско-

го хозяйства», 110304 – «Технология обслуживания и ремонта машин в АПК»

Методические указания разработаны на кафедре «ЭМТП и тракторы» к. т. н., доцент А.А. Жосан и ст. преподаватель С.И. Головин.

Методической комиссией факультета «Агротехники и энергообеспечения»

протокол №___от «___» _______2007 г

Методическим советом ОрелГАУ, протокол №___от «___»

Рецензенты: к. т. н., доцент кафедры «Надежность и ремонт машин» ОрелГАУ А.Л. Семешин;

к. т. н., доцент кафедры СиРМ ОрелГТУ М.П. Стратулат.

Введение……………….…………………………….…………………..….. 4

1 Общие сведения…………………………………………………………... 6

1.1 Назначение РХХ………………………………………………………... 6

1.2 Виды РХХ, применяемых на автомобилях ВАЗ………........................ 7

2.1 Общие сведения………………………………………………………… 12

2.2 Способы управления.…………………………………………………... 16

2.3 Принцип работы шагового двигателя РХХ ВАЗ……………………... 18

3.3 Разработка функциональной схемы тестера РХХ……………………. 24

3.4 Выбор элементной базы. Расчет основных узлов тестера…………… 25

3.5 Разработка принципиальной схемы тестера РХХ……………………. 28

3.6 Методика проведения испытаний РХХ на стенде…………………… 33

ВВЕДЕНИЕ

Впускная система современных бензиновых двигателей состоит из нескольких элементов, наиболее сложным из которых является дроссель-

ный узел (рисунок 1.1).

1 – патрубок подвода охлаждающей жидкости; 2 – патрубок системы вентиляции картера на холостом ходу; 3 – патрубок для отвода охлаждаю-

щей жидкости; 4 – датчик положения дроссельной заслонки; 5 – регулятор холостого хода; 6 – штуцер для продувки адсорбера.

Рисунок 1.1 – Дроссельный патрубок в сборе.

Конструкция дроссельного узла должна удовлетворять нескольким противоречивым требованиям. Это, прежде всего, наличие достаточного проходного сечения, выбираемого из условия получения максимально до-

пустимых газодинамических потерь при максимальном расходе воздуха двигателем. Выполнение этого требования приводит к тому, что при нали-

чии проходного сечения, достаточного для максимальных расходов возду-

ха, угол открытия дроссельной заслонки, обеспечивающий получение мак-

симального наполнения при минимальной рабочей частоте вращения ко-

ленчатого вала двигателя, составляет порядка 200. С точки зрения характе-

ристик управляемости автомобиля, это неприемлемо, поскольку не позво-

ляет водителю достаточно уверенно управлять автомобилем в случае рабо-

ты двигателя в области низких частот вращения коленчатого вала, где аб-

солютные значения расхода воздуха относительно невелики. Отсюда выте-

кает требование к линейности передаточной характеристики дроссельного узла, то есть требование обеспечения пропорциональности между положе-

нием педали акселератора и мощностью развиваемой двигателем, выпол-

няемое во всем диапазоне изменения положения дроссельной заслонки.

Обеспечить приемлемую линейность передаточной характеристики дроссельного узла помогают различного рода нелинейные механические звенья, связывающие педаль акселератора и дроссельную заслонку двига-

теля. Но более перспективным путем является применение электрически управляемых исполнительных устройств при полностью или частично от-

сутствующей кинематической связи между педалью акселератора и дрос-

сельной заслонкой. Это решение позволяет не только получить нужную передаточную характеристику, связывающую положение педали акселера-

тора и дроссельной заслонки, но и применить более эффективные способы управления рабочим процессом двигателя. Применение электрически управляемой дроссельной заслонки в настоящее время ограничено из за ее высокой стоимости, но применение более простого исполнительного уст-

ройства – регулятора дополнительного воздуха, в частности регулятора холостого хода (РХХ), является обязательным.

1 ОБЩИЕ СВЕДЕНИЯ

1.1 Назначение РХХ

Регулятор холостого хода служит для поддержания установленных оборотов двигателя на холостом ходу за счет изменения количества возду-

ха, подаваемого в двигатель в обход закрытой дроссельной заслонки (ри-

сунок 1.2). В полностью выдвинутом положении (выдвинутое до упора по-

ложение соответствует "0" шагов), конусная часть штока перекрывает по-

дачу воздуха в обход дроссельной заслонки. При открывании (обороты хо-

лостого хода увеличиваются) клапан обеспечивает расход воздуха, про-

порциональный перемещению штока (количеству шагов) от своего седла.

Полностью открытое положение клапана соответствует перемещению штока на 255 шагов.

1 – шаговый двигатель регулятора холостого хода; 2 – дроссельный патрубок; 3 – дроссельная заслонка; 4 – запорная игла клапана РХХ; 5 –

электрический разъем; А – поступающий воздух.

Рисунок 1.2 – Схема регулировки подачи воздуха РХХ.

На прогретом двигателе ЭБУ, управляя перемещением штока, под-

держивает постоянную частоту вращения коленчатого вала на холостом ходу независимо от состояния двигателя и от изменения нагрузки (вклю-

чение электровентилятора, компрессора кондиционера и т.д.).

Помимо управления частотой вращения коленчатого вала на режиме холостого хода, производится управление РХХ, способствующее сниже-

нию токсичности отработавших газов. Когда дроссельная заслонка резко закрывается при торможении двигателем, РХХ увеличивает количество воздуха, подаваемого в обход дроссельной заслонки, обеспечивая обедне-

ние топливовоздушной смеси. Это снижает выбросы углеводородов и оки-

си углерода, происходящие при быстром закрытии дроссельной заслонки.

1.2 Виды РХХ, применяемых на автомобилях ВАЗ

На отечественных легковых автомобилях: ВАЗ 2110, 21083, 21093, 21099 и их модификациях с двигателями ВАЗ-2111 и ВАЗ-2112 с системой распределенного впрыска топлива устанавливаются РХХ двух фирм про-

изводителей:

1. Калужского завода телеграфной аппаратуры (КЗТА) РХХ 2112- 1148300-02 (рисунок 1.3)

2. Электромеханического завода ОАО Пегас (г. Кострома) РХХ 2112- 1148300-01 (рисунок 1.4)

Рисунок 1.3 – РХХ 2112-1148300-02

Рисунок 1.4 – РХХ 2112-1148300-01

Рисунок 1.5 – Габаритные размеры РХХ

Таблица 1 – Технические характеристики и условия эксплуатации

РХХ 2112-1148300-02

РХХ 2112-1148300-01

Сопротивление обмоток, Ом

Диапазон напряжения пита-

Рабочий ход штока при пе-

ремещении на 250 шагов,

Развиваемое усилие выдви-

жения штока со скоростью

333 шагов/с не менее, Н

Эффективный

порного клапана, мм

Габаритные размеры, мм

Масса, кг не более

Диапазон

рабочей темпера-

Относительная

влажность

температуре

40?С, % не более

Атмосферное давление,

зависимыми обмотками и соединенного с ним подпружиненного конусно-

го штока с клапаном (рисунок 1.6).

Вращательное движение ШД преобразуется в поступательное пере-

мещение конусного штока с клапаном с помощью червячно-анкерного ме-

ханизма. Червячно-анкерный механизма состоит из запрессованной в ро-

тор втулки с внутренней резьбой, непосредственно конусного штока с резьбой и проточками (рисунок 1.7) и направляющих втулок (рисунок 1.8)

выполненных в передней опоре ротора.

1 – шток с клапаном; 2 – пружина; 3 – корпус; 4 – передняя опора ро-

тора; 5 – статор с катушками; 6 - ротор и задняя опора ротора; 7 - крышка с разъемом.

Рисунок 1.6 – Устройство регулятора холостого хода.

Рисунок 1.7 – Конусный шток с резьбой и проточками.

для облегчения жизни, которые, при определенных навыках,
легко сделать в домашних условиях
ТЕСТЕР ДЛЯ ПРОВЕРКИ ФОРСУНОK
© Tom, Miha

Спецификация: C1 -15 пФ, C2 ‑8 –30 пФ, C3 ‑0 ,1 мкФ, C4 ‑0 ,047 мкФ, C5 -470 ґ25 В, C6 ‑0 ,1 мкФ, C7 -2200 x25 В, R1 ‑4 ,7 –6 ,8 МОм, R2 -130 кОм, R3 -100 кОм, R4 -10 кОм, R5 -10 кОм, R6 -1 МОм, R7 ‑1 ,2 кОм, R8 -130 Ом, R9 -220 Ом, R10 ‑0 ,2 –0 ,25 Ом, R11 -470 Омб L1 -200 мкГн, Z1 -400 кГц (50 –800 кГц)

DD1 ,DD2 -К561 ИЕ16 , DD3 -К561 ТМ2 , DD4 -К561 ЛЕ5 , VD2 -КД212 , VD1 -КД521 , VD3 -КД213 , VT1 -КТ3117 , VT2 -КТ817 , VT3 -КТ3102

YA1 -Форсунка
SA1 -Выбор длительности импульса
SA2 -Выбор числа импульсов
SA3 -Включение непрерывного режима
SB1 -«Пуск»

Краткое описание : DD4 .1 – задающий генератор, для стабильности применён кварц. На счётчике DD1 выполнен формирователь длительности импульсов отпирания форсунки. Длительность импульса можно выбирать 2 ,5 или 5 мс переключателем SA1 . На счётчике DD2 выполнен дозатор числа импульсов. Количество импульсов выбирается переключателем SA2 . Выключателем SA3 (фиксируемым) можно включить непрерывный режим. Это необходимо при промывке форсунок, в том числе ультразвуком. SB1 – кнопка «Пуск», при нажатии на нее начинает работать дозатор. С3 ,R3 – служит для установки в ноль DD2 ,DD3 .1 при включении питания. VD1 ,R6 ,R5 ,C4 – подавляет дребезг SB1 . Можно обойтись и без него, но при длительном нажатии на SB1 может произойти повторное включение дозатора. VT3 – пародия на защиту от КЗ, с ней VT2 (KT817 ) может выдержать пару циклов работы дозатора. Вместо VT1 , VT2 можно поставить составной КТ972 или КТ829 , но тогда теряем еще 1 вольт на Uнас.кэ. При питании устройства от аккумуляторной батареи автомобиля стабилизации питания микросхем не нужно. Если от другого источника, то последовательно с L1 нужно поставить резистор и стабилитрон на 10 –15 В. На рис.1 изображен сигнал на выходе DD4 .4 . Скважность приближена к рабочим условиям сигнала на форсунках. Гонки можно зафиксировать только хорошим осциллографом и на работу устройства они не влияют. Коэффициенты деления счетчиков можно изменять по необходимости – данные счетчики позволяют это делать в широких пределах, но кратно двум.

ТЕСТЕР ФОРСУНОК НА КР1006 ВИ1
© UKR-VLAD

Еще один вариант, присланный Владимиром, aka UKR-VLAD, из-за рубежа, с Украины.
D1 ,D2 -КР1006 ВИ1 . D1 -ФОРМИРОВАТЕЛЬ длительности пачки (регулируется R1 ) D2 -длительность импульса на форсунке (примерно 5 ms. регулируется R2 ). П1 ‑я сделал из 4 ‑х мп (удобно – можно задать любую комбинацию)

Для запуска необходимо:
1 .Соединить разъем форсунок с тестером
2 .Подать питание на тестер
3 .Выбрать номер форсунки или несколько
4 .Нажать и отпустить кнопку (не более 1 сек.)

Тестер выполнен по минимуму. но все необходимое выполняет и достаточно стабилен.

Прибор для имитации сигналов ДПКВ
© Михаил Уханов. Ростов


Краткое описание схемы: На элементах D1 .1 ‚D1 .2 собран генератор с изменяемой частотой, так как выход с генератора имеет несимметричный меандр, далее стоит элемент D2 .1 который делит частоту на 2 и формирует правильный сигнал. Сигнал поступает на счётчик D3 , счётчик имеет набранный коэффициент деления 60 , выходной импульс со счётчика поступает на триггер защёлку D2 .2 и сбрасывает его выход, чем запрещает счёт на элементе D1 .3 . Так как длительность импульса на выходе счётчика равна одному такту, мы имеем сброшенный выход триггера на два такта. И при следующем положительном фронте устанавливаем выход триггера в единицу, тем самым разрешаем счёт на выходе D1 .3 . Далее сигнал поступает на транзистор, и формируется неполярный сигнал со счётом 58 импульсов 2 пропуска.

Схема проверена на ЯНВАРЕ 5 .1 .1 . Количество оборотов имитированных схемой от 240 до 10200 об/мин. При этом без ошибок по датчику коленчатого вала.
Рекомендации: резистор регулировки частоты желательно ставить логарифмический, счётчик К564 ИЕ15 можно заменить на два счётчика К561 ИЕ8 немного подправив схему.

Программа тестер МЗ для систем Bosch M1 .5 .4
© Mobil (Юрий)

Программа предназначена для тестирования модулей зажигания. Программа зашивается в ПЗУ, ПЗУ устанавливается на время тестирования в ЭБУ на место штатной. На высоковольтные провода устанавливаются заземленные разрядники. Не забывайте соблюдать осторожность при работе с высоким напряжением! После включения зажигания лампочка СЕ начинает мигать, при нажатии на педаль газа, ЭБУ начинает формировать управляющие сигналы на модуль зажигания длительностью 2 .8 мС, на разрядниках должна появится искра. Частота искрообразования зависит от степени нажатия педали газа, чем сильнее нажата педаль тем выше частота. Во время искрообразования лампочка СЕ горит постоянно.

Частоту искрообразования переведенную в обороты двигателя ориентировочно можно оценить по тахометру. Если отпустить педаль газа, то формирование управляющих сигналов на МЗ прекратится, а лампочка СЕ начнет мигать. Данная программа позволяет оценить работоспособность модуля зажигания не снимая его с автомобиля, так же тестирование
прямо на автомобиле позволяет проверить высоковольтные провода, проводку до МЗ и выходы ЭБУ формирующие управляющие сигналы.

Программа писалась и проверялась на ЭБУ BOSCH M1 .5 .4 2111 8 V 1411020 , но насколько я понимаю, будет работать и на 70 блоке. Хотелось бы чтоб проверили программу на 40 и 60 блоках. Впечатления, предложения и замечания принимаются по адресу [email protected] или в конференции. Скачать программу .

Программу можно зашить не только в 27 С512 , но и в 27 С64 , 27 С128 и 27 С256 , после програмирования необходимо отогнуть 1 и 27 ножки (чтоб они не вставлялись в панель) и соединить их с 28 ножкой для 27 С64 , 27 С128 , для 27 С256 необходимо отогнуть 1 ногу и
соединить её с 28 .

Тестер для проверки цепи датчика скорости (ДС)
© Олег Братков

Один из способов проверить исправность датчика скорости и его электрических цепей – использовать эмулятор датчика скорости. Можно конечно подключить другой, контрольный ДС, и крутя его вал, попросить помощника или водителя последить за стрелкой на панели приборов – дёргается ли? Ну ещё есть варианты…

Эмулятор представляет из себя генератор на таймере «555 », отечественный аналог К1006 ВИ1 . Существуем много разных схем для ускоренной подмотки показаний одометра, и почти всех их можно приспособить для этого. Однако выход настоящего ДС представляет из себя «открытый коллектор», поэтому для правильного согласования с цепями ДС использован транзистор малой или средней мощности, практически любой. Желательно применение защиты по питанию, резистор на 10 …50 Ом и диод последовательно, и затем защитный диод или варистор. Вместо транзистора так же желательно поставить современный электронный ключ.

Хорошая защита обеспечит долгую жизнь устройства. Частота генерации определяется конденсатором С*, резисторами R* и резистором 2 кОм, включенным между 7 выводом и проводом питания, и должна быть 166 .666 (6 ) Герц для 100 км/час, или с периодом следования импульсов 6 миллисекунд. Для большей стабильности конденсатор С* не должен быть керамическим или электролитическим. Лучше использовать конденсаторы серии К73 . В частном случае такая частота получилась при указанных на схеме номиналах радиодеталей и С*=1 мкФ, R*=2 .7 кОм. Надо учесть разброс параметров радиодеталей 🙂 Поставить подстроечный резистор, выставить частоту и заменить его на постоянный. При меньшей ёмкости С* и меньшем сопротивлении R* частота выше. Затем покрыть лаком и залить в «химметалом» или смолой, в одно целое с разъёмом. Получится фишка для проверки ДС 🙂

Ну и сама проверка: Жалобы на неработающий спидометр, ошибка в ЭБУ «неисправен датчик скорости». Снимаем разъём с ДС, включаем в него эмулятор. Светодиод на эмуляторе загорелся – питание есть. Стрелка спидометра отклонилась, ЭБУ (через линию диагностики) показывает известную скорость. Не обязательно именно 100 км/час, а сколько получится при изготовлении устройства. Вывод – неисправен или сам ДС, или его привод.

Проверка РХХ

У РХХ две электромагнитные обмотки, которые не связаны между собой. Одна обмотка – движение иглы вперёд, другая – соответственно назад. Перемещение иглы на один шаг происходит в момент подачи на обмотку питания, следующий шаг перемещения – подача питания в обратной полярности на ту же обмотку.

Нажатие и отпускание кнопки S2 приводит к перемещению иглы, положение переключателя S1 задает направление перемещения. Подозреваю, что в механизме РХХ использован анкерный принцип. © Олег Кравчук aka Ol-102 iL

Другой, более совершенный и продвинутый тестер предложил Э.Горбатко (aka mster2002 , [email protected]). Эта небольшая freeware программа позволяет управлять Регулятором Холостого Хода, меняя скорость и направление движения, подключив его, через небольшую схему (схема подключения прилагается, Вам понадобится микросхема, добыть которую можно из блока GM ВАЗ) к LPT-порту любого персонального компьютера компьютера.

И, наконец, тестер РХХ от ALMI

Тестер предназначен для проверки исправности регулятора холостого хода с шаговым двигателем (далее – РХХ), устанавливаемого на автомобилях ВАЗ.

Логика работы:

1 . При включении питания происходит инициализация РХХ, для этого выполняется 255 шагов в сторону задвигания штока, затем 70 шагов в сторону выдвигания. Эта логика является обратной к нормальной работе РХХ в составе дроссельного патрубка, так как выдвижение штока на 255 шагов недопустимо в том случае, если РХХ снят с ДП (шток может выйти из зацепления и выскочить вместе с пружиной).
2 . После инициализации прибор готов к работе. Нажатие кнопок “выдвинуть шток” и “задвинуть шток” приводит к соответствующим действиям. При выдвижении штока будьте внимательны, он может выйти из зацепления и выскочить вместе с пружиной!
3 . Непрерывный тест. Если нажать обе кнопки одновременно и ужерживать их более 3 сек., то прибор начнет периодическое задвигание и выдвигание штока на 255 шагов. Для прекращения теста нажмите любую кнопку.
4 . С помощью потенциометра возможна регулировка скорости перемещения штока РХХ.

Пояснения к схеме:

1 . Стабилизатор на 5 вольт LM7805 можно заменить на любой другой, в том числе, в корпусе TO-92 (78 L05 ), так как потребляемый микроконтроллером ток очень небольшой.
2 . Конденсатор в цепи 1 ‑й ноги ATTINY12 лучше использовать пленочного типа, так как керамические конденсаторы такой емкости обладают значительным ТКЕ (емкость сильно зависит от температуры).
3 . Драйвер РХХ можно использовать TLE4728 G или TLE 4729 G. В зависимости от типа драйвера используйте соответствующий тип управляющей программы! Драйвер TLE4728 G можно взять из неисправного ЭБУ Bosch MP7 .0 , драйвер TLE4729 G – из ЭБУ Январь‑5 .
4 . Микроконтроллер ATTINY12 L необходимо запрограммировать (прошить) перед установкой в схему.

Прошивка и описание внутри архива. СКАЧАТЬ

Акустический тестер ДПДЗ

Для проверки ДПДЗ простейшее приспособление от Уварова Сергея (aka ZERG) для экспресс – проверки датчика «на слух». Несложное, но очень эффективное устройство, работающее по принципу «старый шуршучий радиоприемник». Схема и описание .

ШТУЦЕР для манометра, для проверки давления топлива в рампе.

По многочисленным просьбам помещаем чертеж штуцера для подключения манометра к рампе. Чертеж выполнен и любезно предоставлен Hass & Dodgev . Для уплотнения используется любая подходящая резиновая трубка наружным диаметром 8 и длиной 6 мм. Чертеж, который Вам необходимо распечатать и отнести токарю, . Если токарь начнет вдруг Вам втирать, что такой резьбы не бывает, смело разворачивайтесь и идите к другому токарю. В конце – концов найдется спец, который сделает Вам штуцер.

Разъем для подключения диагностического оборудования к автомобилям ВАЗ.
Для подключения диагностического оборудования к колодке можно воспользоваться штыревым контактом соответствующего диаметра, но гораздо удобнее изготовить специализированный разъем . Данная конструкция была разработана НПП НТС для подключения своего диагностического оборудования. В несколько измененном виде данные разъемы можно встретить на авторынках Тольятти.
Разборка 55 -контактного разъема ЭБУ.

Сначала надо рассмотреть на фото слева – конструкцию клеммы, а она замысловатая, усилена с двух сторон достаточно упругими плоскими пружинами, так что просто выдернуть провод или подковырнуть одну из пружин бесполезно, всякая попытка сжать одну из них (например, шилом), приводит к тому, что другая пружина еще сильнее закрепляется в посадочном гнезде.

Чтобы облегчить разборку и добычу клемм с проводами разъем надо разобрать, т.е. не только снять защитный кожух, но и отделить верхнюю половины от нижней. При этом могут отломиться боковые держатели, на которых написаны номера клемм. Ничего страшного в этом нет. По окончании процедуры обе половинки разъема и боковые держатели прочно склеиваются обыкновенным японско-китайским супер-клеем (за 2 –3 руб.). Затем рассмотрите фото готовых щипцов, видно, что конструкция их примитивная. Задача этих щипцов сжать в гнезде обе пружины вместе. Поэтому размеры их подгоняются под посадочное гнездо разъема.

Изготавливается это «чудо природы» из подручных материалом. Мне попалась сталистая проволока диаметром 3 мм. Пойдет и обыкновенный гвоздь. Проволоку разрезаем на три куска длиной по 2 ,5 см и скручиваем чем-то, или спаиваем, ил свариваем, или склеиваем, и т.д. в общем соединяем прочно. На фото представлен вариант, скрученный медной проволокой и спаянный с помощью ортофосфорной кислоты. Следующий этап: точильный. Потребуется плоский надфиль и тиски – подгонка размеров. Наконец, вставляем щипцы в разъем, нажатие с небольшим усилием, щелчок и… через 3 –5 минут у Вас в руках 20 –30 проводов с клеммами. Вытаскивайте все провода. Вставляются они потом в склеенный разъем очень легко.

Регулятор холостого хода (РХХ) – один из главных исполнительных механизмов системы управления двигателем. От его корректной работы зависит стабильность оборотов на холостом ходу, потребление топлива, ситуации с внезапным глушением двигателя.

РХХ находится в рабочем состоянии практически постоянно, поэтому его ресурс не очень большой, обычно до 200.000 километров. В практике ремонта двигателей автомобилей даже с небольшим стажем отказ регулятора встречается достаточно часто.

РХХ: что это такое и его принцип работы

Регуляторы холостого хода обычно построены по двум схемам:

  • прямое регулирование дроссельной заслонки;
  • регулирование пропускания обходного канала дроссельной заслонки.

В качестве исполнительного механизма в бензиновых двигателях обычно применяется шаговый двигатель. Он имеет преимущества по сравнению с другими приводами: большая точность, меньшее потребление тока, возможность управления в импульсном режиме.

Схема подачи воздуха через обходной канал изображена на рисунке:

Таким образом, при полном закрытии дроссельной заслонки обороты двигателя поддерживаются за счет частичного притока через обходной (дополнительный или байпасный, от bypass – двигаться в обход) канал.

Запорная игла клапана РХХ, перемещаясь по командам блока управления двигателя, регулирует ширину зазора клапана, соответственно, поступление воздуха в двигатель, от которого зависят его обороты.

Для каждого типа двигателя производитель устанавливает оптимальную частоту оборотов на холостом ходу, которая обычно находится в пределах от 600 до 1000 оборотов в минуту.

Регуляторы оборотов прямого действия на заслонку регулируют непосредственно угол предельного закрытия заслонки, оставляя небольшую щель для поддержания поступления во впускной коллектор воздуха, соответственно, обеспечения холостых оборотов.

Видео о РХХ — что это такое, принцип действия и варианты конструкции:

Контроль количества оборотов блок управления обычно производит по сигналу оборотов двигателя, поступающему с .

Отдельного датчика холостого хода, как ошибочно думают некоторые автолюбители, в современных автомобилях нет.

Большинство систем управления двигателем построено таким образом, что при нажатии педали акселератора и увеличении оборотов, привод РХХ отключался и оставался в последнем до ускорения состоянии. Таким образом, уменьшается нагрузка на привод регулятора.

В дизельных двигателях для поддержания холостых оборотов используется регулирование поступления топлива также по байпассному типу. Для этого в топливных насосах высокого давления применяется специальная электронная система регулирования.

В качестве приводов РХХ в топливных насосах высокого давления используются соленоидные либо роторные клапаны. Такие приводы используют только два уровня открытия байпассного канала – «открыто» либо «закрыто».

Данным способом трудно обеспечить точную установку холостых оборотов. Поэтому клапаны управляются широтно-импульсным модулированным сигналом высокой частоты (ШИМ-модуляция). Чем больше ширина импульса, тем большее время за период открыт байпассный канал, то есть обороты увеличиваются.

Импульсные транзисторы, управляющие работой клапана, часто устанавливаются в электронном блоке на топливном насосе. Для их охлаждения используется протекающее через насос дизельное топливо.

Если топливо заканчивается, транзисторы перестают эффективно охлаждаться, перегреваются и выходят из строя. Сами транзисторы стоят недорого, а работа по их замене недешевая. Поэтому ездить на последней капле дизтоплива не стоит !

Признаки неисправности РХХ

Основными признаками неисправности регулятора холостого хода являются:

  • «плавание» оборотов двигателя на холостом ходу;
  • повышенные либо пониженные обороты двигателя;
  • самопроизвольная остановка двигателя при переключении коробки передач в нейтральный режим;
  • в момент холодного запуска двигатель работает на повышенных оборотах, по мере прогрева их сбрасывает, отсутствие этого режима также признак неисправности регулятора;
  • уменьшение частоты оборотов двигателя при включении дополнительной нагрузки (печки, фар, щеток и других мощных потребителей).

Где находится регулятор и его конструкция

Внешний вид РХХ с байпассной системой изображен на фото:

Вид в разрезе:

РХХ в некоторых случаях можно отремонтировать, если оборвалась обмотка, или заклинило шток. Разборку регулятора следует производить с особой аккуратностью. В некоторых случаях его можно восстановить при помощи очистки.

Типичное место расположения РХХ – непосредственно на дроссельной заслонке. Демонтаж регуляторов обычно не вызывает сложностей.

Как проверить регулятор холостого хода

Сообщения об ошибке РХХ в виде сообщения типа «регулятор холостого хода, короткое замыкание или обрыв цепи». Обычно, как раз, неисправность заключается в обрыве цепи.

Это может быть неисправность обмотки (обрыв) непосредственно регулятора либо нарушение электрической связи с блоком управления двигателем. И тот, и другой вариант следует проверить.

Проверить исправность обмоток можно с помощью мультиметра в режиме измерения сопротивления на пределе 200 Ом. Сопротивление обмоток исправного шагового двигателя обычно находится в пределах от 30 до 100 Ом. К обмоткам подключаются через разъем регулятора холостого хода согласно электрической схеме.

Видео — проверка, диагностика и замена РХХ на Ланос, Шанс, Форза, Черри, Сенс:

Очень частая причина поломки регулятора холостого хода – заклинивание штока. В него попадает влага, посторонние жидкости, пыль, что приводит к его коррозии и заклиниванию. Для того, чтобы это проверить, необходим специальный генератор импульсных сигналов для принудительного управления привода регулятора. Такая проверка возможна только на СТО. В этом случае может помочь чистка.

Самый надежный способ проверки работоспособности – установка заведомо исправного регулятора холостого хода от аналогичного двигателя.

Как почистить

Для того, чтобы почистить РХХ, его необходимо демонтировать со штатного места и отключить от разъема.

Некоторые специалисты сразу прибегают к чистке агрессивными средствами типа WD. Это неправильно.

Необходимо сначала попробовать расклинить регулятор нейтральной силиконовой смазкой. Не страшно, если она попадет внутрь регулятора. Если смазка не помогла, последовательно приступают к очистке при помощи спирта, растворителей, средств для очистки карбюраторов, и наконец, если ничего не помогло, самой агрессивной WD-шки.

Чистку осуществляют методом частичного замачивания области шток-рабочее отверстие на 10-15 минут, после чего можно продуть эту зону компрессором.

В некоторых случаях причиной неисправности системы регулирования холостого хода является засорение байпассного канала. Его необходимо прочистить в первую очередь. Чистка канала может производиться любыми подходящими средствами при помощи мягких кисточек из натуральных волокон.

Замена

При замене РХХ необходимо обратить внимание на положение штока клапана регулятора. Ни в коем случае он не должен быть значительно выдвинут. Такое возможно, если перед установкой его подключить к разъему и включить зажигание. Вручную вдвигать шток нельзя.

Если регулятор с выдвинутым штоком установить и зажать установочные болты, возможно повреждение регулятора (срезание червячной передачи). Регулятор с такой неисправностью ремонту не подлежит.

После замены регулятора холостого хода в некоторых автомобилях требуется процедура калибровки. Она производится при помощи диагностических устройств на специальном оборудовании.