Применение детонационного горения в ракетном двигателе. Русские снова пугают. Теперь ракетным детонационным двигателем. Увеличение скорости истечения реактивной струи

В России испытали пульсирующий детонационный двигатель

Опытно-конструкторское бюро имени Люльки разработало, изготовило и испытало опытный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Как сообщает ИТАР-ТАСС , средняя измеренная тяга двигателя составила около ста килограммов, а длительность непрерывной работы ─ более десяти минут. До конца текущего года ОКБ намерено изготовить и испытать полноразмерный пульсирующий детонационный двигатель.

По словам главного конструктора ОКБ имени Люльки Александра Тарасова, в ходе испытаний моделировались режимы работы, характерные для турбореактивного и прямоточного двигателей. Измеренные величины удельной тяги и удельного расхода топлива оказались на 30-50 процентов лучше, чем у обычных воздушно-реактивных двигателей. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги.

На основе проведенных исследований, полученных при испытании данных, а также схемно-конструкторского анализа ОКБ имени Люльки намерено предложить разработку целого семейства пульсирующих детонационных авиационных двигателей. В частности, могут быть созданы двигатели с коротким ресурсом работы для беспилотных летательных аппаратов и ракет и самолетные двигатели с крейсерским сверхзвуковым режимом полета.

В перспективе на основе новых технологий могут быть созданы двигатели для ракетно-космических систем и комбинированных силовых установок самолетов, способных выполнять полеты в атмосфере и за ее пределами.

По оценке конструкторского бюро, новые двигатели позволят увеличить тяговооруженность самолетов в 1,5-2 раза. Кроме того, при использовании таких силовых установок дальность полета или масса авиационных средств поражения могут увеличиться на 30-50 процентов. При этом удельный вес новых двигателей будет в 1,5-2 раза меньше аналогичного показателя обычных реактивных силовых установок.

О том, что в России ведутся работы по созданию пульсирующего детонационного двигателя, сообщалось в марте 2011 года. Об этом заявил тогда Илья Федоров, управляющий директор научно-производственного объединения «Сатурн», в состав которого входит ОКБ имени Люльки. О каком именно типа детонационного двигателя шла речь, Федоров не уточнил.

В настоящее время известны три вида пульсирующих двигателей ─ клапанные, бесклапанные и детонационные. Принцип работы этих силовых установок заключается в периодической подаче в камеру сгорания топлива и окислителя, где происходит воспламенение топливной смеси и истечение продуктов сгорания из сопла с образованием реактивной тяги. Отличие от обычных реактивных двигателей заключается в детонационном горении топливной смеси, при котором фронт горения распространяется быстрее скорости звука.

Пульсирующий воздушно-реактивный двигатель был изобретен еще в конце XIX века шведским инженером Мартином Вибергом. Пульсирующий двигатель считается простым и дешевым в изготовлении, однако из-за особенностей горения топлива ─ малонадежным. Впервые новый тип двигателя был использован серийно во время Второй мировой войны на немецких крылатых ракетах Фау-1. На них устанавливался двигатель Argus As-014 компании Argus-Werken.

В настоящее время несколько крупных оборонных фирм мира занимаются исследованиями в области создания высокоэффективных пульсирующих реактивных двигателей. В частности, работы ведут французская компания SNECMA и американские General Electric и Pratt & Whitney. В 2012 году Научно-исследовательская лаборатория ВМС США объявила о намерении разработать спиновый детонационный двигатель, который должен будет заменить на кораблях обычные газотурбинные силовые установки.

Спиновые детонационные двигатели отличаются от пульсирующих тем, что детонационное горение топливной смеси в них происходит непрерывно ─ фронт горения перемещается в кольцевой камере сгорания, в которой топливная смесь постоянно обновляется.

Детонационный двигатель более простой и дешевле в изготовлении, на порядок мощнее и экономичнее обычного реактивного двигателя, по сравнению с ним обладает более высоким КПД.

Описание:

Детонационный двигатель (импульсный, пульсирующий двигатель) идет на смену обычного реактивного двигателя . Чтобы понять сущность детонационного двигателя надо разобрать обычный реактивный двигатель .

Обычный реактивный двигатель устроен следующим образом.

В камере сгорания происходит сгорание топлива и окислителя, в качестве которого выступает кислород из воздуха. При этом давление в камере сгорания постоянно. Процесс горения резко повышает температуру, создает неизменный пламенный фронт и постоянную реактивную тягу, истекающую из сопла. Фронт обычного пламени распространяется в газовой среде со скоростью 60-100 м/сек. За счет этого и происходит движение летательного аппарата . Однако современные реактивные двигатели достигли определенного предела КПД, мощности и других характеристик, повышение которых практически невозможно либо крайне затруднительно.

В детонационном (импульсном или пульсирующем) двигателе горение происходит путем детонации. Детонация - это процесс горения, но которое происходит в сотни раз быстрее, чем при обычном сжигании топлива. При детонационном горении образуется детонационная ударная волна, несущая со сверхзвуковой скоростью. Она составляет порядка 2500 м/сек. Давление в результате детонационного горения стремительно возрастает, а объем камеры сгорания остается неизменным. Продукты горения вырываются с огромной скоростью через сопло. Частота пульсаций детонационной волны достигает несколько тысяч в секунду. В детонационной волне нет стабилизации фронта пламени, на каждую пульсацию обновляется топливная смесь и волна запускается вновь.

Давление в детонационном двигателе создается за счет самой детонации, что исключает подачу топливной смеси и окислителя при высоком давлении. В обычном реактивном двигателе, чтобы создать давление тяги в 200 атм., необходимо подавать топливную смесь под давлением в 500 атм. В то время как в детонационном двигателя – давление подачи топливной смеси – 10 атм.

Камера сгорания детонационного двигателя конструктивно имеет кольцевую форму с форсунками, размещёнными по её радиусу для подачи топлива . Волна детонации пробегает по окружности вновь и вновь, топливная смесь сжимается и выгорает, выталкивая продукты сгорания через сопло.

Преимущества:

– детонационный двигатель более простой в изготовлении. Отсутствует необходимость в использовании турбонасосных агрегатов,

на порядок мощнее и экономичнее обычного реактивного двигателя,

– имеет более высокий КПД,

дешевле в изготовлении,

– нет необходимости создавать высокое давление подачи топливной смеси и окислителя, высокое давление создается за счет самой детонации,

детонационный двигатель превосходит обычный реактивный двигатель в 10 раз по мощности, снимаемой с единицы объема, что приводит к уменьшению конструкции детонационного двигателя,

– детонационное горение в 100 раз быстрее, чем обычное горение топлива.

Примечание: © Фото https://www.pexels.com, https://pixabay.com

В конце января появились сообщения о новых успехах российской науки и техники. Из официальных источников стало известно, что один из отечественных проектов перспективного реактивного двигателя детонационного типа уже прошел стадию испытаний. Это приближает момент полного завершения всех требуемых работ, по результатам которых космические или военные ракеты российской разработки смогут получить новые силовые установки с повышенными характеристиками. Более того, новые принципы работы двигателей могут найти применение не только в сфере ракет, но и в других областях.

В последних числах января вице-премьер Дмитрий Рогозин рассказал отечественной прессе о последних успехах научно-исследовательских организаций. Среди прочих тем он затронул процесс создания реактивных двигателей, использующих новые принципы работы. Перспективный двигатель с детонационным горением уже был доведен до испытаний. По словам вице-премьера, применение новых принципов работы силовой установки позволяет получить значительный прирост характеристик. В сравнении с конструкциями традиционной архитектуры наблюдается рост тяги порядка 30%.

Схема детонационного ракетного двигателя

Современные ракетные двигатели разных классов и типов, эксплуатируемые в различных областях, используют т.н. изобарический цикл или дефлаграционное горение. В их камерах сгорания поддерживается постоянное давление, при котором происходит медленное горение топлива. Двигатель на дефлаграционных принципах не нуждается в особо прочных агрегатах, однако ограничен в максимальных показателях. Повышение основных характеристик, начиная с определенного уровня, оказывается неоправданно сложным.

Альтернатива двигателю с изобарическим циклом в контексте повышения характеристик – система с т.н. детонационным горением. В таком случае реакция окисления горючего происходит за ударной волной, с высокой скоростью перемещающейся по камере сгорания. Это предъявляет особые требования к конструкции двигателя, но при этом дает очевидные преимущества. С точки зрения эффективности сгорания топлива детонационное горение на 25% лучше дефлаграционного. Также отличается от горения с постоянным давлением увеличенной мощностью тепловыделения с единицы площади поверхности фронта реакции. В теории, возможно повышение этого параметра на три-четыре порядка. Как следствие, скорость реактивных газов можно увеличить в 20-25 раз.

Таким образом, детонационный двигатель, отличаясь повышенным коэффициентом полезного действия, способен развивать большую тягу при меньшем расходе топлива. Его преимущества перед традиционными конструкциями очевидны, однако до недавнего времени прогресс в этой области оставлял желать лучшего. Принципы детонационного реактивного двигателя были сформулированы еще в 1940 году советским физиком Я.Б. Зельдовичем, но готовые изделия подобного рода все еще не дошли до эксплуатации. Главные причины отсутствия реальных успехов – проблемы с созданием достаточно прочной конструкции, а также сложность запуска и последующего поддержания ударной волны при применении существующих топлив.

Один из последних отечественных проектов в области детонационных ракетных двигателей стартовал в 2014 году и разрабатывается в НПО «Энергомаш» им. академика В.П. Глушко. Согласно доступным данным, целью проекта с шифром «Ифрит» являлось изучение основных принципов новой техники с последующим созданием жидкостного ракетного двигателя, использующего керосин и газообразный кислород. В основу нового двигателя, названного по имени огненных демонов из арабского фольклора, укладывался принцип спинового детонационного горения. Таким образом, в соответствии с основной идеей проекта, ударная волна должна непрерывно перемещаться по кругу внутри камеры сгорания.

Головным разработчиком нового проекта стало НПО «Энергомаш», а точнее созданная на его базе специальная лаборатория. Кроме того, к работам привлекли несколько других научно-исследовательских и проектных организаций. Программа получила поддержку Фонда перспективных исследований. Совместными усилиями все участники проекта «Ифрит» смогли сформировать оптимальный облик перспективного двигателя, а также создать модельную камеру сгорания с новыми принципами работы.

Для изучения перспектив всего направления и новых идей несколько лет назад была построена т.н. модельная детонационная камера сгорания, соответствующая требованиям проекта. Такой опытный двигатель с сокращенной комплектацией должен был использовать в качестве горючего жидкий керосин. В качестве окислителя предлагался газообразный кислород. В августе 2016 года начались испытания опытной камеры. Важно, что впервые в проект подобного рода удалось довести до стадии стендовых проверок. Ранее отечественные и зарубежные детонационные ракетные двигатели разрабатывались, но не испытывались.

В ходе испытаний модельного образца удалось получить весьма интересные результаты, показывающие правильность использованных подходов. Так, за счет использования правильных материалов и технологий получилось довести давление внутри камеры сгорания до 40 атмосфер. Тяга опытного изделия достигла 2 т.


Модельная камера на испытательном стенде

В рамках проекта «Ифрит» были получены определенные результаты, но отечественный детонационный двигатель на жидком топливе пока еще далек от полноценного практического применения. Перед внедрением такого оборудования в новые проекты техники конструкторам и ученым предстоит решить целый ряд самых серьезных задач. Только после этого ракетно-космическая отрасль или оборонная промышленность смогут приступить к реализации потенциала новой техники на практике.

В середине января «Российская газета» опубликовала интервью с главным конструктором НПО «Энергомаш» Петром Левочкиным, темой которого стало текущее положение дел и перспективы детонационных двигателей. Представитель предприятия-разработчика напомнил об основных положениях проекта, а также затронул тему достигнутых успехов. Кроме того, он рассказал о возможных сферах применения «Ифрита» и подобных ему конструкций.

К примеру, детонационные двигатели могут использоваться в гиперзвуковых летательных аппаратах. П. Левочкин напомнил, что двигатели, сейчас предлагаемые для применения на такой технике, используют дозвуковое горение. При гиперзвуковой скорости аппарата полета поступающий в двигатель воздух необходимо затормозить до звукового режима. Однако энергия торможения должна приводить к дополнительным тепловым нагрузкам на планер. В детонационных двигателях скорость горения топлива достигает, как минимум, М=2,5. Благодаря этому появляется возможность повысить скорость полета летательного аппарата. Подобная машина с двигателем детонационного типа сможет разгоняться до скоростей, в восемь раз превышающих скорость звука.

Впрочем, реальные перспективы ракетных двигателей детонационного типа пока не слишком велики. По словам П. Левочкина, мы «только приоткрыли дверь в область детонационного горения». Ученым и конструкторам предстоит изучить множество вопросов, и только после этого можно будет заниматься созданием конструкций с практическим потенциалом. Из-за этого космической отрасли еще долго предстоит использовать жидкостные двигатели традиционной конструкции, что, однако, не отменяет возможности их дальнейшего совершенствования.

Интересен тот факт, что детонационный принцип горения находит применение не только в сфере ракетных двигателей. Уже существует отечественный проект авиационной системы с камерой сгорания детонационного типа, работающей по импульсному принципу. Опытный образец такого рода был доведен до испытаний, и в будущем может дать старт новому направлению. Новые двигатели с детонационным горением могут найти применение в самых разных сферах и частично заменить газотурбинные или турбореактивные двигатели традиционных конструкций.

Отечественный проект детонационного авиационного двигателя разрабатывается в ОКБ им. А.М. Люльки. Информация об этом проекте впервые была представлена на прошлогоднем международном военно-техническом форуме «Армия-2017». На стенде предприятия-разработчика присутствовали материалы по различным двигателям, как серийным, так и находящимся на стадии разработки. Среди последних был перспективный детонационный образец.

Суть нового предложения заключается в применении нестандартной камеры сгорания, способной осуществлять импульсное детонационное горение топлива в воздушной атмосфере. При этом частота «взрывов» внутри двигателя должна достигать 15-20 кГц. В перспективе возможно дополнительное увеличение этого параметра, в результате чего шум двигателя уйдет за пределы диапазона, воспринимаемого человеческим ухом. Такие особенности двигателя могут представлять определенный интерес.


Первый запуск опытного изделия "Ифрит"

Однако главные преимущества новой силовой установки связаны с повышенными характеристиками. Стендовые испытания опытных изделий показали, что они примерно на 30% превосходят традиционные газотурбинные двигатели по удельным показателям. Ко времени первой публичной демонстрации материалов по двигателю ОКБ им. А.М. Люльки смогло получить и достаточно высокие эксплуатационные характеристики. Опытный двигатель нового типа смог без перерыва проработать 10 минут. Суммарная наработка этого изделия на стенде на тот момент превысила 100 часов.

Представители предприятия-разработчика указывали, что уже сейчас можно создать новый детонационный двигатель с тягой 2-2,5 т, пригодный для установки на легкие самолеты или беспилотные летательные аппараты. В конструкции такого двигателя предлагается использовать т.н. резонаторные устройства, отвечающие за правильный ход горения топлива. Важным преимуществом нового проекта является принципиальная возможность установки таких устройств в любом месте планера.

Специалисты ОКБ им. А.М. Люльки работают над авиационными двигателями с импульсным детонационным горением более трех десятилетий, но пока проект не выходит из научно-исследовательской стадии и не имеет реальных перспектив. Главная причина – отсутствие заказа и необходимого финансирования. Если проект получит необходимую поддержку, то уже в обозримом будущем может быть создан образец двигателя, пригодный для использования на различной технике.

К настоящему времени российские ученые и конструкторы успели показать весьма примечательные результаты в области реактивных двигателей, использующих новые принципы работы. Существует сразу несколько проектов, пригодных для применения в ракетно-космической и гиперзвуковой областях. Кроме того, новые двигатели могут применяться и в «традиционной» авиации. Некоторые проекты пока находятся на ранних стадиях и еще не готовы к проверкам и другим работам, тогда как в иных направлениях уже были получены самые примечательные результаты.

Исследуя тематику реактивных двигателей с детонационным горением, российские специалисты смогли создать стендовый модельный образец камеры сгорания с желаемыми характеристиками. Опытное изделие «Ифрит» уже прошло испытания, в ходе которых было собрано большое количество разнообразной информации. С помощью полученных данных развитие направления будет продолжаться.

Освоение нового направления и перевод идей в практически применимую форму займет немало времени, и по этой причине в обозримом будущем космические и армейские ракеты в обозримом будущем будут комплектоваться только традиционными жидкостными двигателями. Тем не менее, работы уже вышли из чисто теоретической стадии, и теперь каждый тестовый запуск опытного двигателя приближает момент строительства полноценных ракет с новыми силовыми установками.

По материалам сайтов:
http://engine.space/
http://fpi.gov.ru/
https://rg.ru/
https://utro.ru/
http://tass.ru/
http://svpressa.ru/

Российская Федерация первой в мире провела успешные испытания детонационного жидкостного ракетного двигателя. Новую силовую установку создали в НПО «Энергомаш». Это успех для российской ракетно-космической отрасли, заявил корреспонденту Федерального агентства новостей научный обозреватель Александр Галкин .

Как сообщается на официальном сайте Фонда перспективных исследований, в новом двигателе тяга создается за счет контролируемых взрывов при взаимодействии топливной пары кислород-керосин.

«Значение успеха этих испытаний для опережающего развития отечественного двигателестроения трудно переоценить […] За ракетными двигателями такого рода будущее», - сообщил заместитель генерального директора и главный конструктор НПО «Энергомаш» Владимир Чванов.

Необходимо отметить, что к успешному испытанию новой силовой установки, инженеры предприятия шли последние два года. Исследовательские работы проводили ученые Новосибирского института гидродинамики им. М.А.Лаврентьева Сибирского отделения РАН и Московского авиационного института.

«Я думаю, что это новое слово в ракетной отрасли, и надеюсь, что оно окажется полезным для российской космонавтики. «Энергомаш» у нас сейчас единственная структура, которая разрабатывает ракетные двигатели и успешно ими торгует. Недавно они сделали для американцев двигатель РД-181, который по совокупной мощности слабее, нежели зарекомендовавший себя РД-180. Но дело то в том, что наметилось новое веяние в двигателестроении - уменьшение веса бортового оборудования космических кораблей приводит к тому, что двигатели становятся менее мощными. Это происходит за счет снижения выводимого веса. Так что надо пожелать успехов ученым и инженерам «Энергомаша», который работает, и что-то у него получается. Есть у нас еще головы креативные», - уверен Александр Галкин.

Необходимо отметить, что сам принцип создания реактивной струи за счет контролируемых взрывов может поднимать вопрос о безопасности будущих полетов. Однако переживать не стоит, так как ударная волна закручивается в камере сгорания двигателя.

«Уверен, систему гашения вибраций для новых двигателей придумают, потому что в принципе, традиционные ракеты-носители, которые разрабатывались еще Сергее Павловиче Королеве и Валентине Петровиче Глушко , тоже давали сильную вибрацию на корпус корабля. Но ведь как-то победили же, нашли способ погасить колоссальную тряску. Вот и здесь все будет так же», - заключает эксперт.

В настоящее время сотрудники НПО «Энергомаш» проводят дальнейшие изыскания по работе над стабилизацией тяги и уменьшением нагрузок на несущую конструкцию силовой установки. Как отмечают на предприятии, работа топливной пары кислород-керосин и сам принцип создания подъемной силы обеспечивает меньший расход топлива при большей мощности. В будущем начнутся испытания полноразмерной модели, и, возможно, его будут использовать для выведения на орбиту планеты полезных грузов или даже космонавтов.

ООО «Аналог» было организовано в 2010 году для производства и эксплуатации придуманной мной конструкции опрыскивателей для полей, идея которого закреплена Патентом РФ на полезную модель № 67402 в 2007 году.

Теперь, мною же разработана концепция роторного ДВС, в котором возможна организация детонационного (взрывного) сжигания поступающего топлива с повышенным выделением (примерно в 2 раза) энергии давления и температуры отработавших газов с сохранением работоспособности двигателя. Соответственно, с увеличением, примерно в 2 раза, КПД теплового двигателя, т.е. примерно до 70%. Реализация этого проекта требует больших финансовых затрат на его проектирование, подбор материалов и изготовление опытного образца. А по характеристикам и применимости, это двигатель, более всего, авиационный, а также, вполне применимый для автомобилей, самоходной техники и т.д., т.е. является необходимым на современном этапе развития техники и требований экологии.

Главными его преимуществами будут простота конструкции, экономичность, экологичность, высокий крутящий момент, компактность, низкий уровень шума даже без использования глушителя. Защитой от копирования будут его высокая технологичность и специальные материалы.

Простота конструкции обеспечивается его роторной конструкцией, в которой все детали двигателя совершают простое вращательное движение.

Эклологичность и экономичность обеспечивается 100%-ным мгновенным сгоранием топлива в прочной, высокотемпературной (порядка 2000 гр С), неохлаждаемой, отдельной камере сгорания, запираемой на это время клапанами. Охлаждение такого двигателя предусмотрени изнутри (охлаждение рабочего тела) любыми, необходимыми для этого, порциями воды, поступающими в рабочую секцию перед выстрелом очередных порций рабочего тела (газов горения) из камеры сгорания, с получением при этом, дополнительного давления водяного пара и полезной работы на рабочем валу.

Высокий крутящий момент даже на малых оборотах обеспечивается (сравнительно с поршневым ДВС), большим и постоянного размера плечом воздействия рабочего тела на рабочую лопатку. Этот фактор позволит для любого наземного транспорта обойтись без сложной и дорогой трансмиссии или, как минимум, существенно её упростить.

Несколько слов о его конструкции и работе.

ДВС имеет цилиндрическую форму с двумя роторно-лопаточными секциями, одна из которых служит для впуска и предварительного сжатия топливо-воздушной смеси и представляет собой известную и работоспособную секцию обычного роторного компрессора; другая, рабочая, представляет собой модернизированную ротационную паровую машину Марциневского; а между ними находится статичный массив прочного термостойкого материала, в котором выполнена отдельная, запираемая на время горения, камера сгорания с тремя невращающимися клапанами, 2 из которых свободные, по типу лепестковых, и один управляемый для стравливания давления перед впуском очередной порции ТВС.

При работе двигателя поворачивается рабочий вал с роторами и лопатками. Во входной секции лопатка засасывает и сжимает ТВС и, при увеличении давления выше давления камеры сгорания (после стравливания из неё давления) рабочая смесь загоняется в горячую (порядка 2000 гр С) камеру, поджигается искрой, мгновенно взрывается. При этом, впускной клапан закрывается, открывается выпускной клапан, а перед его открытием в рабочую секцию впрыскивается необходимое количество воды. Получается, что, в рабочую секцию выстреливаются под большим давлением сверхгорячие газы, а там порция воды, которая превращается в пар и парогазовая смесь приводит во вращение ротор двигателя, одновременно охлаждая его. По имеющейся информации уже есть материал, способный длительно выдерживать температуру до 10000 гр С, из которого нужно сделать камеру сгорания.

В мае 2018 г подана Заявка на изобретение. Заявка сейчас в стадии рассмотрения по существу.

Данная заявка на инвестиции подаётся для обеспечения финансирования НИОКР, создания опытного образца, его доводки и настройки до получения работоспособного образца данного двигателя. По времени этот процесс может занять год-два. Финансирование вариантов дальнейшей разработки модификаций двигателя для различной техники могут и должны будут разрабатываться отдельно под конкретные её образцы.

Дополнительные сведения

Реализация этого проекта - это проверка изобретения практикой. Получение работоспособного опытного образца. Полученный материал можно предложить всей отечественной машиностроительной отрасли для разработки моделей транспортных средств с эффективным ДВС на основе договоров с разработчиком и уплатой комиссионных сборов.

Можно выбрать своё, наиболее перспективное направления проектирования ДВС, скажем авиационное моторостроение для СЛА и предлагать выпускаемый двигатель, а также устанавливать этот ДВС на собственную разработку СЛА, опытный образец которого находится в стадии сборки.

Необходимо отметить что рынок личных самолётов в мире только начал развиваться, а у нас в стране он находится в зачаточном состоянии. И, в т.ч. именно, отсутствие подходящего ДВС сдерживает его развитие. А в нашей стране, с её бескрайними просторами, такая авиация будет востребована.

Аналитика рынка

Реализация проекта - это получение принципиально нового и крайне перспективного ДВС.

Сейчас упор идёт на экологию, и в качестве альтернативы поршневому ДВС предлагается электродвигатель, но ведь эту необходимую для него энергию нужно где-то выработать, накопить для него. Львиная доля электроэнергии вырабатывается на ТЭС, далеко не экологичных, что приведёт к значительным загрязнениям в местах их расположения. А срок службы накопителей энергии не превышает 2-х лет, где хранить этот вредный хлам? Результат предлагаемого проекта - эффектиыный и безвредный и, что не менее важно, удобный и привычный ДВС. Нужно только залить низкосортное топливо в бак.

Результат проекта - это перспектива замены всех поршневых двигателей в мире именно на такой. Это перспектива использовать могучую энергию взрыва в мирных целях, а конструктивное решение для этого процесса в ДВС предлагается впервые. Тем более что это сравнительно недорого.

Уникальность проекта

Это изобретение. Конструкция, позволяющая использовать детонацию в двигателе внутреннего сгорания предлагается впервые.

Во все времена, одной из главных задач конструирования ДВС было приблизиться к условиям детонационного горения, но не допускать её возникновения.

Каналы монетизации

Продажа лицензий на право производства.