Принцип работы лб двигателя 7а фе. «Надежные японские двигатели». Заметки автомобильного Диагноста. Перечень модификаций ДВС

"A" (R4, ремень)
Двигатели серии A по распространенности и надежности делят, пожалуй, первенство с серией S. Что касается механической части, то вообще трудно найти более грамотно сконструированные моторы. При этом они имеют хорошую ремонтопригодность и не создают проблем с запасными частями.
Устанавливались на автомобили классов "C" и "D" (семейства Corolla/Sprinter, Corona/Carina/Caldina).

4A-FE - самый распространенный двигатель серии, без существенных изменений
выпускался с 1988 года, не имеет выраженных конструктивных дефектов
5A-FE - вариант с уменьшенным рабочим объемом, который до сих пор производится на китайских заводах Toyota для внутренних нужд
7A-FE - более свежая модификация с увеличенным объемом

В оптимальном серийном варианте 4A-FE и 7A-FE шли на семейство Corolla. Однако, будучи установлены на автомобили линейки Corona/Carina/Caldina, они со временем получили систему питания типа LeanBurn, предназначенную для сгорания обедненных смесей и помогающую экономить японское топливо при спокойной езде и в пробках (подробнее про конструктивные особенности - см. в этом материале , на какие именно модели устанавливался LB - ).Необходимо отметить, что тут японцы изрядно "подгадили" нашему рядовому потребителю - многие обладатели этих движков сталкиваются с
так называемой "проблемой LB", проявляющейся в виде характерных провалов на средних оборотах, причину которой толком установить и излечить не удается - то ли виновато низкое качество местного бензина, то ли проблемы в системах питания и зажигания (к состоянию свечей и высоковольтных проводов эти движки особенно чувствительны), то ли все вместе - но иногда обедненная смесь просто не поджигается.

Небольшие дополнительные минусы - склонность к повышенному износу постелей распредвалов и формальные сложности с регулировкой зазоров во впускных клапанах, хотя в целом работать с этими двигателями удобно.

"Двигатель 7A-FE LeanBurn низкооборотный, и он даже тяговитее 3S-FE за счет максимума момента при 2800 оборотах"

Выдающаяся тяговитость на низких оборотах мотора 7A-FE именно в версии LeanBurn - одно из распространенных заблуждений. У всех гражданских движков серии A "двугорбая" кривая крутящего момента - с первым пиком на2500-3000 и вторым на 4500-4800 об/мин. Высота этих пиков почти одинакова (разница укладывается едва ли не в 5 Нм), но у STD двигателей получается чуть выше второй пик, а у LB - первый. Причем абсолютный максимум момента у STD все равно оказывается больше (157 против 155). Теперь сравним с 3S-FE. Максимальные моменты 7A-FE LB и 3S-FE тип"96 составляют 155/2800 и 186/4400 Нм соответственно. Но если взять характеристику в целом, то 3S-FE при тех самых 2800 выходит на момент 168-170 Нм, а 155 Нм - выдает уже в районе 1700-1900 оборотов.

4A-GE 20V - форсированный монстр для малых GT заменил в 1991 году предыдущий базовый двигатель всей серии A (4A-GE 16V). Чтобы обеспечить мощность в 160 л.с., японцы использовали головку блока с 5-ю клапанами на цилиндр, систему VVT (впервые применив изменяемые фазы газораспределения на тойотах), редлайн тахометра на 8 тысячах. Минус - такой двигатель будет неизбежно сильнее "ушатан" по сравнению со среднимсерийным 4A-FE того же года, поскольку и в Японии изначально покупался не для экономичной и щадящей езды. Более серьезны требования к бензину (высокая степень сжатия) и к маслам (привод VVT), так что предназначен он в первую очередь тому, кто знает и понимает его особенности.

За исключением 4A-GE, двигатели успешно питаются бензином с октановым числом 92 (в том числе и LB, для которого требования по ОЧ даже мягче). Система зажигания - с распределителем ("трамблерная") у серийных вариантов и DIS-2 у поздних LB (Direct Ignition System, по одной катушке зажигания для каждой пары цилиндров).

Двигатель 5A-FE 4A-FE 4A-FE LB 7A-FE 7A-FE LB 4A-GE 20V
V (см 3) 1498 1587 1587 1762 1762 1587
N (л.с. / при об/мин) 102/5600 110/6000 105/5600 118/5400 110/5800 165/7800
M (Нм / при об/мин) 143/4400 145/4800 139/4400 157/4400 150/2800 162/5600
Степень сжатия 9,8 9,5 9,5 9,5 9,5 11,0
Бензин (рекоменд.) 92 92 92 92 92 95
Система зажигания трамбл. трамбл. DIS-2 трамбл. DIS-2 трамбл.
Гнут клапана нет нет нет нет нет да**

Двигатели 5А,4А,7А-FE
Самым распространённым и на сегодняшний день самым широко ремонтируемым из японских двигателей является двигатели серии (4,5,7)A- FE. Даже начинающий механик, диагност знают о возможных проблемах двигателей этой серии. Я постараюсь осветить (собрать в единое целое) проблемы данных двигателей. Их немного, но они доставляют немало хлопот своим владельцам.


Дата со сканера:



На сканере можно увидеть короткую, но ёмкую дату, состоящую из 16 параметров, по которым можно реально оценить работу основных датчиков двигателя.


Датчики
Датчик кислорода -



Многие владельцы обращаются на диагностику по причине повышенного расхода топлива. Одной из причин является банальный обрыв подогревателя в датчике кислорода. Ошибка фиксируется блоком управления кодом номер 21. Проверку подогревателя можно осуществить обычным тестером на контактах датчика(R- 14 Ом)



Расход топлива увеличивается за счет отсутствия коррекции при прогреве. Восстановить подогреватель вам не удастся – поможет только замена. Стоимость нового датчика велика, а б\у устанавливать не имеет смысла (велик ресурс их наработки, поэтому это лотерея). В такой ситуации как альтернативу можно устанавливать менее надежные универсальные датчики NTK . Срок их работы невелик, а качество оставляет желать лучшего, поэтому такая замена временная мера, и производить её следует с осторожностью.




При уменьшении чувствительности датчика происходит увеличение расхода топлива (на 1-3л). Работоспособность датчика проверяется осциллографом на колодке диагностического разъёма, либо непосредственно на фишке датчика (число переключений).



Датчик температуры.
При неправильной работе датчика владельца ждет масса проблем. При обрыве измерительного элемента датчика блок управления подменяет показания датчика и фиксирует его значение 80ю градусами и фиксирует ошибку 22. Двигатель, при такой неисправности, будет работать в обычном режиме, но только пока двигатель нагрет. Как только двигатель остынет, запустить его будет проблематично без допинга, из-за малого времени открытия инжекторов. Нередки случаи, когда сопротивление датчика хаотично изменяется при работе двигателя на Х.Х. – обороты при этом будут плавать



Этот дефект легко фиксировать на сканере, наблюдая за показанием температуры. На прогретом двигателе оно должно быть стабильным и не менять хаотично значения от 20 до100 градусов



При таком дефекте датчика возможен «черный выхлоп», нестабильная работа на Х.Х. и, как следствие, повышенный расход, а также невозможность запуска «на горячую». Только после 10 минутного отстоя. Если нет полной уверенности в правильной работе датчика, его показания можно подменить, включив в его цепь переменный резистор 1ком, либо постоянный 300ом, для дальнейшей проверки. Изменяя показания датчика, легко контролируется изменение оборотов при различной температуре.


Датчик положения дроссельной заслонки



Немало автомобилей проходит процедуру сборки разборки. Это так называемые «конструкторы». При снятии двигателя в полевых условиях и последующей сборке страдают датчики, на которые часто прислоняют двигателя. При разломе датчика TPS двигатель перестаёт нормально дросселировать. Двигатель при наборе оборотов захлебывается. Автомат переключается неправильно. Блоком управления фиксируется ошибка 41. При замене новый датчик необходимо настроить, чтобы блок управления правильно видел признак Х.Х., при полностью отпущенной педали газа (закрытой дроссельной заслонке). При отсутствии признака холостого хода не будет осуществляться адекватного регулирования Х.Х. и будет отсутствовать режим принудительного холостого хода при торможении двигателем, что опять же повлечет за собой повышенный расход топлива. На двигателях 4А,7А датчик не требует регулировки, он установлен без возможности вращения.
THROTTLE POSITION……0%
IDLE SIGNAL……………….ON


Датчик абсолютного давления MAP




Этот датчик является самым надежным, из всех устанавливаемых на японские автомобили. Безотказность его просто поражает. Но и на его долю приходится немало проблем, в основном по причине неправильной сборки. Ему либо ломают приемный «сосок», а затем герметизируют клеем любое прохождение воздуха, либо нарушают герметичность подводящей трубки.



При таком разрыве увеличивается расход топлива, резко возрастает уровень СО в выхлопе до3%.Очень легко наблюдать работу датчика по сканеру. Строчка INTAKE MANIFOLD показывает разряжение во впускном коллекторе, которое измеряется датчиком МАР. При обрыве проводки ЭБУ регистрирует ошибку 31. При этом резко увеличивается время открытия инжекторов до 3,5-5мс.При перегазовках появляется черный выхлоп, свечи засаживаются, появляется тряска на Х.Х. и остановка двигателя.


Датчик детонации



Датчик установлен для регистрации детонационных стуков (взрывов) и косвенно служит «корректором» угла опережения зажигания. Регистрирующим элементом датчика является пъезопластина. При неисправности датчика, или обрыве проводки, на перегазовках свыше 3,5-4 т. Оборотов ЭБУ фиксирует ошибку 52.Наблюдается вялость при разгоне. Проверить работоспособность можно осциллографом, или, замерив, сопротивление между выводом датчика и корпусом (при наличии сопротивления датчик требует замены).



Датчик коленвала
На двигателях серии 7А установлен датчик коленвала. Обычный индуктивный датчик, аналогичен датчику АВС, и практически безотказен в работе. Но случаются и конфузы. При межвитковом замыкании внутри обмотки происходит срыв генерации импульсов на определенных оборотах. Это проявляется как ограничение оборотов двигателя в диапазоне 3,5-4 т. оборотов. Своеобразная отсечка, только на низких оборотах. Обнаружить межвитковое замыкание довольно сложно. Осциллограф не показывает уменьшение амплитуды импульсов или изменение частоты (при акселерации), а тестером заметить изменения долей Ома довольно сложно. При возникновении симптомов ограничения оборотов на 3-4 тысячах, просто замените датчик на заведомо исправный. Кроме того, немало неприятностей доставляет повреждения задающего венца, который повреждают нерадивые механики, производя работы по замене переднего сальника коленвала или ремня ГРМ. Сломав зубья венца, и восстановив их сваркой, добиваются только видимого отсутствия повреждений. Датчик положения коленвала при этом перестает адекватно считывать информацию, угол опережения зажигания начинает хаотично изменяться, что приводит к потере мощности, нестабильной работе двигателя и увеличению расхода топлива



Инжекторы (форсунки)



При многолетней эксплуатации сопла и иглы инжекторов покрываются смолами и бензиновой пылью. Все это естественно нарушает правильный распыл и уменьшает производительность форсунки. При сильном загрязнении наблюдается ощутимая тряска двигателя, увеличивается расход топлива. Определить забитость реально, проведя газоанализ, по показаниям кислорода в выхлопе можно судить о правильности налива. Показание свыше одного процента укажут на необходимость промывки инжекторов (при правильной установке ГРМ и нормального давления топлива). Либо установив инжекторы на стенд, и проверив производительность в тестах. Форсунки легко моются Лавром, Винсом, как на установках для безразборной промывки, так и в ультразвуке.



Клапан холостого хода, IACV



Клапан отвечает за обороты двигателя на всех режимах (прогрев, холостой ход, нагрузка). Во время эксплуатации лепесток клапана загрязняется и происходит подклинивание штока. Обороты зависают на прогреве либо на Х.Х.(из-за клина). Тестов на изменение оборотов в сканерах при диагностике по данному мотору не предусмотрено. Оценить работоспособность клапана можно, изменив показания датчика температуры. Ввести двигатель в «холодный» режим. Или, сняв обмотку с клапана, руками покрутить за магнит клапана. Заедание и клин будут ощутимы сразу. При невозможности легко демонтировать обмотку клапана (например, на серии GE)проверить его работоспособность можно подключившись к одному из управляющих выводов и измерив скважность импульсов одновременно контролируя обороты Х.Х. и изменяя нагрузку на двигатель. На полностью прогретом двигателе скважность равна приблизительно 40%,меняя нагрузку (включая электрические потребители) можно оценить адекватное увеличение оборотов в ответ на изменение скважности. При механическом заклинивании клапана, происходит плавное увеличение скважности, не влекущее за собой изменение оборотов Х.Х. Восстановить работу можно очистив нагар и грязь очистителем карбюратора при снятой обмотке.



Дальнейшая настройка клапана заключается в установке оборотов Х.Х. На полностью прогретом двигателе, вращением обмотки на болтах крепления, добиваются табличных оборотов для данного типа автомобиля (по бирке на капоте). Предварительно установив перемычку E1-TE1 в диагностическую колодку. На более «молодых» моторах 4А,7А клапан был изменён. Вместо привычных двух обмоток в тело обмотки клапана установили микросхему. Изменили питание клапана и цвет пластика обмотки (черный). На нем уже бессмысленно измерять сопротивление обмоток на выводах. К клапану подводится питание и управляющий сигнал прямоугольной формы переменной скважности.





Для невозможности снятия обмотки установили нестандартный крепёж. Но проблема клина осталась. Теперь если чистить обычным очистителем - вымывается смазка из подшипников (дальнейший результат предсказуем, такой же клин, но уже из-за подшипника). Следует полностью демонтировать клапан с блока дроссельной заслонки и после аккуратно промывать шток с лепестком.

Система зажигания. Свечи.



Очень большой процент автомобилей приходит в сервис с проблемами в системе зажигания. При эксплуатации на некачественном бензине в первую очередь страдают свечи зажигания. Они покрываются красным налетом (ферроз). Качественного искрообразования с такими свечами уже не будет. Двигатель будет работать с перебоями, с пропусками, увеличивается расход топлива, поднимается уровень СО в выхлопе. Пескоструй не в силах очистить такие свечи. Поможет только химия (силит на пару часов) или замена. Другая проблема увеличение зазора (простой износ). Высыхание резиновых наконечников высоковольтных проводов, вода, попавшая при мойке мотора, которые все это провоцируют образование токопроводящей дорожки на резиновых наконечниках.






Из-за них искрообразование будет не внутри цилиндра, а вне его.
При плавном дросселировании двигатель работает стабильно, а при резком – «дробит».




При таком положении необходима замена одновременно и свечей и проводов. Но иногда (в полевых условиях) при невозможности замены можно решить проблему обычным ножом и куском наждачного камня (мелкой фракции). Ножом срезаем токопроводящую дорожку в проводе, а камнем снимаем полоску с керамики свечи. Следует отметить, что снимать резинку с провода нельзя, это приведет к полной неработоспособности цилиндра.




Еще одна проблема связана с неправильной процедурой замены свечей. Провода с силой выдергивают из колодцев, отрывая металлический наконечник повода.



С таким проводом наблюдаются пропуски зажигания и плавающие обороты. При диагностировании системы зажигания следует всегда проверять на производительность катушку зажигания на высоковольтном разряднике. Самая простая проверка – на работающем двигателе просмотреть искру на разряднике.



Если искра пропадает или становится нитевидной - это указывает на межвитковое замыкание в катушке или на проблему в высоковольтных проводах. Обрыв проводов проверяют тестером по сопротивлению. Малый провод 2-3ком,дальше на увеличение длинный 10-12ком.





Сопротивление замкнутой катушки также можно проверить тестером. Сопротивление вторичной обмотки битой катушки будет меньше 12ком.
Катушки следующего поколения такими недугами не страдают(4А.7А), их отказ минимален. Правильное охлаждение и толщина провода исключили эту проблему.
Еще одна проблема текущий сальник в распределителе. Масло, попадая на датчики, разъедает изоляцию. А при воздействии высокого напряжения окисляется бегунок (покрывается зеленым налетом). Уголек закисает. Все этот приводит к срыву искрообразования. В движении наблюдаются хаотичные прострелы (во впускной коллектор, в глушитель) и дробление.



« Тонкие« неисправности
На современных двигателях 4А,7А японцы изменили прошивку блока управления (видимо для более быстрого прогрева двигателя). Изменение заключается в том, что двигатель достигает оборотов Х.Х.только при температуре 85 градусов. Также была изменена конструкция системы охлаждения двигателя. Теперь малый круг охлаждения интенсивно проходит через головку блока (не через патрубок за двигателем, как было раньше). Конечно, охлаждение головки стало эффективней, эффективней стал охлаждаться и двигатель в целом. Но зимой при таком охлаждении при движении температура двигателя достигает температуры 75-80 градусов. И как результат постоянные прогревные обороты(1100-1300),повышенный расход топлива и нервоз владельцев. Бороться с этой проблемой можно, либо сильнее утеплив двигатель, либо изменив сопротивление датчика температуры (обманув ЭБУ).
Масло
Владельцы наливают в двигатель масло без особого разбора, не задумываясь о последствиях. Мало кто понимает, что различные типы масел не совместимы и при смешивании образуют нерастворимую кашу (кокс), который приводит к полному разрушению двигателя.



Весь этот пластилин невозможно смыть химией, он вычищается только механическим способом. Следует понимать, если неизвестно какого типа старое масло, то следует воспользоваться промывкой перед сменой. И еще совет владельцам. Обратите внимание на цвет ручки масляного щупа. Он желтого цвета. Если цвет масла в вашем двигателе темнее цвета ручки – пора делать замену, а не ждать виртуального пробега, рекомендованного изготовителем моторного масла.


Воздушный фильтр
Самый недорогой и легкодоступный элемент - воздушный фильтр. Владельцы очень часто забывают про его замену, не задумываясь о вероятном увеличении расхода топлива. Нередко из-за забитого фильтра камера сгорания очень сильно загрязняется масляными сгоревшими отложениями, сильно загрязняются клапана, свечи. При диагностике можно ошибочно предположить, что всему виной износ маслосъёмных колпачков, но первопричина – забитый воздушный фильтр, увеличивающий при загрязнении разряжение во впускном коллекторе. Конечно же, в таком случае колпачки тоже придется сменить.





Топливный фильтр также заслуживает внимания. Если его вовремя не заменить(15-20 тысяч пробега) насос начинает работать с перегрузкой, давление падает, и как следствие возникает необходимость замены насоса. Пластиковые детали насоса крыльчатка и обратный клапан преждевременно изнашиваются.



Падает давление. Следует отметить, что работа мотора возможна на давлении до 1,5 кг (при стандартном 2,4-2,7кг). При пониженном давлении наблюдаются постоянные прострелы во впускной коллектор запуск проблемный (вдогонку). Заметно снижается тяга.Проверку давления правильно производить манометром. (доступ к фильтру не затруднён). В полевых условиях можно воспользоваться «тестом налива из обратки». Если при работе двигателя за 30 секунд из шланга обратки бензина вытекает меньше одного литра, можно судить о пониженном давлении. Можно для косвенного определения работоспособности насоса воспользоваться амперметром. Если ток, потребляемый насосом меньше 4ампер - то давление просажено. Измерить ток можно на диагностической колодке



При использовании современного инструмента процесс замены фильтра занимает не более получаса. Ранее на это уходило очень много времени. Механики всегда надеялись на случай,что им повезет и нижний штуцер не приржавел. Но зачастую так и происходило. Приходилось подолгу ломать голову каким газовым ключом зацепить закатанную гайку нижнего штуцера. А иногда процесс замены фильтра превращался в «киносеанс» со снятием подводящей к фильтру трубки.




Сегодня эту замену никто не боится делать.


Блок Управления
До 1998 года выпуска, блоки управления не имели достаточно серьезных проблем при эксплуатации.



Ремонтировать блоки приходилось лишь по причине « жесткой переполюсовки« . Важно отметить, что все выводы блока управления подписаны. Легко отыскать на плате необходимый вывод датчика для проверки, либо прозвонки провода. Детали надежны и стабильны в работе при низких температурах.
В заключении хотелось бы немного остановиться на газораспределении. Многие владельцы «с руками» процедуру замены ремня выполняют самостоятельно (хотя это и не правильно, они не могут правильно затянуть шкив коленвала). Механики производят качественную замену в течение двух часов(максимум) При обрыве ремня клапаны не встречаются с поршнем и фатального разрушения двигателя не происходит. Все рассчитано до мелочей.

Мы постарались рассказать о наиболее часто возникающих проблемах на двигателях данной серии. Двигатель очень прост и надежен и при условии очень жесткой эксплуатации на «водных -железных бензинах» и пыльных дорогах нашей великой и могучей Родины и «авосьным» менталитетом владельцев. Перенеся все издевательства, он по сей день продолжает радовать своей надежной и стабильной работой, завоевав статус самого лучшего японского двигателя.


Всем удачных ремонтов.


«Надежные японские двигатели». Заметки автомобильного Диагноста

4 (80%) 4 голос[а]

Разработка двигателей серии А в компании Toyota стартовала еще в 70-х годах прошлого века. Это был один из шагов к уменьшению расхода топлива, увеличению КПД, поэтому все агрегаты серии были достаточно скромны в объемах и мощностях.

Хороших результатов своей работы японцы добились в 1993 году, выпустив очередную модификацию серии А – двигатель 7A-FE. По своей сути этот агрегат был немного доработанным прототипом предыдущих серий, но он по праву считается одним из наиболее удачных ДВС в серии.

Технические данные

ВНИМАНИЕ! Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год!

Объем цилиндров был увеличен до 1.8 литра. Мотор стал выдавать 120 лошадиных сил, что для такого объема достаточно высокий показатель. У двигателя 7A-FE характеристики интересны тем, что оптимальный крутящий момент доступен с нижних оборотов. Для городской езды это настоящий подарок. А также это позволяет экономить топливо, не прокручивая мотор на нижних передачах до высоких оборотов. В общем, характеристики выглядят следующим образом:

Года производства 1990–2002
Рабочий объем 1762 сантиметра кубических
Максимальная мощность 120 лошадиных сил
Крутящий момент 157 Н*м при 4400 оборотов в минуту
Диаметр цилиндра 81.0 мм
Ход поршня 85.5 мм
Блок цилиндров чугунный
Головка блока цилиндров алюминиевая
Газораспределительная система DOHC
Тип топлива бензин
Предшественник 3T
Преемник 1ZZ

7a-fe под капотом toyota caldina

Очень интересным фактом является существование двух типов двигателя 7A-FE. Кроме обычных силовых агрегатов японцы разработали и активно продвигали на рынок более экономичный 7A-FE Lean Burn. Посредством обеднения смеси во впускном коллекторе достигается максимальная экономичность. Для реализации задумки понадобилось использование специальной электроники, которая определяла, когда стоит обеднять смесь, а когда необходимо запустить в камеру больше бензина. По отзывам владельцев автомобилей с таким двигателем, агрегат отличается пониженным расходом топлива.

Особенности эксплуатации 7A-FE

Одним из преимуществ конструкции мотора является то, что разрушение такого узла, как ремень ГРМ 7A-FE, исключается соударение клапанов и поршня, т.е. говоря простым языком двигатель не гнет клапана. По своей сути двигатель очень выносливый.

Некоторые владельцы усовершенствованных агрегатов 7A-FE с системой обедненной смеси говорят, что электроника часто ведет себя непредсказуемо. Не всегда при нажатии на педаль акселератора отключается система обеднения смеси, и автомобиль ведет себя слишком спокойно, либо начинает подергиваться. Остальные проблемы, возникающие с данным силовым агрегатом, имеют частный характер и не являются массовыми.

Куда устанавливали двигатель 7A-FE?

Обычные 7A-FE предназначались на автомобилей C-класса. После успешного тестового запуска двигателя и хороших откликов водителей концерн начал устанавливать агрегат на следующие автомобили:

Модель Кузов Года Страна
Avensis AT211 1997–2000 Европа
Caldina AT191 1996–1997 Япония
Caldina AT211 1997–2001 Япония
Carina AT191 1994–1996 Япония
Carina AT211 1996–2001 Япония
Carina E AT191 1994–1997 Европа
Celica AT200 1993–1999 За исключением Японии
Corolla/Conquest AE92 Сентябрь 1993 - 1998 ЮАР
Corolla AE93 1990–1992 Только Австралия
Corolla AE102/103 1992–1998 За исключением Японии
Corolla/Prizm AE102 1993–1997 Северная Америка
Corolla AE111 1997–2000 ЮАР
Corolla AE112/115 1997–2002 За исключением Японии
Corolla Spacio AE115 1997–2001 Япония
Corona AT191 1994–1997 За исключением Японии
Corona Premio AT211 1996–2001 Япония
Sprinter Carib AE115 1995–2001 Япония

Двигатели 4A-F, 4A-FE, 5A-FE, 7A-FE и 4A-GE (AE92, AW11, AT170 и AT160) 4-х цилиндровые, рядные, с четырьмя клапанами на каждый цилиндр (два — впускных, два — выпускных), с двумя распределительными валами верхнего расположения. Двигатели 4A-GE отличаются установкой пяти клапанов на каждый цилиндр (три впускных два выпускных).

Двигатели 4A-F, 5A-F карбюраторные. все остальные двигатели имеют систему распределенного впрыска топлива с электронным управлением.

Двигатели 4A-FE выполнялись в трех вариантах, которые отличались друг от друга в основном конструкцией впускной и выпускной систем.

Двигатель 5A-FE аналогичен двигателю 4A-FE, но отличается от него размерами цилиндро-поршневой группы. Двигатель 7A-FE имеет небольшие конструктивные отличия от 4A-FE. Двигатели омеют нумерацию цилиндров, начинающуюся со стороны, противоположной отбору мощности. Коленчатый вал — полноопорный с 5-ю коренными подшипниками.

Вкладыши подшипников выполнены на основе сплава алюминия и установлены в расточках картера двигателя и крышек коренных подшипников. Сверления, выполенные в коленчатом валу, служат для подачи масла к шатунным подшипникам, стержням шатунов, поршням и другим деталям.

Порядок работы цилиндров: 1-3-4-2.

Головка блока цилиндров, отлитая из алюминиевого сплава, имеет поперечные и расположенные с противоположных сторон впускные и выпускные патрубки, скомпонованные с шатровыми камерами сгорания.

Свечи зажигания расположены в центре камер сгорания. В двигателе 4A-f используется традиционная конструкция впускного коллектора с 4-мя отдельными патрубками, которые объединяются в один канал под фланцем крепления карбюратора. Впускной коллектор имеет жидкостный подогрев, который улучшает приемистость двигателя, особенно при его прогреве. Впускной коллектор двигателей 4A-FE, 5A-FE имеет 4 независимых патрубка одинаковой длины, которые с одной стороны объединяются общей впускной воздушной камерой (резонатором), а с другой — стыкуются с впускными каналами головки блока цилиндров.

Впускной коллектор двигателя 4A-GE имеет 8 таких патрубков, каждый из которых подходит к своему впускному клапану. Сочетание длины впускных патрубков с фазами газораспределения двигателя позволяет использовать явление инерционного наддува для повышения крутящего момента на низких и средних частотах вращения двигателя. Выпускные и впускные клапаны сопрягаются с пружинами, имеющими неравномерный шаг навивки.

Распределительный вал, выпускных клапанов двигателей 4A-F, 4A-FE, 5A-FE, 7A-FE приводится во вращение от коленчатого вала с помощью плоскозубого ремня, а распределительный вал впускных клапанов приводится во вращение от распределительного вала выпускных клапанов с помощью шестереной передачи. В двигателе 4A-GE оба вала приводятся во вращение от плоскозубого ремня.

Распределительные валы имеют 5 опор, расположенных между толкателями клапанов каждого цилиндра; одна из этих опор расположена на переднем конце головки длока цилиндров. Смазка опор и кулачков распределительных валов, а так же приводных шестерен (для двигателей 4A-F, 4A-FE, 5A-FE), осуществляется потоком масла, поступающим по масляному каналу, просверленному в центре распределительного вала. Регулировка зазора в клапанах осуществляется с помощью регулировочных шайб, расположенных между кулачками и толкателями клапанов (у двадцатиклапанных двигателей 4A-GE регулировочные проставки расположены между толкателем и стержнем клапана).

Блок цилиндров отлит из чугуна. он имеет 4 цилиндра. Верхняя часть блока цилиндров накрывается головкой цилиндров, а нижняя часть блока образует картер двигателя, в котором устанавливается коленчатый вал. Поршни изготовлены из высокотемпературного алюминиевого сплава. На днищах поршней выполнены углубления для предотвращения встречи поршня с клпанами в ВТМ.

Поршневые пальцы двигателей 4A-FE, 5A-FE, 4A-F, 5A-F и 7A-FE — «закрепленного» типа:они установлены с натягом в поршневой головке шатуна, но имеют скользящую посадку в бобышках поршня. Поршневые пальцы двигателя 4A-GE — «плавающего» типа; они имеют скользящую посадку, как в поршневой головке шатуна, так и в бобышках поршня. От осевого смещения такие поршневые пальцы зафиксированы стопорными кольцами, установленными в бобышках поршня.

Верхнее копрессионное кольцо изготовлено из нержавеющей стали (двигатели 4A-F, 5A-F, 4A-FE, 5A-FE и 7A-FE) или из стали (двигатель 4A-GE), а 2-е компрессионное кольцо — из чугуна. Маслосъемное кольцо изготовлено из сплава обычной стали и нержавеющей стали. Наружный диаметр каждого кольца несколько больше диаметра поршня, а упругость колец позволяет им плотно охватывать стенки цилиндра, когда кольца установлены в канавках поршня. Компрессионные кольца препятствуют прорыву газов из цилиндра в картер двигателя, а маслосъемное кольцо удаляет избыток масла со стенок цилиндра, препятствуя его проникновению в камеру сгорания.

Максимальная неплоскостность:

  • 4A-fe,5A-fe,4A-ge,7A-fe,4E-fe,5E-fe,2E…..0,05 мм

  • 2C……………………………………………0,20 мм

(Lean Bum) относится к низкооборотным силовым агрегатам, отличающимся высокой степенью тяговитости. В серийном производстве, такие двигатели рассчитывались для установки в японских легковых автомобилях семейства Corolla. Немного позднее эти силовые агрегаты обрели свое применение и в линейке автомобилей Caldina, Carina, и были оснащены системой питания Lean Bum, которая очень успешно работает с обедненными топливными смесями, что, в значительной мере, подняло уровень экономии горючего автомобилей, предназначенных к постоянному передвижению в условиях города, сопряженному с частым выстаиванием в дорожных заторах.

К большому сожалению, после появления японских автомобилей, в которых был установлен двигатель 7а , на территории постсоветского пространства, в их адрес можно было услышать частые нарекания на неадекватную работу упомянутой топливной системы, проявляющуюся в провалах педали газа, особенно на средних оборотах двигателя. Установить точную причину происходящего, порой, не берутся даже специалисты. Некоторые говорят, что всему виной низкое качество используемого горючего, другие винят в происходящем автомобильные системы зажигания и питания, которые в данных транспортных средствах весьма чувствительны к техническому состоянию свечей зажигания и высоковольтных проводов. Так, или иначе, но практике известны случаи, когда обедненная топливная смесь просто не поджигалась.

Помимо сказанного, к недостаткам двигателей 7а следует отнести сложности, возникающие при регулировке клапанов впуска, поршневые пальцы, которые не “плавают”, и преждевременный износ распределительных валов. Хотя, в целом, силовой агрегат 7а, устройство довольно надежное и простое в эксплуатации, обслуживании, и ремонте.

Двигатель 7а относится к моторам более поздней модификации, имеющим увеличенный рабочий объем, в сравнении с силовыми агрегатами 4а и 5а (FE). Его отличительной чертой является очень хорошая механика. Он вполне ремонтопригоден, и с запасными частями данный агрегат проблем никогда не имел. Очень часто неисправности в работе силовых агрегатов 7а возникают по причине выхода из строя, какого либо из многочисленных датчиков. Особенное внимание следует уделять датчику кислорода, температурному датчику двигателя, и датчику дроссельной заслонки. При их замене, рекомендуется устанавливать только оригинальные устройства, в частности Denso, хотя, подойдут и изделия Bosch, NTK.