Шиберный паровой двигатель. Паровой роторно-лопастный двигатель. Прямоточные паровые машины

Изобретение относится к двигателестроению и может быть использовано в энергомашиностроении, тепловозостроении, судостроении, авиации, тракторо- и автомобилестроении. Двигатель содержит неподвижный полый корпус 1, ротор 3 с четырьмя радиальными пазами 4, четыре лопасти 5, элементы подачи пара 6, сопла Лаваля 7, элементы отвода пара 8, а также последовательно соединенные конденсатор пара 9, водяной бак 10, генератор пара высокого давления 11, ресивер 12 и распределитель пара 13, управляемый контроллером 14. Внутренняя поверхность 2 корпуса 1 выполнена цилиндрической. Ротор 3 выполнен в виде прямого кругового цилиндра. Лопасти 5 установлены в пазах 4 с возможностью перемещения в этих пазах и скольжения своими рабочими гранями по внутренней поверхности 2 корпуса 1. Элементы подачи пара 6 установлены в корпусе так, что подаваемый через них пар не создает турбинного эффекта. Сопла Лаваля 7 установлены в корпусе наклонно к радиусу ротора, так что ось каждого сопла Лаваля ориентирована в направлении соответствующей касательной к цилиндрической поверхности ротора. Входы конденсатора 9 соединены с выходами элементов 8 отвода пара. Выходы распределителя пара 13 соединены с входами элементов подачи пара 6 и входами сопел Лаваля 7. Изобретение направлено на увеличение мощности двигателя на высоких скоростях вращения ротора. 6 з.п. ф-лы, 6 ил.

Рисунки к патенту РФ 2491425

Область техники, к которой относится изобретение

Изобретение относится к области двигателестроения, а именно к роторно-лопастным двигателям, и может быть использовано в энергомашиностроении, тепловозостроении, судостроении, авиации и тракторо- и автомобилестроении.

Уровень техники

Известен роторно-лопастный двигатель внутреннего сгорания, содержащий корпус, внутренняя рабочая поверхность которого выполнена в виде прямого кругового цилиндра с двумя торцевыми крышками, ротор, эксцентрично установленный в корпусе и имеющий радиальные пазы, в которых установлены лопасти с возможностью перемещения в этих пазах и скольжения своими рабочими гранями по внутренней рабочей поверхности корпуса в процессе вращения ротора, а также системы топливоподачи и газообмена, при этом ротор и корпус выполнены сплошными из волокнистого углерод-углеродного композита или термостойкой керамики, лопасти - в виде пакета пластин из углеграфитовой композиции, а в теле ротора между пазами выполнены камеры сгорания в виде цилиндрических или сферических углублений (Патент RU № 2011866 C1, M. кл. F02B 53/00, опубликовано 1990.04.30).

Признаки, являющиеся общими для известного и заявленного решений, заключаются в наличии цилиндрического корпуса, ротора с радиальными пазами, установленного в корпусе с возможностью вращения, и лопастей, установленных в радиальных пазах ротора с возможностью перемещения в этих пазах и скольжения своими рабочими гранями по внутренней рабочей поверхности корпуса в процессе вращения ротора, а также в наличии расположенных в стенке корпуса элементов подачи рабочего тела и элементов газообмена.

Причина, препятствующая получению в известном техническом решении требуемого технического результата, заключается в том, что внутренняя рабочая поверхность корпуса выполнена в виде прямого кругового цилиндра, а ротор установлен с эксцентриситетом относительно оси симметрии внутренней рабочей поверхности корпуса, что является причиной существенной неуравновешенности внутренних сил двигателя.

Наиболее близким аналогом (прототипом) является паровой роторно-лопастный двигатель, который содержит неподвижный полый корпус, внутренняя рабочая поверхность которого выполнена цилиндрической, ротор с радиальными пазами, установленный в корпусе соосно с внутренней рабочей поверхностью корпуса, при этом в роторе выполнены пазы, которые расположены равномерно по окружности ротора, лопасти, установленные в радиальных пазах ротора с возможностью перемещения в этих пазах и скольжения своими рабочими гранями по внутренней рабочей поверхности корпуса в процессе вращения ротора, а также элементы подачи пара и элементы отвода пара, расположенные в стенке корпуса (Описание изобретения к патенту RU № 2361089 C1, M. кл. F01C 1/32, F02B 53/02, F02B 55/08, F02B 55/16, опубликовано 10.07.2009).

Признаки, являющиеся общими для известного и заявленного решений, заключаются в наличии корпуса, внутренняя рабочая поверхность которого выполнена цилиндрической, установленного в корпусе ротора, в котором выполнены радиальные пазы, расположенные равномерно по окружности ротора, лопастей, установленных в пазах с возможностью перемещения в этих пазах и скольжения своими рабочими гранями по внутренней рабочей поверхности корпуса в процессе вращения ротора, источника пара, а также расположенных в стенке корпуса элементов подачи пара, соединенные с источником пара, и расположенных в корпусе элементы отвода пара.

Причина, препятствующая получению в известном техническом решении требуемого технического результата, заключается в том, что элементы подачи пара установлены радиально, вследствие чего подаваемый через них пар не создает турбинного эффекта.

Сущность изобретения

Задача, на решение которой направлено изобретение, заключается в увеличении мощности двигателя на высоких скоростях вращения ротора.

Технический результат, опосредствующий решение указанной задачи, заключается в подаче дополнительного пара с высокой скоростью потока в направлении касательной к цилиндрической поверхности ротора.

Достигается технический результат тем, что роторно-лопастный двигатель содержит неподвижный полый корпус, внутренняя рабочая поверхность которого выполнена цилиндрической, ротор, который установлен в корпусе и в котором выполнены радиальные пазы, расположенные равномерно по окружности ротора, лопасти, установленные в указанных пазах с возможностью перемещения в этих пазах и скольжения своими рабочими гранями по внутренней рабочей поверхности корпуса в процессе вращения ротора, источник пара, элементы подачи пара, расположенные в стенке корпуса и соединенные с источником пара, элементы отвода пара, расположенные в корпусе, а также по крайней мере одно сопло Лаваля, которое соединено с источником пара и установлено в стенке корпуса наклонно к радиусу ротора с возможностью создания турбинного эффекта.

Достигается технический результат также тем, что источник пара выполнен в виде последовательно соединенных конденсатора, водяного бака, генератора пара высокого давления, ресивера и управляемого контроллером распределительного клапана, при этом к выходам распределительного клапана подсоединены элементы подачи пара и сопла Лаваля, а к входам конденсатора подсоединены элементы отвода пара.

Достигается технический результат также тем, что генератор пара высокого давления содержит корпус с по крайней мере одной топочной камерой, по крайней мере один водонагреватель, расположенный в топочной камере, и по крайней мере одно горелочное устройство, установленное с возможностью нагрева воды в водонагревателе, при этом горелочное устройство представляет собой сопло Лаваля, работающее на водяном топливе.

Достигается технический результат также тем, что на входе горелочного устройства установлена форсунка для подачи в него воды или водяного пара и электроды для создания электрической дуги, предназначенной для диссоциации этой воды.

Достигается технический результат также тем, что горелочное устройство содержит по крайней мере одно дополнительное сопло Лаваля, образующее с упомянутым соплом, являющимся основным, линейную цепь сопел Лаваля, в которой основное сопло является первым и в которой выход предыдущего сопла цепи соединен с входом одного последующего сопла цепи, так что геометрические размеры последующего сопла цепи превышают геометрические размеры предыдущего сопла цепи.

Достигается технический результат также тем, что горелочное устройство содержит по крайней мере два дополнительных сопла Лаваля, образующих с упомянутым соплом, являющимся основным, разветвленную цепь сопел Лаваля, в которой основное сопло является первым и в которой выход предыдущего сопла цепи соединен с входами двух последующих сопел цепи.

Новые признаки заявленного технического решения заключаются в том, что двигатель содержит по крайней мере одно сопло Лаваля, которое соединено с источником пара и установлено в стенке корпуса наклонно к радиусу ротора с возможностью создания турбинного эффекта.

Новые признаки также заключаются в том, что упомянутый источник пара содержит последовательно соединенные конденсатор, водяной бак, генератор пара высокого давления, ресивер и управляемый контроллером распределительный клапан, к выходам которого подсоединены элементы подачи пара и сопла Лаваля, а элементы отвода пара соединены с входами конденсатора.

Новые признаки также заключаются в том, что генератора пара высокого давления содержит корпус с по крайней мере одной топочной камерой, по крайней мере один водонагреватель, расположенный в топочной камере, и по крайней мере одно горелочное устройство, установленное с возможностью нагрева воды в водонагревателе, при этом горелочное устройство представляет собой сопло Лаваля, работающее на водяном топливе и содержащее установленную на входе форсунку для подачи воды или водяного пара и электроды для создания электрической дуги, предназначенной для диссоциации этой воды.

Новые признаки также заключаются в том, что горелочное устройство содержит по крайней мере одно дополнительное сопло Лаваля, образующее с упомянутым соплом, являющимся основным, линейную цепь сопел Лаваля, в которой основное сопло является первым и в которой выход предыдущего сопла цепи соединен с входом одного последующего сопла цепи, так что геометрические размеры последующего сопла цепи превышают геометрические размеры предыдущего сопла цепи.

Новые признаки также заключаются в том, что горелочное устройство содержит по крайней мере два дополнительных сопла Лаваля, образующих с упомянутым соплом, являющимся основным, разветвленную цепь сопел Лаваля, в которой основное сопло является первым и в которой выход предыдущего сопла цепи соединен с входами двух последующих сопел цепи.

Перечень фигур чертежей

На фиг.1 схематично показан заявленный паровой роторно-лопастный двигатель; на фиг.2, 3 - варианты выполнения генератора пара высокого давления; на фиг.4, 5, 6 - варианты выполнения горелки, используемой в генераторе пара.

Сведения, подтверждающие возможность осуществления изобретения

Двигатель содержит: неподвижный полый корпус 1, внутренняя поверхность 2 которого выполнена цилиндрической (с торцов корпус закрыт крышами); ротор 3, который выполнен в виде прямого кругового цилиндра с четырьмя радиальными пазами 4; четыре лопасти 5, установленные в упомянутых пазах 4 с возможностью перемещения в этих пазах и скольжения своими рабочими гранями по внутренней поверхности 2 корпуса 1; два элемента 6 подачи пара, установленные в корпусе так, что подаваемый через них пар не создает турбинного эффекта (установлены радиально); два сопла Лаваля 7, установленные в корпусе наклонно к радиусу ротора, так что ось каждого сопла Лаваля ориентирована в направлении соответствующей касательной к цилиндрической поверхности ротора; элементы 8 отвода пара. Кроме того, двигатель содержит соединенные последовательно конденсатор пара 9, водяной бак 10, генератор пара высокого давления 11, ресивер 12 и управляемый контроллером 14 распределитель пара 13. В свою очередь входы конденсатора 9 соединены с выходами элементов 8 отвода пара, а выходы распределителя пара 13 соединены с входами элементов 6 подачи пара и входами сопел Лаваля 7.

В примере, показанном на прилагаемой фигуре, ротор 3 установлен в корпусе 1 соосно с его внутренней цилиндрической поверхностью 2. Пазы 4 и, соответственно, лопасти 5 расположены равномерно по окружности поперечного сечения ротора 3. Минимальное число лопастей четыре. В этом случае угол между любыми двумя смежными лопастями составляет 90°, а угол между противоположными лопастями составляет 180°. Элементы 6 подачи пара установлены в корпусе 1 в вершинах малой оси эллипса рабочей поверхности 2. Сопла Лаваля 7 установлены в корпусе 1 со смещением от элементов 6 на угол, не превышающий 45° в направлении вращения ротора 3. Элементы 8 отвода пара установлены в корпусе 1 со смещением от элементов 6 на угол, не превышающий 45° в направлении, противоположном вращению ротора 3 (направление вращения показано на фиг. дугообразной стрелкой). Кроме того, элементы подачи пара 6 установлены радиально, т.е. с возможностью радиальной подачи пара, так что подаваемый пар не создает динамического (турбинного) эффекта, а сопла Лаваля 7 своими осями установлены наклонно к радиусам ротора, так что ось каждого сопла Лаваля ориентирована в направлении соответствующей касательно к цилиндрической поверхности ротора 3 для создания динамического (турбинного) эффекта. Количество лопастей 5 может быть больше четырех, но обязательно четным. Лопасти 5 должны располагаться равномерно по окружности поперечного сечения ротора 3. При этом лопасти 5 установлены в пазах 4 с подпружиниванием в направлении от оси ротора. Данное подпружинивание обеспечивается установкой в пазах 4 соответствующих пружин (не показаны) и/или подачей в пазы 4 газа под давлением.

Представленный выше пример парового роторно-лопастного двигателя характеризуется выполнением внутренней рабочей поверхности корпуса цилиндрической с образующей в виде эллипса. При этом ротор установлен соосно с корпусом, что обеспечивает сбалансированность сил. Однако такой вариант двигателя не является единственно возможным в объеме заявленной формулы. Возможен, например, вариант, в котором внутренняя рабочая поверхность корпуса (статора) выполнена в виде кругового цилиндра, а ротор установлен со смещением его оси относительно оси корпуса. Возможно также выполнение внутренней рабочей поверхности корпуса со сложной направляющей, как это представлено в описании изобретения по упомянутому выше патенту RU № 2361089.

В двигателе используется генератор пара высокого давления 11, который содержит корпус 15 и две топочные камеры 16 и 17 (фиг.2). В топочной камере 16 установлен водонагреватель 18, выполненный в виде змеевика, горелочное устройство 19 и предохранительный клапан 20. В топочной камере 17 установлен водонагреватель 21, выполненный в виде бака, и горелочное устройство 22. При этом выход водонагревателя 21 посредством трубопровода соединен с входом змеевика 18, предназначенного для генерирования водяного пара высокого давления.

Генератор, показанный на фиг.3, отличается от генератора на фиг.2 тем, что содержит канал 23, связывающий топочные камеры 16 и 17 между собой; при этом генератор содержит только одно горелочное устройство 19.

Каждое горелочное устройство (19 и 22) имеет три варианта исполнения.

В первом варианте исполнения (фиг.4) горелочное устройство представляет собой сопло Лаваля 24 (основное сопло), работающее на водяном топливе. При этом на входе (на входном торце) сопла 24 уставлена форсунка 25 для подачи воды или водяного пара, а также установлены электроды 26 (катод, анод), предназначенные для их подключения к источнику тока высокого напряжения (источник тока не показан).

Во втором варианте исполнения (фиг.5) горелочное устройство содержит упомянутое основное сопло 24 и, по крайней мере, одно дополнительное сопло Лаваля 27, образующее с основным соплом 24 линейную цепь сопел Лаваля. В этой цепи основное сопло 24 является первым, причем выход предыдущего сопла (в данном случае сопла 24) соединен с входом одного последующего сопла (в данном случае сопла 27), так что геометрические размеры последующего сопла превышают геометрические размеры предыдущего сопла. При этом дополнительное сопло 27 содержит форсунку 28 для подачи в него дополнительной воды или водяного пара.

В третьем варианте исполнения (фиг.6) горелочное устройство содержит основное сопло 24 с разделителем 29 для разделения выхода этого сопла на два выходных канала и, по крайней мере, два дополнительных сопла Лаваля 27(1) и 27(2), образующее с основным соплом 24 разветвленную цепь сопел Лаваля, в которой основное сопло 24 является первым и в которой выходные каналы предыдущего сопла (в данном случае сопла 24) соединены с входами двух последующих сопел (в данном случае сопел 27(1) и 27(2)). При этом дополнительные сопла 27(1) и 27(2) содержат соответствующие форсунки 28(1) т 28(2) для подачи в дополнительные сопла дополнительной воды или водяного пара.

Работа двигателя заключается в следующем.

В исходном положении ротора 3 (как показано на фиг.) его противоположно направленные лопасти должны располагаться между соответствующими элементами 6 подачи пара и соответствующими элементами 8 отвода пара, так чтобы элементы 6 находились между соответствующими смежными лопастями 5, а элементы отвода пара 8 при этом не должны находиться между теми же соответствующими смежными лопастями. При этом пространство между смежными лопастями 5 образует одну рабочую камеру (назовем ее первой), а пространство между другими смежными лопастями 5 образует другую рабочую камеру. Если указанное условие начального расположения лопастей в момент пуска двигателя не выполнено, то стартером (не показан) обеспечивается принудительный поворот ротора 3 для обеспечения упомянутого расположения лопастей. В таком положении ротора 3 посредством элементов 6 осуществляют радиальную подачу пара во внутреннюю полость корпуса 1 с двух сторон этого корпуса в два рабочих пространства.

Пар, находящийся под высоким давлением в первой и второй рабочих камерах, оказывает разное давление на смежные лопасти каждой рабочей камеры благодаря эллиптической форме поверхности 2 в ее поперечном сечении и по этой причине разной выдвинутости смежных лопастей. Возникающие в результате этого разности давлений заставляют ротор вращаться по часовой стрелке. При повороте ротора 3 на угол 90° первая по ходу вращения лопасть каждой рабочей камеры переходит точку расположения соответствующего элемента отвода пара 8, вследствие чего пар из каждой рабочей камеры свободно выходит через элементы отвода 8 и поступает в конденсатор 9. Далее цикл повторяется. При этом в конденсаторе пар конденсируется, а образовавшаяся таким образом вода поступает в водяной бак 10, в котором она накапливается. Из бака 10 вода поступает в генератор пара высокого давления 11, из которого образовавшийся там пар поступает в ресивер 12, где он накапливается под большим давлением. Из ресивера пар поступает в управляемый контроллером 14 распределитель пара 13, выходы которого соединены с соответствующим элементами подачи 6 и соплами Лаваля 7. В зависимости от необходимого режима работы двигателя контроллер 14 обеспечивает подачу пара либо только в элементы подачи 6 (обеспечение необходимой мощности двигателя при работе на малых оборотах), либо только в сопла Лаваля 7 (обеспечение необходимой мощности двигателя при работе на больших оборотах за счет турбинного эффекта), либо одновременно в элементы подачи бив сопла Лаваля 7 для дополнительного увеличения мощности двигателя.

Работа генератора пара заключается в следующем.

Вода (конденсат) непрерывно поступает в водонагреватель (бак) 21, где она нагревается при помощи горелочного устройства 22. Далее вода по внутреннему трубопроводу генератора пара поступает в змеевик 18, где она нагревается при помощи горелочного устройства 19, превращаясь тем самым в пар (фиг.2). В варианте генератора пара, представленного на фиг.3, нагревание воды в баке 21 и в змеевике 18 осуществляется при помощи одного горелочного устройства 19.

Каждое горелочное устройство (19 и 22) выполнено в виде сопла Лаваля. При этом в каждое сопло 24 при помощи форсунки 25 подают воду или водяной пар (фиг.4). Электроды 26 подключают к источнику тока высокого напряжения (не показан). В результате прохождения тока в сопле 24 происходит разложение воды на водород и кислород и последующее сгорание водорода с образованием плазмы, температура которой достигает 6000°C. Образующаяся в сопле 24 плазма поступает в соответствующую топочную камеру 16 и 17, где осуществляется нагрев этой плазмой водонагревателя (бака) 21, а также водонагревателя (змеевика) 18. В результате этого на выходе змеевика 18 образуется водяной пар. Клапан 20 осуществляет сброс лишнего давления из топочных камер.

Для увеличения мощности горелочное устройство (позиции 19, 22 на фиг.2 и 3) может быть выполнено в виде линейной (фиг.5) или разветвленной (фиг.6) цепи сопел Лаваля.

Работа горелочного устройства в вариантах, показанных на фиг.5 и 6, заключается в следующем.

Плазма, образующаяся в сопле Лаваля 24, поступает в следующее сопло 27 цепи сопел (фиг.5) или, будучи разделена на два потока разделителем 29 (фиг.6), одновременно в два следующих сопла 27(1) и 27(2).

В это следующее сопло (или два сопла) при помощи форсунки 28 (или форсунок 28(1) и 28(2)) поступает дополнительная вода (или водяной пар), которая под действием плазмы из сопла 24 разлагается на водород и кислород; при этом вновь образовавшийся водород также сгорает. В результате во втором сопле образуется дополнительная плазма, увеличивающая общий объем генерируемой плазмы. Таким образом, при небольших габаритах горелочное устройство позволяет на основе воды генерировать значительную тепловую мощность.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Паровой роторно-лопастный двигатель, содержащий неподвижный полый корпус, внутренняя рабочая поверхность которого выполнена цилиндрической, ротор, который установлен в корпусе и в котором выполнены радиальные пазы, расположенные равномерно по окружности ротора, лопасти, установленные в указанных пазах с возможностью перемещения в этих пазах и скольжения своими рабочими гранями по внутренней рабочей поверхности корпуса в процессе вращения ротора, источник пара, элементы подачи пара, расположенные в стенке корпуса и соединенные с источником пара, и элементы отвода пара, расположенные в корпусе, отличающийся тем, что он содержит по крайней мере одно сопло Лаваля, которое соединено с источником пара и установлено в стенке корпуса наклонно к радиусу ротора с возможностью создания турбинного эффекта, а источник пара выполнен в виде последовательно соединенных конденсатора, водяного бака, генератора пара высокого давления, ресивера и управляемого контроллером распределительного клапана, при этом к выходам распределительного клапана подсоединены элементы подачи пара и сопла Лаваля, а к входам конденсатора подсоединены элементы отвода.

2. Паровой роторно-лопастный двигатель по п.1, характеризующийся тем, что генератор пара высокого давления содержит корпус с по крайней мере одной топочной камерой, по крайней мере один водонагреватель, расположенный в топочной камере, и по крайней мере одно горелочное устройство, установленное с возможностью нагрева воды в водонагревателе, при этом горелочное устройство представляет собой сопло Лаваля, работающее на водяном топливе.

3. Паровой роторно-лопастный двигатель по п.2, характеризующийся тем, что на входе горелочного устройства установлена форсунка для подачи в него воды или водяного пара и электроды для создания электрической дуги, предназначенной для диссоциации этой воды.

4. Паровой роторно-лопастный двигатель по п.2, характеризующийся тем, что горелочное устройство содержит по крайней мере одно дополнительное сопло Лаваля, образующее с упомянутым соплом, являющимся основным, линейную цепь сопел Лаваля, в которой основное сопло является первым и в которой выход предыдущего сопла цепи соединен с входом одного последующего сопла цепи, так что геометрические размеры последующего сопла цепи превышают геометрические размеры предыдущего сопла цепи.

5. Паровой роторно-лопастный двигатель по п.4, характеризующийся тем, что на входе основного сопла цепи установлена форсунка для подачи в него воды или водяного пара и электроды для создания электрической дуги, предназначенной для диссоциации этой воды, а каждое дополнительное сопло цепи содержит форсунку для подачи в него дополнительной воды или водяного пара.

6. Паровой роторно-лопастный двигатель по п.2, характеризующийся тем, что горелочное устройство содержит по крайней мере два дополнительных сопла Лаваля, образующих с упомянутым соплом, являющимся основным, разветвленную цепь сопел Лаваля, в которой основное сопло является первым и в которой выход предыдущего сопла цепи соединен с входами двух последующих сопел цепи.

7. Паровой роторно-лопастный двигатель по п.6, характеризующийся тем, что на входе основного сопла цепи установлена форсунка для подачи в него воды или водяного пара и электроды для создания электрической дуги, предназначенной для диссоциации этой воды, а каждое дополнительное сопло цепи содержит форсунку для подачи в него дополнительной воды или водяного пара.

12 апреля 1933 г. Уильям Беслер стартовал с муниципального аэродрома города Окленд в Калифорнии на самолете с паровым двигателем.
Газеты написали:

«Взлет был нормальным во всех отношениях, за исключением отсутствия шума. Фактически, когда самолет уже отделился от земли, наблюдателям казалось, что он не набрал еще достаточной скорости. На полной мощности шум был заметен не более, чем при планирующем самолете. Можно было слышать только свист воздуха. При работе на полном паре винт производил только небольшой шум. Можно было различать через шум винта звук пламени...

Когда самолет шел на посадку и пересекал границу поля, то винт останавливался и пускался медленно в обратную сторону с помощью перевода реверса и последующего малого открывания дросселя. Даже при очень медленном обратном вращении винта снижение заметно становилось круче. Немедленно после касания земли пилот давал полный задний ход, который вместе с тормозами быстро останавливал машину. Краткий пробег особенно был заметен в этом случае, так как во время испытания была безветренная погода, и обычно пробег при посадке достигал нескольких сот футов».

В начале XX века рекорды высоты, достигнутой самолетами, ставились чуть ли не ежегодно:

Стратосфера сулила немалые выгоды для полета: меньшее сопротивление воздуха, постоянство ветров, отсутствие облачности, скрытность, недосягаемость для ПВО. Но как взлететь на высоту, например, 20 километров?

Мощность [бензинового] мотора падает быстрее, чем плотность воздуха.

На высоте 7000 м мощность мотора уменьшается почти в три раза. С целью повышения высотных качеств самолетов еще в конце империалистической войны делались попытки применять наддув, в период 1924-1929 гг. нагнетатели еще больше внедряются в производство. Однако обеспечить сохранение мощности двигателя внутреннего сгорания на высотах свыше 10 км становится все труднее.

Стремясь поднять «предел высоты», конструкторы всех стран все чаще и чаще обращают свои взоры на паровую машину, имеющую ряд преимуществ в качестве высотного двигателя. Отдельные страны, как, например, Германию, толкнули на этот путь и стратегические соображения, а именно - необходимость на случай большой войны добиться независимости от привозной нефти.

За последние годы были сделаны многочисленные попытки установить паровой двигатель на самолет. Быстрый рост авиационной промышленности накануне кризиса и монопольные цены на ее продукцию позволили не спешить с реализацией опытных работ и накопившихся изобретений. Эти попытки, принявшие особый размах в период экономического кризиса 1929-1933 гг. и наступившей затем депрессии, - не случайное явление для капитализма. В печати, в особенности в Америке и Франции, часто бросались упреки крупным концернам о наличии у них соглашений об искусственной задержке реализации новых изобретений.

Наметились два направления. Одно представлено в Америке Беслером, установившим на самолет обычную поршневую машину, другое же обусловлено применением турбины в качестве авиационного двигателя и связано, главным образом, с работами немецких конструкторов.

Братья Беслер взяли за основу поршневую паровую машину Добля для автомобиля и установили ее на биплан Тревел-Эр [описание их демонстрационного полета приведено в начале поста].
Видео того полета:

Машина снабжена реверсивным механизмом, при помощи которого можно легко и быстро изменять направление вращения вала машины не только в полете, но и при посадке самолета. Двигатель помимо пропеллера приводит в движение через соединительную муфту вентилятор, нагнетающий воздух в горелку. При старте пользуются небольшим электрическим моторчиком.

Машина развивала мощность в 90 л.с., но в условиях известной форсировки котла ее мощность можно довести до 135 л. с.
Давление пара в котле 125 aт. Температура пара поддерживалась около 400-430°. В целях максимальной автоматизации работы котла был применен нормализатор или прибор, помощью которого вода впрыскивалась под известным давлением в перегреватель, как только температура пара превышала 400°. Котел был снабжен питательным насосом и паровым приводом, а также первичным и вторичным подогревателями питающей воды, обогреваемыми отработанным паром.

На самолете были установлены два конденсатора. Более мощный переделан из радиатора мотора ОХ-5 и установлен сверху фюзеляжа. Менее мощный сделан из конденсатора парового автомобиля Добля и расположен под фюзеляжем. Производительность конденсаторов, как утверждали в печати, оказалась недостаточной для работы паровой машины на полном дросселе без выпуска в атмосферу «и приблизительно соответствовала 90% крейсерской мощности». Опыты показали, что при расходе 152 л горючего необходимо было иметь 38 л воды.

Общий вес паровой установки самолета составлял 4,5 кг на 1 л. с. По сравнению с мотором ОХ-5, работавшим на этом самолете, это давало лишний вес в 300 фунтов (136 кг). Не подлежит сомнению, что вес всей установки мог быть значительно снижен при облегчении деталей двигателя и конденсаторов.
Топливом служил газойль. В печати утверждали, что «между включением зажигания и пуском на полный ход прошло не более 5 мин.».

Другое направление в развитии паросиловой установки для авиации связано с использованием паровой турбины в качестве двигателя.
В 1932-1934 гг. в иностранную печать проникли сведения о сконструированной в Германии на электрозаводе Клинганберга оригинальной паровой турбине для самолета. Автором ее называли главного инженера этого завода Хютнера.
Парообразователь и турбина вместе с конденсатором здесь были объединены в один вращающийся агрегат, имеющий общий корпус. Хютнер замечает: «Двигатель представляет силовую установку, отличительная характерная особенность которой состоит в том, что вращающийся генератор пара образует одно конструктивное и эксплоатационное целое с вращающейся в противоположном направлении турбиной и конденсатором».
Основной частью турбины является вращающийся котел, образованный из целого ряда V-образных трубок, причем одно колено этих трубок соединено с коллектором для питательной воды, другое - с паросборником. Котел показан на фиг. 143.

Трубки расположены радиально вокруг оси и вращаются со скоростью в 3000-5000 об/мин. Поступающая в трубки вода устремляется под действием центробежной силы в левые ветви V-образных трубок, правое колено которых выполняет роль генератора пара. Левое колено трубок имеет ребра, нагреваемые пламенем от форсунок. Вода, проходя мимо этих ребер, превращается в пар, причем под действием центробежных сил, возникающих при вращении котла, происходит повышение давления пара. Давление регулируется автоматически. Разность плотностей в обеих ветвях трубок (пар и вода) дает переменную разность уровней, являющуюся функцией центробежной силы, а следовательно, и скорости вращения. Схема такого агрегата показана на фиг. 144.

Особенностью конструкции котла является расположение трубок, при котором во время вращения создается разрежение в камере сгорания, и таким образом котел выполняет как бы роль всасывающего вентилятора. Таким образом, как утверждает Хютнер, «вращением котла обусловливаются одновременно и питание его, и движение горячих газов, и движение охлаждающей воды».

Пуск турбины в ход требует всего 30 сек. Хютнер рассчитывал получить к. п. д. котла 88% и к. п. д. турбины 80%. Турбина и котел нуждаются для запуска в пусковых моторах.

В 1934 г. в печати промелькнуло сообщение о разработке проекта большого самолета в Германии, оборудованного турбиной с вращающимся котлом. Два года спустя во французской прессе утверждали, что в условиях большой засекреченности военным ведомством в Германии построен специальный самолет. Для него сконструирована паросиловая установка системы Хютнера мощностью в 2500 л. с. Длина самолета 22 м, размах крыльев 32 м, полетный вес (приблизительный) 14 т, абсолютный потолок самолета 14000 м, скорость полета на высоте в 10000 м - 420 км/час, подъем на высоту 10 км - 30 минут.
Весьма возможно, что эти сообщения в печати значительно преувеличены, но несомненно, что германские конструкторы работают над этой проблемой, и предстоящая война может здесь принести неожиданные сюрпризы.

В чем же заключается преимущество турбины перед двигателем внутреннего сгорания?
1. Отсутствие возвратно-поступательного движения при высоких скоростях вращения позволяет сделать турбину довольно компактной и меньших размеров, нежели современные мощные авиационные моторы.
2. Важным преимуществом является также относительная бесшумность работы парового двигателя, что важно как с точки зрения военной, так и в смысле возможности облегчения самолета за счет звукоизолирующего оборудования на пассажирских самолетах.
3. Паровая турбина, не в пример моторам внутреннего сгорания, почти не допускающим перегрузки, может быть перегружаема на короткий период до 100% при постоянной скорости. Это преимущество турбины дает возможность уменьшить длину разбега самолета и облегчает его подъем в воздух.
4. Простота конструкции и отсутствие большого количества подвижных и срабатывающихся деталей составляют также немаловажное преимущество турбины, делая ее более надежной и долговечной по сравнению с двигателями внутреннего сгорания.
5. Существенное значение имеет также отсутствие на паровой установке магнето, на работу которого можно воздействовать с помощью радиоволн.
6. Возможность использовать тяжелое топливо (нефть, мазут) помимо экономических преимуществ обусловливает большую безопасность парового двигателя в пожарном отношении. Создается к тому же возможность теплофицировать самолет.
7. Главное же преимущество парового двигателя заключается в сохранении его номинальной мощности с подъемом на высоту.

Одно из возражений против парового двигателя исходит, главным образом, от аэродинамиков и сводится к размерам и возможностям охлаждения конденсатора. Действительно, паровой конденсатор имеет поверхность в 5-6 раз большую, нежели водяной радиатор двигателя внутреннего сгорания.
Вот почему, стремясь снизить лобовое сопротивление такого конденсатора, конструкторы пришли к размещению конденсатора непосредственно по поверхности крыльев в виде сплошного ряда трубок, следующих точно контуру и профилю крыла. Помимо придания значительной жесткости это уменьшит и опасность обледенения самолета.

Имеется, конечно, еще целый ряд других технических трудностей в эксплоатации турбины на самолете.
- Неизвестно поведение форсунки на больших высотах.
- Для изменения быстрой нагрузки турбины, что является одним из условий работы авиационного двигателя, необходимо иметь либо запас воды, либо паросборник.
- Известные трудности представляет и разработка хорошего автоматического устройства для регулировки турбины.
- Неясно также и гироскопическое действие быстро вращающейся турбины на самолете.

Все же достигнутые успехи дают основания надеяться, что в ближайшее время паровая силовая установка найдет свое место в современном воздушном флоте, в особенности на транспортных коммерческих самолетах, а также на больших дирижаблях. Самое трудное в этой области уже сделано, и практики-инженеры сумеют добиться конечного успеха.

Одним из немногих паровых роторных двигателей, которые были разработаны в России и который активно эксплуатировался в различных областях техники и транспорта был паровой роторный двигатель (коловратная машина) инженера-механика Н.Н. Тверского. Двигатель отличался долговечностью, эффективностью и высоким крутящим моментом. Но с появлением паровых турбин был забыт. Ниже представлены архивные материалы, поднятые автором этого сайта. Материалы весьма обширны, поэтому пока здесь представлена только часть их.

фото, видео, много букв:

Схема работы парового роторного двигателя Н. Тверского:

Пробная прокрутка сжатым воздухом (3,5 атм) парового роторного двигателя.
Модель рассчитана на 10 кВт мощности при 1500 об/мин на давлении пара в 28-30 атм.

В конце 19-го века "коловратные машины Н.Тверского" были забыты потому, что поршневые паровые машины оказались проще и технологичнее в производстве (для производств того времени), а паровые турбины давали большую мощность.
Но замечание в отношении турбин справедливо лишь в их больших массо-габаритных размерах. Действительно - при мощности больше 1,5-2 тыс. кВТ паровые многоцилиндровые турбины выигрывают по всем параметрам у паровых роторных двигателей, даже при дороговизне турбин. И в в начале 20-го века, когда судовые силовые установки и силовые агрегаты электростанций начинали иметь мощность во многие десятки тысяч киловатт, то только турбины и могли обеспечить такие возможности.

НО - у турбин есть другой недостаток. При масштабировании их массо-габаритных параметров в сторону уменьшения, ТТХ паровых турбин резко ухудшаются. Значительно снижается удельная мощность, падает КПД, при том что дороговизна изготовления и высокие обороты главного вала (потребность в редукторе) - остаются. Именно поэтому - в области мощностей менее 1 тыс. кВт (1 мВт) эффективную по всем параметрам паровую турбину найти практически невозможно, даже за большие деньги...

Именно поэтому в этой диапазоне мощностей появился целый "букет" экзотических и мало известных конструкций. Но чаще всего- так же дорогостоящих и малоэффективных... Винтовые турбины, турбины Тесла, осевые турбины и проч.
Но- почему-то все забыли про паровые "коловратные машины". А между тем - эти машины многократно дешевле, чем любые лопаточные и винтовые механизмы (это я говорю со знанием дела- как человек изготовивший на свои деньги уже более десятка таких машин). При этом паровые "коловратные машины Н.Тверского" - имеют мощный крутящий момент с самых малых оборотов, обладают невысокой частотой вращения главного вала на полных оборотах от 800 до 1500 об/мин. Т.е. такие машины хоть для электрогенератора, хоть для парового авто (трактора, тягача) - не будут требовать редуктора, сцепления и проч., а будут своим валом на прямую соединяется с динамо-машиной, колесами авто и проч.
Итак- в виде парового роторного двигателя - системы "коловратной машины Н.Тверского" мы имеем универсальную паровую машину, которая прекрасно будет вырабатывать электричество питаясь от котла на твердом топливе в отдалённом лесхозе или таежном поселке, на полевом стане или вырабатывать электричество в котельной сельского поселения или "крутиться" на отходах технологического тепла (горячем воздухе) на кирпичном или цементном заводе, на литейном производстве и пр. и др. Все подобные источники тепла как раз и имеют мощность менее 1 мВт, поэтому и общепринятые турбины тут малопригодны. А других машин для утилизации тепла путем перевода в работу давления полученного пара- общая техническая практика пока не знает. Вот и не утилизируется это тепло никак - оно просто теряется глупо и безвозвратно.
Я уже создал "паровую коловратную машину" для привода электрогенератора в 10 кВт, если все будет как планирую- то скоро будет машина и в 25 и в 40 кВт. Как раз - то что надо, чтобы обеспечивать дешевым электричеством от котла на твердом топливе или на отходах технологического тепла сельскую усадьбу, небольшое фермерское хозяйство, полевой стан и пр. и др.
В принципе - роторные двигатели хорошо масштабируются в сторону увеличения, поэтому - насаживая на один вал множество роторных секций легко многократно увеличивать мощность таких машин, просто увеличивая количество стандартных роторных модулей т.е. вполне можно создавать паровые роторные машины мощностью 80-160-240-320 и более кВт...

В конце 19-го века "коловратные машины Н.Тверского" были забыты потому, что поршневые паровые машины оказались проще и технологичнее в производстве (для производств того времени), а паровые турбины давали большую мощность.
Но замечание в отношении турбин справедливо лишь в их больших массо-габаритных размерах. Действительно - при мощности больше 1,5-2 тыс. кВТ паровые многоцилиндровые турбины выигрывают по всем параметрам у паровых роторных двигателей, даже при дороговизне турбин. И в в начале 20-го века, когда судовые силовые установки и силовые агрегаты электростанций начинали иметь мощность во многие десятки тысяч киловатт, то только турбины и могли обеспечить такие возможности.

НО - у турбин есть другой недостаток. При масштабировании их массо-габаритных параметров в сторону уменьшения, ТТХ паровых турбин резко ухудшаются. Значительно снижается удельная мощность, падает КПД, при том что дороговизна изготовления и высокие обороты главного вала (потребность в редукторе) - остаются. Именно поэтому - в области мощностей менее 1 тыс. кВт (1 мВт) эффективную по всем параметрам паровую турбину найти практически невозможно, даже за большие деньги...

Именно поэтому в этой диапазоне мощностей появился целый "букет" экзотических и мало известных конструкций. Но чаще всего- так же дорогостоящих и малоэффективных... Винтовые турбины, турбины Тесла, осевые турбины и проч.
Но- почему-то все забыли про паровые "коловратные машины". А между тем - эти машины многократно дешевле, чем любые лопаточные и винтовые механизмы (это я говорю со знанием дела- как человек изготовивший на свои деньги уже более десятка таких машин). При этом паровые "коловратные машины Н.Тверского" - имеют мощный крутящий момент с самых малых оборотов, обладают невысокой частотой вращения главного вала на полных оборотах от 800 до 1500 об/мин. Т.е. такие машины хоть для электрогенератора, хоть для парового авто (трактора, тягача) - не будут требовать редуктора, сцепления и проч., а будут своим валом на прямую соединяется с динамо-машиной, колесами авто и проч.
Итак- в виде парового роторного двигателя - системы "коловратной машины Н.Тверского" мы имеем универсальную паровую машину, которая прекрасно будет вырабатывать электричество питаясь от котла на твердом топливе в отдалённом лесхозе или таежном поселке, на полевом стане или вырабатывать электричество в котельной сельского поселения или "крутиться" на отходах технологического тепла (горячем воздухе) на кирпичном или цементном заводе, на литейном производстве и пр. и др. Все подобные источники тепла как раз и имеют мощность менее 1 мВт, поэтому и общепринятые турбины тут малопригодны. А других машин для утилизации тепла путем перевода в работу давления полученного пара- общая техническая практика пока не знает. Вот и не утилизируется это тепло никак - оно просто теряется глупо и безвозвратно.
Я уже создал "паровую коловратную машину" для привода электрогенератора в 10 кВт, если все будет как планирую- то скоро будет машина и в 25 и в 40 кВт. Как раз - то что надо, чтобы обеспечивать дешевым электричеством от котла на твердом топливе или на отходах технологического тепла сельскую усадьбу, небольшое фермерское хозяйство, полевой стан и пр. и др.
В принципе - роторные двигатели хорошо масштабируются в сторону увеличения, поэтому - насаживая на один вал множество роторных секций легко многократно увеличивать мощность таких машин, просто увеличивая количество стандартных роторных модулей т.е. вполне можно создавать паровые роторные машины мощностью 80-160-240-320 и более кВт...

Основным преимуществом паровых машин является то, что они могут использовать практически любые источники тепла для преобразования его в механическую работу. Это отличает их от двигателей внутреннего сгорания, каждый тип которых требует использования определённого вида топлива. Наиболее заметно это преимущество при использовании ядерной энергии, поскольку ядерный реактор не в состоянии генерировать механическую энергию, а производит только тепло, которое используется для выработки пара, приводящего в движение паровые машины (обычно паровые турбины). Кроме того, есть и другие источники тепла, которые не могут быть использованы в двигателях внутреннего сгорания, например, солнечная энергия. Интересным направлением является использование энергии разности температур Мирового Океана на разных глубинах

Подобными свойствами также обладают другие типы двигателей внешнего сгорания, такие как двигатель Стирлинга , которые могут обеспечить весьма высокую эффективность, но имеют существенно большие вес и размеры, чем современные типы паровых двигателей.

Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает в связи с низким атмосферным давлением. Паровозы до сих пор используются в горных районах Латинской Америки, несмотря на то, что в равнинной местности они давно были заменены более современными типами локомотивов.

В Швейцарии (Brienz Rothhorn) и в Австрии (Schafberg Bahn) новые паровозы, использующие сухой пар, доказали свою эффективность. Этот тип паровоза был разработан на основе моделей Swiss Locomotive and Machine Works (SLM) 1930 -х годов, со множеством современных усовершенствований, таких, как использование роликовых подшипников, современная теплоизоляция, сжигание в качестве топлива лёгких нефтяных фракций, улучшенные паропроводы, и т. д. В результате такие паровозы имеют на 60 % меньшее потребление топлива и значительно меньшие требования к обслуживанию. Экономические качества таких паровозов сравнимы с современными дизельными и электрическими локомотивами.

Кроме того, паровые локомотивы значительно легче, чем дизельные и электрические, что особенно актуально для горных железных дорог. Особенностью паровых двигателей является то, что они не нуждаются в трансмиссии, передавая усилие непосредственно на колёса. При этом паровая машина паровоза продолжает развивать тяговое усилие даже в случае остановки колёс (упор в стену), чем отличается от всех других видов двигателей, используемых на транспорте.

Коэффициент полезного действия

Паровой двигатель, выпускающий пар в атмосферу, будет иметь практический КПД (включая котёл) от 1 до 8 %, однако двигатель с конденсатором и расширением проточной части может улучшить КПД до 25 % и даже более. Тепловая электростанция с пароперегревателем и регенеративным водоподогревом может достичь КПД 30 - 42 %. Парогазовые установки с комбинированным циклом, в которых энергия топлива вначале используется для привода газовой турбины, а затем для паровой турбины, могут достигать коэффициента полезного действия 50 - 60 %. На ТЭЦ эффективность повышается за счёт использования частично отработавшего пара для отопления и производственных нужд. При этом используется до 90 % энергии топлива и только 10 % рассеивается бесполезно в атмосфере.

Такие различия в эффективности происходят из-за особенностей термодинамического цикла паровых машин. Например, наибольшая отопительная нагрузка приходится на зимний период, поэтому КПД ТЭЦ зимой повышается.

Одна из причин снижения КПД в том, что средняя температура пара в конденсаторе несколько выше, чем температура окружающей среды (образуется т. н. температурный напор ). Средний температурный напор может быть уменьшен за счёт применения многоходовых конденсаторов. Повышает КПД также применение экономайзеров, регенеративных воздухоподогревателей и других средств оптимизации парового цикла.

У паровых машин очень важным свойством является то, что изотермическое расширение и сжатие происходят при постоянном давлении. Поэтому теплообменник может иметь любой размер, а перепад температур между рабочим телом и охладителем или нагревателем составляют чуть ли не 1 градус. В результате тепловые потери могут быть сведены к минимуму. Для сравнения, перепады температур между нагревателем или охладителем и рабочим телом в стирлингах может достигать 100 °C

Кроме поршневых паровых машин, в 19-м веке активно использовались роторные паровые машины. В России, во второй половине 19-го века они назывались «коловратные машины» (то есть «вращающие колесо» от слова «коло» - «колесо»). Их было несколько типов, но наиболее успешной и эффективной была «коловратная машина» петербургского инженера-механика Н. Н. Тверского. Паровой двигатель Н. Н. Тверского . Машина представляла собой цилиндрический корпус, в котором вращался ротор-крыльчатка, а запирали камеры расширения особые запорные барабанчики. «Коловратная машина» Н. Н. Тверского не имела ни одной детали, которая бы совершала возвратно-поступательные движения и была идеально уравновешена. Двигатель Тверского создавался и эксплуатировался преимущественно на энтузиазме его автора, однако он использовался во многих экземплярах на малых судах, на фабриках и для привода динамо-машин. Один из двигателей даже установили на императорской яхте «Штандарт», а в качестве расширительной машины - с приводом от баллона со сжатым газом аммиаком, этот двигатель приводил в движение в подводном положении одну из первых экспериментальных подводных лодок - «подводную миноноску», которая испытывалась Н. Н. Тверским в 80-х годах 19-го столетия в водах Финского залива. Однако со временем, когда паровые машины были вытеснены двигателями внутреннего сгорания и электромоторами, «коловратная машина» Н. Н. Тверского была практически забыта. Однако эти «коловратные машины» можно считать прообразами сегодняшних роторных двигателей внутреннего сгорания

п

Станцыонарные Паровые машины могут быть разделены на два типа по режиму использования:

    Машины с переменным режимом, к которым относятся машины металлопрокатных станов , паровые лебёдки и подобные устройства, которые должны часто останавливаться и менять направление вращения.

  • Силовые машины, которые редко останавливаются и не должны менять направление вращения. Они включают энергетические двигатели на электростанциях , а также промышленные двигатели, использовавшиеся на заводах, фабриках и на кабельных железных дорогах до широкого распространения электрической тяги. Двигатели малой мощности используются на судовых моделях и в специальных устройствах.

Паровая лебёдка в сущности является стационарным двигателем, но установлена на опорной раме, чтобы её можно было перемещать. Она может быть закреплена тросом за якорь и передвинута собственной тягой на новое место.

В большинстве возвратно-поступательных паровых машин пар изменяет направление движения в каждом такте рабочего цикла, поступая в цилиндр и выходя из него через один и тот же коллектор. Полный цикл двигателя занимает один полный оборот кривошипа и состоит из четырёх фаз - впуска, расширения (рабочая фаза), выпуска и сжатия. Эти фазы контролируются клапанами в «паровой коробке», смежной с цилиндром. Клапаны управляют потоком пара, последовательно соединяя коллекторы каждой стороны рабочего цилиндра с впускным и выпускным коллектором паровой машины. Клапаны приводятся в движение клапанным механизмом какого-либо типа. Простейший клапанный механизм даёт фиксированную продолжительность рабочих фаз и обычно не имеет возможности изменять направление вращения вала машины. Большинство клапанных механизмов более совершенны, имеют механизм реверса, а также позволяют регулировать мощность и крутящий момент машины путём изменения «отсечки пара», то есть изменяя соотношение фаз впуска и расширения. Так как обычно один и тот же скользящий клапан управляет и входным и выходным потоком пара, изменение этих фаз также симметрично влияет на соотношения фаз выпуска и сжатия. И здесь существует проблема, поскольку соотношение этих фаз в идеале не должно меняться: если фаза выпуска станет слишком короткой, то большая часть отработанного пара не успеет покинуть цилиндр, и создаст существенное противодавление на фазе сжатия. В 1840-х и 1850-х годах было совершено множество попыток обойти это ограничение, в основном путём создания схем с дополнительным клапаном отсечки, установленном на основном распределительном клапане, но такие механизмы не показывали удовлетворительной работы, к тому же получались слишком дорогими и сложными. С тех пор обычным компромиссным решением стало удлинение скользящих поверхностей золотниковых клапанов с тем, чтобы впускное окно было перекрыто дольше, чем выпускное. Позже были разработаны схемы с отдельными впускными и выпускными клапанами, которые могли обеспечить практически идеальный цикл работы, но эти схемы редко применялись на практике, особенно на транспорте, из-за своей сложности и возникающих эксплуатационных проблем

Множественное расширение

Логичным развитием схемы компаунда стало добавление в неё дополнительных стадий расширения, что увеличивало эффективность работы. Результатом стала схема множественного расширения, известная как машины тройного или даже четырёхкратного расширения. Такие паровые машины использовали серии цилиндров двойного действия, объём которых увеличивался с каждой стадией. Иногда вместо увеличения объёма цилиндров низкого давления использовалось увеличение их количества, так же, как и на некоторых компаундных машинах.

Изображение справа показывает работу паровой машины с тройным расширением. Пар проходит через машину слева направо. Блок клапанов каждого цилиндра расположен слева от соответствующего цилиндра.

Появление этого типа паровых машин стало особенно актуальным для флота, поскольку требования к размеру и весу для судовых машин были не очень жёсткими, а главное, такая схема позволяла легко использовать конденсатор, возвращающий отработанный пар в виде пресной воды обратно в котёл (использовать солёную морскую воду для питания котлов было невозможно). Наземные паровые машины обычно не испытывали проблем с питанием водой и потому могли выбрасывать отработанный пар в атмосферу. Поэтому такая схема для них была менее актуальной, особенно с учётом её сложности, размера и веса. Доминирование паровых машин множественного расширения закончилось только с появлением и широким распространением паровых турбин. Однако в современных паровых т

Прямоточные паровые машины

Прямоточные паровые машины возникли в результате попытки преодолеть один недостаток, свойственный паровым машинам с традиционным парораспределением. Дело в том, что пар в обычной паровой машине постоянно меняет направление своего движения, поскольку и для впуска и для выпуска пара применяется одно и то же окно с каждой стороны цилиндра. Когда отработанный пар покидает цилиндр, он охлаждает его стенки и парораспределительные каналы. Свежий пар, соответственно, тратит определённую часть энергии на их нагревание, что приводит к падению эффективности. Прямоточные паровые машины имеют дополнительное окно, которое открывается поршнем в конце каждой фазы, и через которое пар покидает цилиндр. Это повышает эффективность машины, поскольку пар движется в одном направлении, и температурный градиент стенок цилиндра остаётся более или менее постоянным. Прямоточные машины одиночного расширения показывают примерно такую же эффективность, как компаундные машины с обычным парораспределением. Кроме того, они могут работать на более высоких оборотах, и потому до появления паровых турбин часто применялись для привода электрогенераторов, требующих высокой скорости вращения.

Прямоточные паровые машины бывают как одиночного, так и двойного действия.