Чем отличается гидростатическая трансмиссия от гидромеханической. Гидротрансмиссия своими руками. Контроль кавитации в гидростатической трансмиссии

Гидравлическая трансмиссия - совокупность гидравлических устройств, позволяющих соединить источник механической энергии (двигатель) с исполнительными механизмами машины (колесами автомобиля, шпинделем станка и т.д.) . Гидротранмиссию также называют гидравлической передачей. Как правило в гидравлической трансмиссии происходит передача энергии посредством жидкости от насоса к гидромотору (турбине).

В представленном ролике в качестве выходного звена использован гидродвигатель поступательного движения. В гидростатической трансмиссии используется гидродвигатель вращательного движения, но принцип работы, по-прежнему остается основанным на законе . В гидростатическом приводе вращательного действия рабочая жидкость подается от насоса к мотору . При этом в зависимости от рабочих объемов гидромашин могут изменяться момент и частота вращения валов. Гидравлическая трансмиссия обладает всеми достоинствами гидравлического привода: высокой передаваемой мощностью, возможностью реализации больших передаточных чисел, осуществления бесступенчатого регулирования, возможностью передачи мощности на подвижные, перемещающиеся элементы машины .

Способы регулирования в гидростатической трансмиссии

Регулирование скорости выходного вала в гидравлической трансмиссии может осуществлять путем изменения объема рабочего насоса (объемное регулирование), или с помощью установки дросселя либо регулятора расхода (параллельное и последовательное дроссельное регулирование). На рисунке показана гидротрансмиссия с объемным регулированием с замкнутым контуром.

Гидротрансмиссия с замкнутым контуром

Гидравлическая трансмиссия может быть реализована по замкнутому типу (закрытый контур), в этом случае в гидросистеме отсутствует гидравлический бак, соединенный с атмосферой.

В гидравлических системах замкнутого типа регулирование скорости вращения вала может осуществляться путем изменения рабочего объема насоса. В качестве насос-моторов в гидростатической трансмиссии чаще всего используют .

Гидротрансмиссия с открытым контуром

Открытой называют гидравлическую систему соединенную с баком, который сообщается с атмосферой, т.е. давление над свободной поверхностью рабочей жидкости в баке равно атмосферному. В гидротрасмиссиях отрытого типа возможно реализовать объемное, параллельное и последовательное дроссельное регулирование. На следующем рисунке показана гидростатическая трансмиссия с отрытым контуром.


Где используют гидростатические трансмиссии

Гидростатические трансмиссии используют в машинах и механизмах где необходимо реализовать передачу больших мощностей, создать высокий момент на выходном валу, осуществлять бесступенчатое регулирование скорости.

Гидростатические трансмиссии широко применяются в мобильной, дорожно-строительной технике, экскаваторах бульдозерах, на железнодорожном транспорте - в тепловозах и путевых машинах.

Гидродинамическая трансмиссия

В гидродинамических трансмиссиях для передачи мощности используются и турбины. Рабочая жидкость в гидравлических трансмиссиях подается от динамического насоса к турбине. Чаще всего в гидродинамической трансмиссии используются лопастные насосное и турбинное колесо, расположенные непосредственно друг напротив друга, таким образом, что жидкость поступает от насосного колеса сразу к турбинному минуя трубопроводы. Такие устройства объединяющие насосное и турбинное колесо называются гидромуфтами и гидротрансформаторами, которые не смотря на некоторые похожие элементы в конструкции имеют ряд отличий.

Гидромуфта

Гидродинамическую передачу, состоящую из насосного и турбинного колеса , установленных в общем картере называют гидромуфтой . Момент на выходном валу гидравлической муфты равен моменту на входном валу, то есть гидромуфта не позволяет изменить вращающий момент. В гидравлической трансмиссии передача мощности может осуществляться через гидравлическую муфту, которая обеспечит плавность хода, плавное нарастание крутящего момента, снижение ударных нагрузок.

Гидротрансформатор

Гидродинамическая передача, в состав которой входят насосное, турбинное и реакторное колеса , размещенные в едином корпусе называется гидротрансформатором. Благодаря реактору, гидротрасформатор позволяет изменить вращающий момент на выходном валу.

Гидродинамическая передача в а втоматическая коробка передач

Самым известным примером применения гидравлической передачи является автоматическая коробка передач автомобиля , в которой может быть установлены гидромуфта или гидротрансформатор. По причине более высоко КПД гидротрансформатора (по сравнению с гидромуфтой), он устанавливается на большинство современных автомобилей с автоматической коробкой передач.

НАСОС регулируемый МОТОР нерегулируемый

1 – клапан предохранительный насоса подпитки; 2 – клапан обратный; 3 – насос подпитки; 4 – сервоцилиндр; 5 – вал гидронасоса;
6 – люлька; 7 – сервоклапан; 8 – рычаг сервоклапана; 9- фильтр; 10 – бак; 11 – теплообменник; 12 – вал гидромотора; 13 – упор;
14 – золотник клапанной коробки; 15 – клапан переливной; 16 – клапан предохранительный высокого давления.

Гидростатическая трансмиссия ГСТ

Гидростатическая трансмиссия ГСТ предназначена для передачи вращательного движения от приводного двигателя к исполнительным органам, например, к ходовой части самоходных машин, с бесступенчатым регулированием частоты и направления вращения, с КПД близким к единице. Основной комплект ГСТ состоит из регулируемого аксиально-поршневого гидронасоса и нерегулируемого аксиально-поршневого гидромотора. Вал насоса механически связывают с выходным валом приводного двигателя, вал мотора - с исполнительным механизмом. Частота вращения выходного вала мотора пропорциональна углу отклонения рычага механизма управления (сервоклапана).

Управление гидротрансмиссией осуществляется изменением оборотов приводного двигателя и изменением положения рукоятки или джойстика, связанного с рычагом сервоклапана насоса (механически, гидравлически или электрически).

При работающем приводном двигателе и нейтральном положении рукоятки управления вал мотора неподвижен. При изменении положения рукоятки вал мотора начинает вращаться, достигая максимальных оборотов при максимальном отклонении рукоятки. Для реверса необходимо отклонение рычага в обратную сторону от нейтрали.

Функциональная схема ГСТ.

В общем случае объемный гидропривод на основе ГСТ включает в себя следующие элементы: регулируемый аксиально-поршневой гидронасос в сборе с насосом подпитки и механизмом пропорционального управления, нерегулируемый аксиально-поршневой мотор в сборе с клапанной коробкой, фильтр тонкой очистки с вакуумметром, масляный бак для рабочей жидкости, теплообменник, трубопроводы и рукава высокого давления (РВД).

Элементы и узлы ГСТ можно разделить на 4 функциональные группы:


1. Основной контур гидравлической цепи ГСТ. Назначение основного контура гидравлической цепи ГСТ – передача потока мощности от вала насоса к валу мотора. В основной контур входят полости рабочих камер насоса и мотора и линии высокого и низкого давлений с перетекающей по ним рабочей жидкостью. Величина потока рабочей жидкости, его направление определяются оборотами вала насоса и углом отклонения рычага механизма пропорционального управления насоса от нейтрали. При отклонении рычага от нейтрального положения в ту или иную сторону, под действием сервоцилиндров изменяется угол наклона наклонной шайбы (люльки), что определяет направление потока и вызывает соответствующее изменение рабочего объема насоса от нуля до текущего значения, при максимальном отклонении рычага рабочий объем насоса достигает максимального значения. Рабочий объем мотора постоянен и равен максимальному объему насоса.

2. Линия всасывания (подпитки). Назначение линии всасывания (подпитки):

· - снабжение рабочей жидкостью линии управления;

· - пополнение рабочей жидкости основного контура для компенсации утечек;

· - охлаждение рабочей жидкости основного контура за счет пополнения жидкостью из масляного бака, прошедшей через теплообменник;

· - обеспечение минимального давления в основном контуре на разных режимах;

· - очистка и указатель загрязненности рабочей жидкости;

· - компенсация колебаний объема рабочей жидкости, вызванной температурными изменениями.


3. Назначение линий управления:

· - передача давления на исполнительный сервоцилиндр поворота люльки.

4. Назначение дренажа:

· - отвод утечек в масляный бак;

· - отвод излишков рабочей жидкости;

· - отвод тепла, отвод продуктов износа и смазка трущихся поверхностей деталей гидромашин;

· - охлаждение рабочей жидкости в теплообменнике.

Работа объемного гидропривода обеспечивается автоматически клапанами и золотниками, находящимися в насосе, насосе подпитки, коробке клапанной мотора.

Гидропривод ГСТ–90 (рисунок 1.4) включает аксиально-плунжерные агрегаты: регулируемый гидронасос с шестеренным насосом подпитки и гидрораспределителем; нерегулируемый гидромотор в сборе с клапанной коробкой, фильтр тонкой очистки с вакуумметром, трубопроводы и шланги, а также бак для рабочей жидкости.

Вал 2 гидронасоса вращается в двух роликовых подшипниках. На шлице вала посажен блок цилиндров 25 , в отверстиях которого перемещаются плунжеры. Каждый плунжер сферическим шарниром соединен с пятой, которая упирается на опору, расположенную на наклонной шайбе 1 . Шайба соединена с корпусом гидронасоса при помощи двух роликовых подшипников, и благодаря этому может быть изменен наклон шайбы относительно вала насоса. Изменение угла наклона шайбы происходит под действием усилий одного из двух сервоцилиндров 11 , поршни которых соединены с шайбой 1 при помощи тяг.

Внутри сервоцилиндров находятся пружины, воздействующие на поршни и устанавливающие шайбу так, чтобы расположенная в ней опора была перпендикулярна к валу. Вместе с блоком цилиндров вращается приставное дно, скользящее по распределителю, закрепленному на задней крышке. Отверстия в распределителе и приставном дне периодически соединяют рабочие камеры блока цилиндров с магистралями, связывающими гидронасос с гидромотором.

Рисунок 1.4 – Схема гидропривода ГСТ–90:

1 - шайба; 2 - выходной вал насоса; 3 - реверсивный регулируемый насос; 4 - гидролиния управления; 5 - рычаг управления; 6 - золотник управления положением люльки; 7 8 - насос подпитки; 9 - обратный клапан; 10 - предохранительный клапан системы подпитки; 11 - сервоцилиндр; 12 - фильтр; 13 - вакуумметр; 14 - гидробак; 15 - теплообменник; 16 - золотник; 17 - переливной клапан; 18 - главный предохранительный клапан высокого давления; 19 - гидролиния низкого давления; 20 - гидролиния высокого давления; 21 - дренажная гидролиния; 22 - нерегулируемый мотор; 23 - выходной вал гидромотора; 24 - наклонная шайба гидромотора; 25 - блок цилиндров; 26 - тяга связи; 27 - торцевое уплотнение

Сферические шарниры плунжеров и скользящие по опоре пяты смазываются под давлением рабочей жидкостью.

Внутренняя плоскость каждого агрегата заполнена рабочей жидкостью и является масляной ванной для работающих в ней механизмов. В эту полость поступают и утечки из сопряжений гидроагрегата.

К задней торцевой поверхности гидронасоса крепятся насос подпитки 8 шестеренного типа, вал которого соединен с валом гидронасоса.

Насос подпитки всасывает рабочую жидкость из бака 14 и подает ее:

– в гидронасос через один из обратных клапанов;

– в систему управления через гидрораспределитель в количествах, ограниченных жиклером.

На корпусе насоса подпитки 8 расположен предохранительный клапан 10 , который открывается при повышении давления, развиваемого насосом.

Гидрораспределитель 6 служит для распределения потока жидкости в системе управления, то есть для направления ее к одному из двух сервоцилиндров, в зависимости от изменения положения рычага 5 или запирания жидкости в сервоцилиндре.

Гидрораспределитель состоит из корпуса, золотника с возвратной пружиной, расположенной в стакане, рычага управления с пружиной кручения, а также рычага 5 и двух тяг 26 , которые связывают золотник с рычагом управления и наклонной шайбой.

Устройство гидромотора 22 аналогично устройству насоса. Основные отличия заключаются в следующем: пяты плунжеров при вращении вала скользят по наклонной шайбе 24 , имеющей постоянный угол наклона, а поэтому механизм ее поворота с гидрораспределителем отсутствует; вместо насоса подпитки к задней торцевой поверхности гидромотора крепится клапанная коробка. Гидронасос с гидромотором связаны с двумя трубопроводами (магистралями «гидронасос-гицромотор»). По одной из магистралей поток рабочей жидкости под высоким давлением движется от гидронасоса к гидромотору, по другой - под низким давлением возвращается обратно.

В корпусе клапанной коробки находятся два клапаны высокого давления, переливной клапан 17 и золотник 16 .

Система подпитки включает насос подпитки 8 , а также обратные 9 , предохранительный 10 и переливной клапаны.

Система подпитки предназначена для снабжения рабочей жидкостью системы управления, обеспечения минимального давления в магистралях «гидронасос-гидромотор», компенсирования утечек в гидронасосе и гидромоторе, постоянного перемешивания рабочей жидкости, циркулирующей в гидронасосе и гидромоторе, с жидкостью в баке, отвода от деталей тепла.

Клапаны высокого давления 18 предохраняют гидропривод: от перегрузок, перепуская рабочую жидкость из магистрали высокого давления в магистраль низкого давления. Так как магистралей две и каждая из них в процессе работы может быть магистралью высокого давления, то и клапанов высокого давления тоже два. Переливной клапан 17 должен выпускать излишки рабочей жидкости из магистрали низкого давления, куда она постоянно подается насосом подпитки.

Золотник 16 в клапанной коробке подключает переливной клапан к той магистрали «гидронасос-гидромотор», в которой давление будет меньше.

При срабатывании клапанов системы подпитки (предохранительного и переливного) вытекающая рабочая жидкость попадает во внутреннюю полость агрегатов, где, смешавшись с утечками, по дренажным трубопроводам поступает в теплообменник 15 и далее в бак 14 . Благодаря дренажному устройству, рабочая жидкость отводит тепло от трущихся деталей гидроагрегатов. Специальное торцевое уплотнение вала предотвращает вытекание рабочей жидкости из внутренней полости агрегата. Бак служит резервуаром для рабочей жидкости, имеет внутри перегородку, разделяющую его на сливную и всасывающую полости, снабжен указателем уровня.

Фильтр тонкой очистки 12 с вакуумметром задерживает посторонние частицы. Фильтрующий элемент выполнен из нетканого материала. О степени загрязненности фильтра судят по показаниям вакуумметра.

Двигатель вращает вал гидронасоса, а, следовательно, связанные с ним блок цилиндров и вал насоса подпитки. Насос подпитки всасывает рабочую жидкость из бака через фильтр и подает ее в гидронасос.

При отсутствии давления в сервоцилиндрах пружины, расположенные в них, устанавливают шайбу так, чтобы плоскость находящейся в ней опоры (шайбы) была перпендикулярна к оси вала. В этом случае при вращении блока цилиндров пяты плунжеров будут скользить по опоре, не вызывая осевого перемещения плунжеров, и гидронасос не будет посылать рабочую жидкость в гидромотор.

От регулируемого гидронасоса в процессе работы можно получить различный объем жидкости (подачу), подаваемый за один оборот. Для изменения подачи гидронасоса необходимо повернуть рычаг гидрораспределителя, который кинематически связан с шайбой и золотником. Последний, переместившись, направит рабочую жидкость, поступающую от насоса подпитки в систему управления, в один из сервоцилиндров, а второй сервоцилиндр соединится с полостью слива. Оказывающийся под действием давления рабочей жидкости поршень первого сервоцилиндра начнет движение, поворачивая шайбу, перемещая поршень во втором сервоцилиндре и сжимая пружину. Шайба, поворачиваясь в положение, заданное рычагом гидрораспределителя, будет перемещать золотник, пока не возвратит его в нейтральное положение (при этом положении выход рабочей жидкости из сервоцилиндров закрыт поясками золотника).

При вращении блока цилиндров пяты, скользя по наклонной опоре, вызовут перемещение плунжеров в осевом направлении, и вследствие этого произойдет изменение объема камер, образованными отверстиями в блоке цилиндров и плунжерами. Причем половина камер будет увеличивать свой объем, другая половина - уменьшать. Благодаря отверстиям в приставном дне и распределителе эти камеры поочередно соединяются с магистралями «гидронасос-гидромотор».

В камере, увеличивающей свой объем, рабочая жидкость поступает из магистрали низкого давления, куда подается насосом подпитки через один из обратных клапанов. Вращающимся блоком цилиндров рабочая жидкость, находящаяся в камерах, переносится к другой магистрали и вытесняется в нее плунжерами, создавая высокое давление. По этой магистрали жидкость попадает в рабочие камеры гидромотора, где ее давление передается на торцевые поверхности плунжеров, вызывая их перемещение в осевом направлении и, благодаря взаимодействию пят плунжеров с наклонной шайбой, заставляет блок цилиндров вращаться. Пройдя рабочие камеры гидромотора, рабочая жидкость выйдет в магистраль низкого давления, по которой часть ее возвратится к гидронасосу, а излишки через золотник и переливной клапан вытекут во внутреннюю полость гидромотора. При перегрузке гидропривода высокое давление в магистрали «гидронасос-гидромотор» может возрастать до тех пор, пока не откроется клапан высокого давления, который перепустит рабочую жидкость из магистрали высокого давления в магистраль низкого давления, минуя гидромотор.

Объемный гидропривод ГСТ–90 позволяет бесступенчато изменить передаточное отношение: на каждый оборот вала гидромотор потребляет 89 см 3 рабочей жидкости (без учета утечек). Такое количество рабочей жидкости гидронасос может выдать за один или несколько, оборотов своего приводного вала в зависимости от угла наклона шайбы. Следовательно, меняя подачу гидронасоса, можно изменить скорость движения машин.

Для изменения направления движения машины достаточно наклонить шайбу в противоположную сторону. Реверсивный гидронасос при том же вращении его вала изменит направление потока рабочей жидкости в магистралях "гидронасос-гидромотор" на обратное (то есть магистраль низкого давления станет магистралью высокого давления, а магистраль высокого давления - магистралью низкого). Следовательно, для изменения направления движения машины необходимо рычаг гидрораспределителя повернуть в противоположную сторону (от нейтрального положения). Если же снять усилие с рычага гидрораспределителя, то шайба под действием пружин возвратится в нейтральное положение, при котором плоскость находящейся в ней опоры станет перпендикулярной к оси вала. Плунжеры не будут перемещаться в осевом направлении. Подача рабочей жидкости прекратится. Самоходная машина остановится. В магистралях «гидронасос-гидромотор» давление станет одинаковым.

Золотник в клапанной коробке под действием центрирующих пружин займет нейтральное положение, при котором переливной клапан не будет подключен ни к одной из магистралей. Вся жидкость, подаваемая насосом подпитки, через предохранительный клапан будет стекать во внутреннюю полость гидронасоса. При равномерном движении самоходной машины в гидронасосе и гидромоторе необходимо только компенсировать утечки, поэтому значительная часть рабочей жидкости, подаваемая насосом подпитки, окажется лишней, и ее надо будет выпускать через клапаны. Чтобы излишки этой жидкости использовать для отвода тепла, через клапаны выпускают нагретую, прошедшую гидромотор жидкость, а охлажденную - из бака. С этой целью переливной клапан системы подпитки, расположенный в клапанной коробке на гидромоторе, настроен на несколько меньшее давление, чем предохранительный на корпусе насоса подпитки. Благодаря этому при превышении давления в системе подпитки откроется переливной клапан и выпустит нагретую жидкость, вышедшую из гидромотора. Далее жидкость из клапана попадает во внутреннюю полость агрегата, откуда по дренажным трубопроводам через теплообменник направляется в бак.

Гидростатическая трансмиссия - это гидравлический привод с закрытым (замкнутым) контуром, в состав которого входят один или несколько гидронасосов и гидромоторов. Предназначена для передачи механической энергии вращения от вала двигателя к исполнительному органу машины, посредством бесступенчатого регулируемого по величине и направлению потока рабочей жидкости.

Главным достоинством гидростатической трансмиссии является возможность плавного изменения передаточного отношения в широком диапазоне частот вращения, что позволяет гораздо лучше использовать крутящий момент двигателя машины по сравнению со ступенчатым приводом. Поскольку выходную частоту вращения можно довести до нуля, возможен плавный разгон машины с места без применения сцепления. Малые скорости движения особенно нужны для различных строительных и сельскохозяйственных машин. Даже значительное изменение нагрузки не влияет на выходную частоту вращения, поскольку проскальзывание у данного типа трансмиссии отсутствует.

Большим достоинством гидростатической трансмиссии является простота реверсирования, которое обеспечивается простым изменением наклона плиты или гидравлически, изменением потока рабочей жидкости. Это позволяет обеспечить исключительную маневренность транспортного средства.

Следующее серьезное достоинство - упрощение механической разводки по машине. Это позволяет получить выигрыш в надежности, ведь зачастую при большой нагрузке на машину карданные валы не выдерживают и приходится ремонтировать машину. В северных условиях это происходит еще чаще при низких температурах. За счет упрощения механической разводки удается так же освободить место для вспомогательного оборудования. Применение гидростатической трансмиссии может позволить полностью убрать валы и мосты, заменив их насосной установкой и гидромоторами с редукторами, встраиваемыми прямо в колеса. Либо, в более простом варианте, гидромоторы могут быть встроены в мост. Обычно удается снизить центр тяжести машины и более рационально разместить систему охлаждения двигателя.

Гидростатическая трансмиссия позволяет плавно и сверхточно регулировать передвижение машины или плавно регулировать частоту вращения рабочих органов. Использование электропропорционального управления и специальных электронных систем позволяет достичь наиболее оптимального распределения мощности между приводом и исполнительными механизмами, ограничить нагрузку двигателя, снизить расход топлива. Мощность двигателя используется максимально даже на самых малых скоростях передвижения машины.

Недостатком гидростатической трансмиссии можно считать более низкий КПД по сравнению с механической передачей. Однако по сравнению с механическими трансмиссиями, включающими коробки передач, гидростатическая трансмиссия оказывается экономичнее и быстрее. Происходит это по причине того, что в момент ручного переключения передач приходится отпускать и нажимать педаль газа. Именно в этот момент двигатель тратит много мощности, а скорость машины меняется рывками. Все это негативно сказывается как на скорости, так и на расходе топлива. В гидростатической трансмиссии этот процесс происходит плавно и двигатель работает в более экономичном режиме, что повышает долговечность всей системы.

Наиболее частое применение гидростатической трансмиссии - привод хода машин на гусеничном ходу, где гидропривод предназначен для передачи механической энергии от приводного двигателя к ведущей звезде гусеницы, посредством регулирования подачи насоса и выходной тяговой мощности за счет регулирования гидромотора.

Гидростатическая передача в легковых автомобилях до настоящего времени не применяется, поскольку она дорога и ее КПД относительно низок. Наиболее часто она используется в специальных машинах и транспортных средствах. В то же время гидростатический привод имеет много возможностей для применения; он особенно пригоден для трансмиссии с электронным управлением.

Принцип гидростатической передачи состоит в том, что источник механической энергии, например двигатель внутреннего сгорания, приводит гидронасос, подающий масло в тяговый гидравлический двигатель. Обе эти группы соединены между собой трубопроводом высокого давления, в частности, гибким. Это упрощает конструкцию машины, отпадает необходимость применения многих зубчатых колес, шарниров, осей, поскольку обе группы агрегатов могут быть расположены независимо друг от друга. Мощность привода определяется объемами гидронасоса и гидродвигателя. Изменение передаточного отношения в гидростатическом приводе бесступенчатое, его реверсирование и гидравлическая блокировка весьма просты.

В отличие от гидромеханической передачи, где соединение тяговой группы с преобразователем крутящего момента жесткое, в гидростатическом приводе передача усилий производится только через жидкость.

В качестве примера работы обеих трансмиссий рассмотрим переезд автомобиля с ними через складку местности (дамбу). При въезде на дамбу у автомобиля с гидромеханической трансмиссией возникает , в результате чего при постоянной частоте вращения скорость автомобиля снижается. При спуске с вершины дамбы двигатель начинает действовать как тормоз, однако направление буксования гидротрансформатора меняется и поскольку гидротрансформатор имеет низкие тормозные свойства при таком направлении буксования, автомобиль разгоняется.

У гидростатической передачи при спуске с вершины дамбы гидродвигатель выполняет функцию насоса и масло остается в трубопроводе, соединяющем гидродвигатель с насосом. Соединение обеих групп привода происходит через находящуюся под давлением жидкость, которая обладает той же степенью жесткости, что и упругость валов, сцеплений и зубчатых колес в обычной механической трансмиссии. Разгона автомобиля поэтому при спуске с дамбы не произойдет. Гидростатическая передача особенно пригодна для автомобилей повышенной проходимости.

Принцип гидростатического привода показан на рис. 1. Привод гидронасоса 3 от двигателя внутреннего сгорания производится через вал 1 и наклонную шайбу, а регулятором 2 управляют углом наклона этой шайбы, что изменяет подачу жидкости гидронасосом. В случае, изображенном на рис. 1, шайба установлена жестко и перпендикулярно оси вала 1 и вместо нее наклоняется корпус насоса 3 в кожухе 4 . Масло подается из гидронасоса по трубопроводу 6 в гидродвигатель 5 , имеющий постоянный объем, а из него - вновь возвращается по трубопроводу 7 в насос.

Если гидронасос 3 расположен соосно валу 1 , то подача масла им равна нулю и гидродвигатель в этом случае блокирован. Если насос наклонен вниз, то он подает масло в трубопроводе 7 и оно возвращается в насос по трубопроводу 6 . При постоянной частоте вращения вала 1 , обеспечиваемой, например, регулятором дизеля, управление скоростью и направлением движения автомобиля производится всего лишь одной рукояткой регулятора.

В гидростатическом приводе можно использовать несколько схем регулирования:

  • насос и двигатель имеют нерегулируемые объемы. В этом случае речь идет о «гидравлическом вале», передаточное отношение является постоянным и зависит от отношения объемов насоса и двигателя. Такая трансмиссия для применения в автомобиле неприемлема;
  • насос имеет регулируемый, а двигатель - нерегулируемый объем. Этот способ наиболее часто применяется в транспортных средствах, так как предоставляет большой диапазон регулирования при относительно простой конструкции;
  • насос имеет нерегулируемый, а двигатель - регулируемый объем. Эта схема неприемлема для привода автомобиля, поскольку с ее помощью нельзя обеспечить торможение автомобиля через трансмиссию;
  • насос и двигатель имеют регулируемые объемы. Такая схема предоставляет наилучшие возможности регулирования, но весьма сложна.

Применение гидростатической передачи позволяет отрегулировать выходную мощность вплоть до остановки выходного вала. При этом даже на крутом спуске можно остановить автомобиль перемещением рукоятки регулятора в нулевое положение. В этом случае трансмиссия гидравлически заблокирована и необходимость в применении тормозов отпадает. Для движения автомобиля достаточно передвинуть рукоятку вперед или назад. Если в трансмиссии используется несколько гидродвигателей, то соответствующим их регулированием можно достичь реализации работы дифференциала или его блокировки.

В гидростатической трансмиссии отсутствует целый ряд агрегатов, например, коробка передач, сцепление, карданные валы с шарнирами, главная передача и др. Это выгодно с позиции снижения массы и стоимости автомобиля и компенсирует достаточно высокую стоимость гидравлического оборудования. Все сказанное, в первую очередь, относится к специальным транспортным и технологическим средствам. В то же время, с точки зрения экономии энергии, гидростатическая трансмиссия имеет большие преимущества, например, для применения в автобусах.

Выше уже упоминалось о целесообразности аккумулирования энергии и получаемом энергетическом выигрыше, когда двигатель работает с постоянной частотой вращения в оптимальной зоне своей характеристики и его частота вращения не изменяется при переключении передач или изменении скорости автомобиля. Отмечалось также и то, что вращающиеся массы, соединенные с ведущими колесами, должны быть как можно меньше. Говорилось, кроме того, о преимуществах гибридного привода, когда при разгоне используются наибольшая мощность двигателя, а также мощность, накопленная в аккумуляторе. Все эти преимущества удается легко реализовать в гидростатическом приводе, если в его системе разместить гидроаккумулятор высокого давления.

Схема такой системы представлена на рис. 2. Приводимый двигателем 1 насос 2 с постоянным объемом подает масло в аккумулятор 3 . Если аккумулятор заполнен, регулятор давления 4 подает импульс электронному регулятору 5 об остановке двигателя. Из аккумулятора масло под давлением подается через центральное управляющее устройство 6 к гидродвигателю 7 и из него сбрасывается в масляный бак 8 , из которого вновь забирается насосом. У аккумулятора имеется ответвление 9 , предназначенное для питания дополнительного оборудования автомобиля.

В гидростатическом приводе обратное направление движения жидкости можно использовать для торможения автомобиля. В этом случае гидродвигатель забирает масло из бака и подает его под давлением в аккумулятор. Таким способом можно аккумулировать энергию торможения для дальнейшего ее использования. Недостаток всех аккумуляторов состоит в том, что любой из них (жидкостный, инерционный или электрический) имеет ограниченную емкость, и если аккумулятор заряжен, он больше не может накапливать энергию, и ее избыток должен быть сброшен (например, преобразован в теплоту) так же, как и в автомобиле без аккумулирования энергии. В случае гидростатического привода эта проблема решается применением редукционного клапана 10 , который при наполненном аккумуляторе перепускает масло в бак.

У городских маршрутных автобусов благодаря аккумулированию энергии торможения и возможности зарядки жидкостного аккумулятора во время остановок двигатель можно было бы отрегулировать на меньшую мощность и при этом обеспечить соблюдение необходимых ускорений при разгоне автобуса. Такая схема привода позволяет экономично реализовать движение в городском цикле, ранее описанное и изображенное на рис. 6 в статье .

Гидростатический привод можно удобно скомбинировать с обычной зубчатой передачей. В качестве примера приведем комбинированную трансмиссию автомобиля. На рис. 3 дана схема такой трансмиссии от маховика двигателя 1 к редуктору 2 главной передачи. Крутящий момент через цилиндрическую зубчатую передачу 3 и 4 подводится к поршневому насосу 6 с постоянным объемом. Передаточное отношение цилиндрической передачи соответствует IV-V передачам обычной механической коробки передач. При вращении насос начинает подавать масло в тяговый гидродвигатель 9 с регулируемым объемом. Наклонная регулирующая шайба 7 гидродвигателя соединена с крышкой 8 корпуса трансмиссии, а корпус гидродвигателя 9 соединен с ведущим валом 5 главной передачи 2 .

При разгоне автомобиля шайба гидродвигателя имеет наибольший угол наклона и масло, нагнетаемое насосом, создает большой момент на валу. Помимо этого на вал действует и реактивный момент насоса. По мере разгона автомобиля наклон шайбы уменьшается, следовательно, уменьшается и крутящий момент от корпуса гидродвигателя на валу, однако давление масла, подаваемого насосом, увеличивается и, следовательно, возрастет и реактивный момент этого насоса.

При уменьшении угла наклона шайбы до 0° насос гидравлически блокирован и передача крутящего момента от маховика к главной передаче будет осуществляться только парой шестерен; гидростатический привод будет выключен. Это улучшает КПД всей трансмиссии, так как гидродвигатель и насос отключены и вращаются в заблокированном положении вместе с валом, с КПД, равным единице. Кроме того, исчезают износ и шум гидроагрегатов. Этот пример - один из многих, показывающих возможности применения гидростатического привода. Масса и размеры гидростатической передачи определяются величиной максимального давления жидкости, которое в настоящее время достигло 50 МПа.