Система охлаждения предназначена для. Система охлаждения двс

Система охлаждения - это совокупность устройств, обеспечивающих принудительный отвод теплоты от нагревающихся деталей двигателя.

Потребность в системах охлаждения для современных двигателей вызвана тем, что естественное рассеивание теплоты наружными поверхностями двигателя и теплоотвод в циркулирующее моторное масло не обеспечивают оптимального температурного режима работы двигателя и некоторых его систем. Перегрев двигателя связан с ухудшением процесса наполнения цилиндров свежим зарядом, пригоранием масла, увеличением потерь на трение и даже заклиниванием поршня. На бензиновых двигателях возникает также опасность калильного зажигания (не от искры свечи, а вследствие высокой температуры камеры сгорания).

Система охлаждения должна обеспечивать автоматическое поддержание оптимального теплового режима двигателя на всех скоростных и нагрузочных режимах его работы при температуре окружающего воздуха -45…+45 °С, быстрый прогрев двигателя до рабочей температуры, минимальный расход мощности на приведение в действие агрегатов системы, малую массу и небольшие габаритные размеры, эксплуатационную надежность, определяемую сроком службы, простотой и удобством обслуживания и ремонта.

На современных колесных и гусеничных машинах применяются воздушная и жидкостная системы охлаждения.

При использовании воздушной системы охлаждения (рис. а) теплота от головки и блока цилиндров передается непосредственно обдувающему их воздуху. Через воздушную рубашку, образов ванную кожухом 3, охлаждающий воздух прогоняется с помощью вентилятора 2, приводимого в действие от коленчатого вала с использованием ременной передачи. Для улучшения теплоотвода цилиндры 5 и их головки снабжены ребрами 4. Интенсивность охлаждения регулируется специальными воздушными заслонками 6, управляемыми автоматически с помощью воздушных термостатов.

Большинство современных двигателей имеет жидкостную систему охлаждения (рис. б). В систему входят рубашки охлаждения 11 и 13 соответственно головки и блока цилиндров, радиатор 18, верхний 8 и нижний 16 соединительные патрубки со шлангами 7 и 15, жидкостный насос 14, распределительная труба 72, термостат 9, расширительный (компенсационный) бачок 10 и вентилятор 77. В рубашке охлаждения, радиаторе и патрубках находится охлаждающая жидкость (вода или антифриз - незамерзающая жидкость).

Рис. Схемы воздушной (а) и жидкостной (б) систем охлаждения двигателя:
1 - ременная передача; 2, 17 - вентиляторы; 3 - кожух; 4 - ребра цилиндра; 5 - цилиндр; 6 - воздушная заслонка; 7, 15 - шланги; 8, 16 - верхний и нижний соединительные патрубки; 9 - термостат; 10 - расширительный бачок; 77, - рубашки охлаждения головки и блока цилиндров; 12 - распределительная труба; 14 - жидкостный насос; 18 - радиатор

При работе двигателя приводимый в действие от коленчатого вала жидкостный насос создает в системе циркуляцию охлаждающей жидкости. По распределительной трубе 12 жидкость направляется сначала к наиболее нагретым деталям (цилиндры, головка блока), охлаждает их и по патрубку 8 поступает в радиатор 18. В радиаторе поток жидкости разветвляется по трубкам на тонкие струйки и охлаждается воздухом, продуваемым через радиатор. Охлажденная жидкость из нижнего бачка радиатора по патрубку 16 и шлангу 15 снова поступает в жидкостный насос. Поток воздуха через радиатор обычно создает вентилятор 77, приводимый в действие от коленчатого вала или специального электродвигателя. На некоторых гусеничных машинах для,обеспечения потока воздуха применяется эжекционное устройство. Принцип действия этого устройства заключается в использовании энергии отработавших газов, вытекающих с большой скоростью из выпускной трубы и увлекающих за собой воздух.

Регулирует циркуляцию жидкости в радиаторе, поддерживая оптимальную температуру двигателя, термостат 9. Чем выше температура жидкости в рубашке, тем значительнее открыт клапан термостата и больше жидкости поступает в радиатор. При низкой температуре двигателя (например, непосредственно после его пуска) клапан термостата закрыт, и жидкость направляется не в радиатор (по большому кругу циркуляции), а сразу в приемную полость насоса (по малому кругу). Этим достигается быстрый прогрев двигателя после пуска. Интенсивность охлаждения регулируется также с помощью жалюзи, установленных на входе воздушного тракта или выходе из него. Чем больше степень закрытия жалюзи, тем меньше воздуха проходит через радиатор и хуже охлаждение жидкости.

В расширительном бачке 10, расположенном выше радиатора, имеется запас жидкости для компенсации ее убыли в контуре из-за испарения и утечек. В верхнюю полость расширительного бачка часто отводят образовавшийся в системе пар из верхнего коллектора радиатора и рубашки охлаждения.

Жидкостное охлаждение по сравнению с воздушным имеет следующие преимущества: более легкий пуск двигателя в условиях низкой температуры окружающего воздуха, более равномерное охлаждение двигателя, возможность применения блочных конструкций цилиндров, упрощение компоновки и возможность

изоляции воздушного тракта, меньший шум от двигателя и более низкие механические напряжения в его деталях. Вместе с тем жидкостная система охлаждения, имеет ряд недостатков, таких, как более сложная конструкция двигателя и системы, потребность в охлаждающей жидкости и более частой смене масла, опасность подтекания и замерзания жидкости, повышенный коррозионный износ, значительный расход топлива, более сложное обслуживание и ремонт, а также (в ряде случаев) повышенная чувствительность к изменению температуры окружающего воздуха.

Жидкостный насос 14 (см. рис. б) обеспечивает циркуляцию охлаждающей жидкости в системе. Обычно применяются центробежные крыльчатые насосы, но иногда используются шестеренные и поршневые насосы. Термостат 9 может быть одно- и двухклапанным с жидкостным термосиловым элементом или элементом, содержащим твердый наполнитель (церезин). В любом случае материал для термосилового элемента должен иметь очень большой коэффициент объемного расширения, чтобы при нагреве стержень клапана термостата мог перемещаться на довольно большое расстояние.

Практически, все двигатели наземных ТС с жидкостным охлаждением снабжены так называемыми закрытыми системами охлаждения, которые не имеют постоянной связи с атмосферой. При этом в системе образуется избыточное давление, что приводит к повышению температуры кипения жидкости (до 105… 110°С), увеличению эффективности охлаждения и уменьшению потерь, а также снижению вероятности появления в потоке жидкости пузырьков воздуха и пара.

Поддержание необходимого избыточного давления в системе и обеспечение доступа в нее атмосферного воздуха при разрежении осуществляется с помощью двойного паровоздушного клапана, который устанавливается в самой высокой точке жидкостной системы (обычно в крышке наливной горловины расширительного бачка или радиатора). Паровой клапан открывается, позволяя избытку пара уйти в атмосферу, если давление в системе превышает атмосферное на 20… 60 кПа. Воздушный клапан открывается, когда давление в системе снижается на 1… 4 кПа по сравнению с атмосферным (после остановки двигателя охлаждающая жидкость остывает, и ее объем уменьшается). Перепады давления, при которых открываются клапаны, обеспечиваются подбором параметров клапанных пружин.

В жидкостной вентиляционной системе охлаждения радиатор омывается потоком воздуха, создаваемым вентилятором. В зависимости от взаимного расположения радиатора и вентилятора могут применяться следующие типы вентиляторов: осевые, центробежные и комбинированные, создающие как осевой, так и радиальный потоки воздуха. Осевые вентиляторы устанавливают перед радиатором или за ним в специальном воздухоподводящем канале. К центробежному вентилятору воздух подводится по оси его вращения, а отводится - по радиусу (или наоборот). При нахождении радиатора перед вентилятором (в области всасывания) поток воздуха в радиаторе более равномерный, а температура воздуха не повышена из-за его перемешивания вентилятором. При нахождении радиатора за вентилятором (в области нагнетания) поток воздуха в радиаторе турбулентный, что повышает интенсивность охлаждения.

На тяжелых колесных и гусеничных ТС приведение вентилятора в действие обычно осуществляется от коленчатого вала двигателя. Могут использоваться карданные, ременные и зубчатые (цилиндрические и конические) передачи. В целях снижения динамических нагрузок на вентилятор в его приводе от коленчатого вала часто применяются разгружающие и демпфирующие устройства в виде торсионных валиков, резиновых, фрикционных и вязкостных муфт, а также гидромуфт. Для привода вентилятора относительно маломощных двигателей широко используются специальные электродвигатели, питание которых осуществляется от бортовой электросистемы. Это, как правило, уменьшает массу силовой установки и упрощает ее компоновку. Кроме того, применение электродвигателя для привода вентилятора позволяет регулировать частоту его вращения, а следовательно, и интенсивность охлаждения. При низкой температуре охлаждающей жидкости возможно автоматическое отключение вентилятора.

Радиаторы связывают друг с другом воздушный и жидкостный тракты системы охлаждения. Назначение радиаторов - передача теплоты от охлаждающей жидкости атмосферному воздуху. Основные части радиатора - входной и выходной коллекторы, а также сердцевина (охлаждающая решетка). Сердцевина изготавливается из меди, латуни или алюминиевых сплавов. По типу сердцевины различают следующие виды радиаторов: трубчатые, трубчато-пластинчатые, трубчато-ленточные, пластинчатые и сотовые.

В системах охлаждения колесных и гусеничных машин наибольшее распространение получили трубчато-пластинчатые и трубчато-ленточные радиаторы. Они жестки, прочны, технологичны в производстве и обладают высокой тепловой эффективностью. Трубки таких радиаторов имеют, как правило, плоскоовальное сечение. Трубчато-пластинчатые радиаторы могут также состоять из трубок круглого или овального сечения. Иногда трубки плоскоовального сечения располагают под углом 10… 15° к воздушному потоку, что способствует турбулизации (завихрению) воздуха и повышает теплоотдачу радиатора. Пластины (ленты) могут быть гладкими или гофрированными, с пирамидальными выступами или отогнутыми просечками. Гофрирование пластин, нанесение просечек и выступов увеличивают охлаждающую поверхность и обеспечивают турбулентное течение потока воздуха между трубками.

Рис. Решетки трубчато-пластинчатого (а) и трубчато-ленточного (б) радиаторов

За стабильную и безотказную работу ДВС (двигателя внутреннего сгорания) в каждом автомобиле отвечает система охлаждения двигателя. Ведь если должным образом не будет происходить охлаждение, это может привести к перегреву ДВС, а далее к дорогостоящему ремонту. Речь в представленной статье пойдет о системе охлаждения двигателя, ее принципе работы и устройстве, а также решении некоторых проблем, возникающих во время работы.

Принцип работы и основная функция

Главная функция системы охлаждения заключается в отведение избыточного тепла, исходящего от ДВС и предотвращение его перегрева. А в зимний период времени она обеспечивает, обогрев салона автомобиля при помощи радиатора отопителя. В стандартных системах циркуляции она охлаждает нагреваемые детали, а в современных автомобилях выполняет еще ряд дополнительных функций, таких как:

  1. Охлаждает рабочую жидкость АКПП.
  2. Охлаждает масло в системе смазки.
  3. Нагревает воздух .
  4. Охлаждает отработанные картерные газы .

Принцип работы системы охлаждения двигателя выглядит таким образом: цилиндры, находящиеся в блоке цилиндров, окружены так называемой «водяной подушкой» из охлаждающей жидкости (ОЖ), которая постоянно циркулирует, благодаря чему достигается оптимальная рабочая температура.
В качестве ОЖ используют антифриз и тосол, а в качестве исключения можно добавить дистиллированной воды.

Со временем эти жидкости выпадают в осадок, что негативным образом сказывается на нормальном охлаждении. Для того, чтобы это не допустить, следует выполнять замену ОЖ согласно регламенту сервисной книжки. Чтобы понять, как работает система охлаждения двигателя, первым делом необходимо рассмотреть схему устройства.

Схема устройства


Схема системы охлаждения двигателя состоит из таких непосредственных деталей:

  • радиатор охлаждения основной;
  • вентилятор радиатора ;
  • насос водяной (помпа);
  • рубашка охлаждения (водяная подушка);
  • термостат ;
  • радиатор отопителя ;
  • бачок расширительный .

Такие схемы практически схожи для дизельных и бензиновых двигателей, есть лишь небольшая разница в самом принципе работы дизельного движка. Каждая из деталей играет важную роль для стабильной и правильной работы системы охлаждения двигателя, и, если одна из них выйдет из строя, это может повлечь за собой перегрев ДВС, и в следствие приведет затратному по времени и деньгам ремонту. Необходимо каждый элемент рассмотреть по отдельности.

Радиатор и вентилятор


Радиатор системы охлаждения двигателя является одним из главных элементов и предназначен для рассеивания в атмосферу тепла, отведенного от ДВС охлаждающей жидкостью, а также отвечает за состояние температуры движка. Конструктивно радиатор изготовлен из множества трубочек с ребрами, которые увеличивают теплоотдачу.

Вентилятор системы охлаждения двигателя предназначен для повышения эффективности работы радиатора. Их существует 3 вида, в зависимости от привода:

  1. Электрический .
  2. Гидравлический .
  3. Механический .

Наиболее распространенные вентиляторы с электрическим приводом. Работа вентилятора приводится в действие при срабатывании датчика ОЖ, тем самым усиливая воздушный поток. В случае, когда забились соты радиатора, их можно попробовать почистить при помощи специальных средств, иногда такой способ помогает.

Насос водяной


Помпа в автомобиле предназначена для постоянной циркуляции, работающей ОЖ. В водяном насосе зачастую существует два привода: ременный или шестеренный. В автомобили, у которых ДВС дополнительно оснащен турбонадувом, помимо основной помпы, устанавливается еще дополнительная, которая обеспечивает более эффективное охолаживание турбокомпрессора и надувочного воздуха.


«Водяная рубашка» — это система каналов для циркуляции ОЖ, которые проходят через головку блоков цилиндров (ГБЦ) и служат для вывода избыточного тепла, тем самым охлаждая двигатель внутреннего сгорания.

Термостат


Следующий не маловажный узел – это термостат. Главное его предназначение в системе охлаждения двигателя заключается в регулировке потоков ОЖ, ускорении прогрева двигателя и поддержании заданной рабочей температуры при всех режимах работы ДВС. Устанавливается термостат зачастую в патрубке, выходящем из радиатора.

При высокой температуре ДВС в термостате отрывается клапан и ОЖ циркулирует по большому кругу, подключая к работе радиатор. Иными словами, в том случае, когда термостат закрыт, он продвигает охлаждающую жидкость по малому кругу в «водяной рубашке», а когда он открыт, то направляет жидкость в радиатор.


Визуально радиатор отопителя схож с основным радиатором, однако он меньших размеров и устанавливается внутри салона автомобиля. Главная его задача заключается в обогреве салона автомобиля в зимний период времени. К слову, его поломка является распространенной неисправностью зимой, а, например, у автомобилей Калина, он часто проваливается из-за неудобного крепления, и в следствии перестает поступать тепло в салон автомобиля.

Бачок расширительный с пробкой-клапаном


Расширительный бачок системы охлаждения двигателя предназначен для поддержания необходимого уровня ОЖ. Со временем при работе и изменении температуры жидкости, меняется и ее объем, что необходимо компенсировать доливкой ОЖ. Необходимо всегда следить за уровнем и в случае минимально допустимого уровня доливать ее. Также немаловажной деталью является крышка-клапан расширительного бачка.

Самые распространенные неисправности


За время эксплуатации автомобиля могут возникать различные неисправности с охлаждением. Следует рассмотреть наиболее распространенные: воздух в системе охлаждения, давление в системе, поломка термостата или помпы, течь.

Завоздушеность, пожалуй, самая распространенная неисправность, которая встречается, виной ее является воздух, попавший в систему во время доливки ОЖ. Для того, чтобы устранить, следует стравить воздух.

Избыточное давление в системе охлаждения двигателя может повредить резиновые патрубки или радиаторы. Проще говоря, их может просто разорвать. Допустимые показатели варьируются в пределах от 1,2 до 2,0 атмосфер. За нормальное давление отвечает крышка-клапан расширительного бачка, которая в случае необходимости открывается и выпускает лишний пар.

В случае выхода из строя термостата или помпы такая поломка устраняется путем замены на новую деталь. Бывают случаи, когда автомобилист обнаружил следы течи, а до ближайшего СТО еще необходимо доехать, тогда чтобы не перегреть ДВС используют герметик для системы охлаждения двигателя. Он предназначен для создания пломбы в месте утечки, однако, часто его использовать не рекомендуется, это лишь крайняя мера.

Ремонт системы охлаждения двигателя можно выполнить самостоятельно, однако если у автомобилиста мало навыков, лучше это дело доверить специалистам с СТО.

Итог


Пришло время подвести итоги по изложенной информации. Охлаждение ДВС играет немаловажную роль для правильной и стабильной работы автомобиля. Следует не забывать следить за состоянием узлов, отвечающих за охлаждение, а по мере ухода ОЖ из расширительного бачка доливать ее.


К атегория:

Автомобили и трактора



-

Основные элементы жидкостном системы охлаждения


Рубашка охлаждения - пространство между двойными стенками блока и головки блока цилиндров или между стенками блока и мокрыми гильзами.

Для обеспечения равномерного охлаждения всех цилиндров жидкость в рубашку охлаждения поступает по распределительной трубе, идущей вдоль верхней части блока цилиндров. В трубе имеются отверстия для подачи жидкости в первую очередь к наиболее нагретым частям двигателя. Не имеют распределительных труб V-образные шести- и восьмицилиндровые двигатели, так как в каждом ряду у этих двигателей расположено всего три-четыре цилиндра.

Радиатор служит для охлаждения жидкости, поступающей из рубашки охлаждения. Радиатор (рис. 37, а) состоит из верхнего и нижнего резервуаров (бачков) и сердцевины, в которой и происходит охлаждение жидкости. В бачках имеются патрубки, соединяемые с патрубками двигателя. В верхнем бачке имеется горловина (через которую заливается жидкость), закрываемая пробкой. Внутри бачка или в горловину впаяна пароотводная трубка. которая отводит пар из системы в случае ‘ закипания жидкости, предотвращая увеличение давления в системе. В нижнем бачке или в патрубке монтируется краник для слива жидкости из радиатора.



-

Рис. 36. Система охлаждения двигателя СМД-14

Сердцевины радиаторов бывают труб-чато-пластинчатые, трубчато-ленточные и пластинчатые (рис. 37, б, в, г). Для придания радиатору большей прочности с обеих сторон сердцевины припаяны жесткие боковины. Радиатор вмонтирован в рамку (см. рис. 37, а), которая крепится к поперечным рамам на резиновых подушках или на пружинах, которые обеспечивают мягкость и эластичность крепления.

Патрубки бачков радиатора соединены с патрубками двигателя гибкими шлангами, которые закреплены на патрубках стяжными хомутами.

Заливная горловина радиатора закрывается специальной пробкой (рис. 38, а), имеющей паровой и воздушный клапаны. Пароотводная трубка впаяна сбоку в горловину над клапанами пробки. В случае возникновения разрежения, равного 0,002-0,01 МПа, воздушный клапан открывается и впускает в верхний бачок воздух из атмосферы. Паровой клапан открывается и выпускает пар из верхнего бачка в атмосферу через пароотводную трубку при повышении избыточного давления в нем до 0,03 МПа (рис. 38, б). Пробка с паровоздушным клапаном унифицирована для большинства отечественных автомобилей и тракторов.

У некоторых тракторных двигателей паровоздушный клапан помещается в отдельном корпусе, который крепится к верхнему бачку радиатора.

Для регулирования интенсивности обдува радиатора встречным потоком воздуха служат жалюзи или шторки радиатора. Они состоят из отдельных пластин-створок (рис. 39), укрепленных шар-нирно впереди радиатора. С помощью тяги/и системы рычагов пластины поворачиваются вокруг своей оси на угол до 90°.

Водяной насос служит для осуществления принудительной циркуляции охлаждающей жидкости. На двигателях с принудительным охлаждением устанавливаются центробежные насосы большой производительности, создающие давление на линии нагнетания от 0,05 до 0,2 МПа. У большинства моделей двигателей водяной насос установлен на одном валике с вентилятором и приводится в действие от коленчатого вала клино-ременной передачей.

Рис. 37. Радиатор системы охлаждения

Рис. 38. Пробка радиатора:
а - открыт паровой клапан; б - открыт воздушный клапан

Рис. 39. Жалюзи радиатора

Принципиальная схема насоса показана на рис. 40, а. Поступающая к патрубку вода подхватывается лопастями крыльчатки и центробежной силой отбрасывается в выходной патрубок, который расположен по касательной к корпусу насоса.

Вал (рис. 40, б) насоса вращается в двух шарикоподшипниках, имеющих уплотнения для удержания смазки в подшипниках и защиты их от загрязнения. Место выхода заднего конца вала из корпуса подшипников уплотнено манжетой, которая состоит из графитизированной текстолитовой шайбы, резинового уплотнителя пружины с двумя обоймами. Полость между подшипниками заполняют смазкой через масленку. На заднем конце вала установлена крыльчатка, которая вращается в корпусе насоса. На переднем конце вала с помощью разрезной конусной втулки и шпонки крепится ступица вентилятора. Такое крепление дает возможность подтягивать ступицу при ослаблении посадки шкива. Привод насоса и вентилятора осуществляется клиновыми ремнями.

При работе насоса охлаждающая жидкость по подводящему патрубку из нижнего бачка радиатора поступает внутрь корпуса. При вращении крыльчатки жидкость отбрасывается центробежной силой к стенкам корпуса и через выходной канал под давлением поступает в рубашку охлаждения двигателя и далее в верхний бачок радиатора.

Вентилятор служит для создания воздушного потока, который охлаждает жидкость в радиаторе и поверхность двигателя.

Вентилятор состоит из вала со шкивом и лопастями, который установлен на подшипниках в общем корпусе с водяным насосом. На наружном конце вала закрепляется ступица, к которой прикрепляются шкив и вентилятор. По числу лопастей вентиляторы бывают двух-, четырех-, пяти,- шести- и восьмилопастные. Наибольшее распространение получили вентиляторы с четырьмя и шестью лопастями. Вентилятор устанавливается за радиатором перед двигателем. Для создания направленного потока воздуха часто устанавливается направляющий кожух, значительно повышающий интенсивность охлаждения. Для уменьшения вибрации и шума лопасти вентилятора располагают крестообразно, попарно под углами 70° или 110°. Лопасти изготовляются штамповкой из листовой стали толщиной 1,25- 1,8 мм и крепятся к ступице шкива. Ширина лопастей обычно не превышает 70 мм.

Рис. 40. Водяной насос и вентилятор двигателя ЗИЛ-130:
а - принципиальная схема; б - конструкция насоса и вентилятора

На новых моделях автомобилей КамАЗ ГАЗ и других в целях ускорения прогрева двигателя зимой устанавливают вентиляторы с механизмами для их отключения.

Вентиляторы выполняются совместно с водяным насосом (ЗИЛ-130, ГАЗ-53А, МТЗ-80, ДТ-75М и др.) или отдельно от него (ЯМЗ-236, ЯМЗ-238 и др.).

Насос и вентилятор приводятся в действие клиноременной передачей от шкива коленчатого вала. Шестеренный привод вентилятора применяется в дизельных двигателях ЯМЭ-236 и ЯМЗ-238. Натяжение ремня регулируется посредством изменения положения шкива генератора (ЗИЛ-130, ДТ-75М, МТЗ-80 и др.), винтовым натяжным устройством (Д-130, Д-108 и др.) или натяжным роликом (ГАЗ-53А и др.).

Рис. 41. Гидромуфта привода вентилятора двигателя ЯМЗ-740

Для поддержания наивыгоднейшего теплового режима двигателя ЯМЗ-740 привод вентилятора осуществляется посредством гидромуфты, которая включается и выключается автоматически в зависимости от температуры жидкости в системе охлаждения. При такой конструкции вентилятор установлен на ведомом валу гидромуфты, которая крепится в передней части блока двигателя и приводится во вращение коленчатым валом двигателя с помощью валика привода гидромуфты.

Гидромуфта состоит из ведущих и ведомых частей, расположенных в полости, образуемой передней крышкой и корпусом (рис. 41).

Ведущая часть гидромуфты, вращающаяся на шариковых подшипниках, состоит из ведущего колеса в сборе с кожухом, ведущего вала и ступицы со шкивом.

Ведомая часть гидромуфты, вращающаяся на шариковых подшипниках, состоит из ведомого колеса, соединенного с ведомым валом, на котором закреплена ступица вентилятора.

Внутренние поверхности ведущего и ведомого колес имеют лопатки. Полость гидромуфты уплотнена резиновыми манжетами.

При работающем двигателе масло, поступающее из системы смазки, попадает на лопатки вращающегося ведущего колеса. Частицы масла, увлекаемые лопатками ведущего колеса, ударяясь вi лопатки ведомого колеса, обеспечивают вращение ведомых деталей и вентилятора. Частота вращения ведомого колеса с вентилятором зависит от количества масла, поступающего в полость гидромуфты.

Корректирование режима работы вентилятора в зависимости от температуры жидкости в системе охлаждения осуществляет выключатель гидромуфты. Он обеспечивает соединение или разъединение ведущего вала с ведомым путем регулирования расхода масла через гидромуфту, а вместе с тем и включение или выключение вентилятора, установленного на ведомом валу гидромуфты.

Выключатель гидромуфты золотникового типа расположен на патрубке, подводящем охлаждающую жидкость к правому боку цилиндров. Он имеет термосиловой элемент, заполненный активной массой, плавящейся с увеличением температуры охлаждающей жидкости. Когда температура жидкости повысится до 80-95 °С, объем активной массы настолько увеличится, что находящийся под ее действием шток переместит золотник выключателя и откроет проход для масла от насоса двигателя в полость гидромуфты. Заполнение полости гидромуфты маслом обеспечивает передачу вращения от ведущего колеса к ведомому Ведомое колесо муфты увеличивает частоту своего вращения, а вместе с этим возрастает и частота вращения вентилятора. Это возрастание происходит очень плавно, и вентилятор равномерно увеличивает скорость воздуха, проходящего через радиатор. С уменьшением подачи масла в полость гидромуфты его объем становится недостаточным для передачи вращения ведущим и ведомым колесам гидромуфты, поскольку из ее полости маслу открыт проход для стекания в поддон картера двигателя. При полном прекращении подачи масла в полость гидромуфты она перестает передавать вращение вентилятору.

Термостат служит для автоматического регулирования температуры жидкости в системе охлаждения путем изменения интенсивности ее циркуляции через радиатор и ускорения прогрева двигателя после пуска.

Термостаты бывают одно- и двухкла—панные жидкостные и с твердым наполнителем. На автотракторных двигателях ранее применялись жидкостные термостаты, а в настоящее время устанавливают термостаты с твердым наполнителем.

Жидкостный термостат (рис. 42, а) состоит из гофрированого цилиндра, заполненного легкокипящей (при 75- 85 °С) жидкостью, корпуса с окнами, основного и перепускного клапанов.

При температуре охлаждающей жидкости ниже 70 °С цилиндр сжат и основной клапан закрыт. Охлаждающая жидкость по перепускному каналу поступает обратно к водяному насосу через два окна, минуя радиатор, благодаря чему достигается быстрый прогрев двигателя.

При повышении температуры жидкости свыше 70 °С в гофрированном цилиндре начинается ее испарение и давление в нем повышается. Под действием возросшего давления основной клапан поднимается, открывая доступ охлаждающей жидкости из рубашки охлаждения в радиатор по патрубку. Одновременно с подъемом основного клапана поднимается и перепускной клапан, постепенно перекрывающий окно и прекращающий доступ охлаждающей жидкости в перепускной канал. При температуре охлаждающей жидкости 81-85 °С прекращается циркуляция через перепускной канал и жидкость в радиатор поступает только через патрубок.

Термостат с твердым наполнителем состоит из медного баллона (рис. 42, б), наполненного активной массой, состоящей из церезина (нефтяной воск), перемешанного с медным порошком. Баллон закрыт крышкой с резиновой мембраной. На мембрану опирается шток, который соединен шарнирно с заслонкой, установленной на шарнирной опоре в горловине водяного патрубка. При непрогретом двигателе заслонка постоянно прижата к краям горловины пружиной и охлаждающая жидкость циркулирует, минуя радиатор, ускоряя прогрев двигателя. При достижении охлаждающей жидкостью температуры 70-85 °С церезин в баллоне термостата плавится и, увеличивая свой объем, перемещает шток с резиновым буфером вверх, открывая заслонку 15. Охлаждающая жидкость циркулирует через радиатор.

При снижении температуры активная масса уменьшает свой объем и заслонка под действием пружины прикрывается. Схема циркуляции охлаждающей жидкости при разных положениях клапана термостата показана на рис. 43.

Слив жидкости из системы охлаждения производится при снятой пробке радиатора через сливные краники на радиаторе и на блоке. У V-образных двигателей имеются два краника (см. рис. 35) на блоке и третий на патрубке радиатора. Пусковой подогреватель также оборудуется сливным краником.

Рис. 42. Термостаты:
а - жидкостного типа: б - с твердым наполнителем

Рис. 43. Схема циркуляции охлаждающей жидкости в системе охлаждения:
а - при закрытом клапане термостата (малый круг циркуляции); б – при открытом клапане (большой круг циркуляции)

Элементы жидкостной системы охлаждения соединяются при помощи стальных труб, чугунных патрубков и прорезиненных гибких шлангов с хомутиками. Такое соединение допускает относительное смещение двигателя и радиатора.

Конденсационный (расширительный) бачок компенсирует изменение объема жидкости при ее нагревании, способствует удалению из охлаждающей жидкости воздуха и конденсации пара, поступающего в него из системы охлаждения.

Расширительный бачок (рис. 44) соединяется перепускной трубкой с верхним бачком радиатора. На верхнем бачке радиатора устанавливается бесклапанная пробка, а на конденсационном бачке - пробка с клапанами, конструкция которых приведена на рис. 38. Бачок имеет сливной кран и пароотводную трубку. При кипении охлаждающей жидкости пар по трубке поступает в расширительный бачок и конденсируется при перемешивании с жидкостью, находящейся в бачке. С понижением температуры в бачке создается разрежение. При этом открывается впускной клапан пробки и воздух поступает внутрь бачка, а охлаждающая жидкость из расширительного бачка пополняет систему. Благодаря наличию бачка в радиаторе поддерживается необходимый уровень жидкости.

Контроль за температурой в системе охлаждения осуществляют по показаниям электрических указателей температуры воды, а также аварийными сигнализаторами.

Рис. 44. Расширительный бачок

Система охлаждения двигателя внутреннего сгорания предназначена для отвода излишнего тепла от деталей и узлов двигателя. На самом деле эта система вредна для вашего кармана. Приблизительно треть теплоты, полученной от сгорания драгоценного топлива, приходится рассеивать в окружающей среде. Но таково устройство современного ДВС. Идеальным был бы двигатель, который может работать без отвода теплоты в окружающую среду, а всю ее превращать в полезную работу. Но материалы, используемые в современном двигателестроении, таких температур не выдержат. Поэтому по крайней мере две основные, базовые детали двигателя - блок цилиндров и головку блока - приходится дополнительно охлаждать. На заре автомобилестроения появились и долго конкурировали две системы охлаждения: жидкостная и воздушная. Но воздушная система охлаждения постепенно сдавала свои позиции и сейчас применяется, в основном, на очень небольших двигателях мототранспорта и генераторных установках малой мощности. Поэтому рассмотрим подробнее систему жидкостного охлаждения.

Устройство системы охлаждения

Система охлаждения современного автомобильного двигателя включает в себя рубашку охлаждения двигателя, насос охлаждающей жидкости, термостат, соединительные шланги и радиатор с вентилятором. К системе охлаждения подсоединен теплообменник отопителя. У некоторых двигателей охлаждающая жидкость используется еще и для обогрева дроссельного узла. Также у моторов с системой наддува встречается подача охлаждающей жидкости в жидкостно-воздушные интеркулеры или в сам турбокомпрессор для снижения его температуры.

Работает система охлаждения довольно просто. После запуска холодного двигателя охлаждающая жидкость начинает с помощью насоса циркулировать по малому кругу. Она проходит по рубашке охлаждения блока и головки цилиндров двигателя и возвращается в насос через байпасные (обходные) патрубки. Параллельно (на подавляющем большинстве современных автомобилей) жидкость постоянно циркулирует через теплообменник отопителя. Как только температура достигнет заданной величины, обычно около 80–90 ˚С, начинает открываться термостат. Его основной клапан направляет поток в радиатор, где жидкость охлаждается встречным потоком воздуха. Если обдува воздухом недостаточно, то вступает в работу вентилятор системы охлаждения, в большинстве случаев имеющий электропривод. Движение жидкости во всех остальных узлах системы охлаждения продолжается. Зачастую исключением является байпасный канал, но он закрывается не на всех автомобилях.

Схемы систем охлаждения в последние годы стали очень похожи одна на другую. Но осталось два принципиальных различия. Первое - это расположение термостата до и после радиатора (по ходу движения жидкости). Второе различие - это использование циркуляционного расширительного бачка под давлением, либо бачка без давления, являющегося простым резервным объемом.

На примере трех схем систем охлаждения покажем разницу между этими вариантами.

Компоненты

Рубашка головки и блока цилиндров представляют собой каналы, отлитые в алюминиевом или чугунном изделии. Каналы герметичны, а стык блока и головки цилиндров уплотнен прокладкой.

Насос охлаждающей жидкости лопастной, центробежного типа. Приводится во вращение либо ремнем ГРМ, либо ремнем привода вспомогательных агрегатов.

Термостат представляет собой автоматический клапан, срабатывающий при достижении определенной температуры. Он открывается, и часть горячей жидкости сбрасывается в радиатор, где и остывает. В последнее время стали применять электронное управление этим простым устройством. Охлаждающую жидкость начали подогревать специальным ТЭНом для более раннего открытия термостата в случае потребности.

Замена жидкости и промывка

Если не пришлось заменять какой-либо узел в системе охлаждения раньше, то инструкции рекомендуют менять антифриз не реже чем в 5–10 лет. Если вам не приходилось доливать в систему воду из канистры, а еще хуже - из придорожной канавы, то при замене жидкости систему можно не промывать.

А вот если автомобиль многое повидал на своем веку, то при замене жидкости полезно произвести . Разомкнув в нескольких местах систему можно струей воды из шланга тщательно ее прополоскать. Либо просто слить старую жидкость и залить чистую, кипяченую воду. Запустить двигатель и прогреть до рабочей температуры. Выждав, пока система остынет, чтобы не обжечься, слить воду. Затем продуть воздухом систему и залить свежий антифриз.

Промывку системы охлаждения обычно затевают в двух случаях: когда перегревается двигатель (проявляется это прежде всего в летний период) и когда перестает греть печка зимой. В первом случае причина кроется в заросших грязью снаружи и засоренных изнутри трубках радиатора. Во втором - проблема в том, что забились отложениями трубки радиатора отопителя. Поэтому при плановой смене жидкости и при замене компонентов системы охлаждения не упускайте возможности хорошенько промыть все узлы.

Расскажите, с какими неисправностями системы охлаждения сталкивались вы. И желаю вам жаркого отопителя зимой и хорошего охлаждения летом.

Рабочие процессы автомобильного двигателя проходят при высоких температурах, поэтому для обеспечения его работоспособности в течение длительного времени необходимо отводить лишнее тепло. Эту функцию обеспечивает система охлаждения (СО). В холодное время года за счет этого тепла производится обогрев салона.

В автомобилях, используемых турбонаддув, в функцию системы охлаждения входит понижение температуры воздуха, подаваемого в камеру сгорания. Дополнительно в один из кругов с системы охлаждения некоторых моделей автомобилей, оснащенных автоматической коробкой передач (АКПП), включается охлаждение масла в АКПП.

В автомобилях устанавливается два основных типа СО: водяной и воздушный. Принцип работы системы охлаждения двигателя с водяным охлаждением заключается в нагреве жидкости от силовой установки или других узлов и отдачи такого тепла в атмосферу через радиатор. В воздушной системе в качестве рабочего охладителя используется воздух. В обоих вариантах есть свои достоинства и недостатки.

Однако, большее распространение получила система охлаждения с циркуляцией жидкости.

Воздушная СО

Воздушное охлаждение

К основным достоинствам этой компоновки можно отнести простоту конструкции и обслуживания системы. Такая СО практически не увеличивает массу силового агрегата, а также не капризна к изменениям температуры окружающего воздуха. К негативу относится существенный отбор мощности мотора приводом вентилятора, повышенный уровень шума при работе, плохо сбалансированный отвод тепла от отдельных узлов, невозможность использования блочной системы двигателя, невозможность аккумулирования отводимого тепла для дальнейшего использования, например, обогрева салона.

Жидкостная СО

Охлаждение жидкостью

Система с применением отвода тепла с помощью специальной жидкости благодаря своей конструкции может эффективно отводить лишнее тепло от механизмов и отдельных деталей конструкции. В отличие от воздушной, устройство системы охлаждения двигателя с жидкостью способствует более быстрому набору рабочей температуру при запуске. Также моторы с антифризами работают существенно тише и подвержены меньшей детонации.

Элементы системы охлаждения

Рассмотрим подробнее, как работает система охлаждения двигателя на современных авто. Существенных различий между бензиновыми и дизельными моторами в этом плане нет.

В качестве «рубашки» для охлаждения мотора выступают конструкционные полости блока цилиндров. Они располагаются вокруг зон, из которых требуется отводить тепло. Для более быстрого отвода установлен радиатор, состоящий из изогнутых медных или алюминиевых трубок. Большое количество дополнительных ребер ускоряют процесс теплообмена. Такие ребра повышают охлаждающую плоскость.

Перед радиатором ставится нагнетающий воздух вентилятор. Приток более холодных потоков начинается после замыкания электромагнитной муфты. Она включается при достижении фиксированных температурных значений.

Работа термостата

Непрерывность циркуляции охлаждающей жидкости обеспечивается работой центробежного насоса. Ременная или шестеренчатая передача для него получает вращение от силовой установки.

Регулировкой направлений потоков занимается термостат.

Если температура охлаждающей жидкости не высокая, то циркуляция проходит по малому кругу, без включения в него радиатора. Если же допустимый тепловой режим превышен, то термостат пускает поток по большому кругу с участием радиатора.

Для закрытых гидравлических систем свойственно использование расширительных баков. Такой бачок предусмотрен и в СО автомобиля.

Циркуляция охлаждающей жидкости

Прогрев салона выполняется с помощью радиатора отопителя. Теплый воздух в данном случае не уходит в атмосферу, а запускается внутрь авто, создавая комфорт водителю и пассажирам в холодное время года. Для большей эффективности такой элемент устанавливается практически на выходе жидкости от блока цилиндров.

Водитель получает информацию о состоянии системы охлаждения с помощью температурного датчика. Сигналы также идут на блок управления. Он может самостоятельно подключать или выключать исполнительные приборы для соблюдения баланса в системе.

Работа системы

В качестве охлаждающих жидкостей применяются антифризы с множеством присадок, в том числе и антикоррозионными. Они помогают увеличить долговечность узлов и деталей, используемых в СО. Такую жидкость принудительно прокачивается по системе центробежным насосом. Начинается движение от блока цилиндров, наиболее горячей точки.

Вначале происходит движение по малому кругу с закрытым термостатом без захода в радиатор, ведь еще не набрана даже рабочая температура для мотора. После выхода в рабочий режим циркуляция происходит по большому кругу, где радиатор может охлаждаться встречным потоком или с помощью подключаемого вентилятора. После этого жидкость возвращается в «рубашку» вокруг блока цилиндров.

Есть автомобили с использованием двух контуров охлаждения.

Первый понижает температуру мотора, а второй заботиться о надувочном воздухе, охлаждая его для образования топливной смеси.