Аккумуляторные батареи никель. Правила эксплуатации никель-кадмиевых аккумуляторов

Кадмиевый аккумулятор – востребованный источник энергии, который используют для комплектации бытовой техники. Они причислены к щелочным типам. Ими оснащают те агрегаты и устройства, в состав которых нельзя ввести другие модели.

В состав никель кадмиевых аккумуляторов введены минусовые и плюсовые токопроводящие выводы, для разделения которых использован сепаратор. Внутренняя часть заполнена щелочным электролитическим составом. Корпус для никель кадмиевых батарей подготовлен из специального металла, герметично запаян.

Дабы обеспечить лучший контакт, для подготовки электродов используют фольгу, которая отличается небольшой толщиной. Для конструирования сепаратора, который сосредотачивают между выводами в батареях никель кадмиевых, применяют тканое сырье. Ведь он не взаимодействует со щелочным электролитом.

Для подсоединения аккумуляторной батареи к другим никелево кадмиевым источникам питания применяют борн. В состав устройства никель кадмиевых аккумуляторов входят сварные соединения, при помощи которых обеспечивается плотное соединение.

Преимущества никель-кадмиевых источник питания

  • Численность циклов разряда и заряда достигает 1 000 и более.
  • Период хранения таких устройств продолжителен. При этом степень заряженности агрегата не влияет на данный показатель.
  • Технология зарядки никель кадмиевых аккумуляторов относительно проста. Ее смогут реализовать и новички-автомобилисты.
  • Эксплуатировать такие источники питания можно и в зимний период, в жестких условиях.
  • Емкость не снижается даже при минусовой температуре.

Отрицательные стороны

  • Устройства обладают таким свойством, как «эффект памяти». Для его устранения возникает потребность в проведении определенных мероприятий.
  • Уровень саморазряда повышенный.
  • Если сравнить cd аккумуляторы с иными источниками питания, то можно выделить их невысокую энергетическую плотность.
  • Для подготовки применены токсичные компоненты. Поэтому некоторые государства не используют такие аккумуляторные батареи, не занимаются их изготовлением.
  • Для утилизации таких агрегатов применяют соответствующее оборудование. В нашей стране для никель кадмиевых агрегатов подготавливают установки для утилизации, переработки.

Заряд, разряд никель-кадмиевых аккумуляторных батарей

Процесс разряда

Разрядные параметры источника питания во многом зависят от конструктивных особенностей, характеристик электродов и токовыводов. Они же предопределяют величину напряжения и внутреннего сопротивления.

Разрядные параметры зависят от:

  • Особенности и структуры сепаратора.
  • Качества сборки.
  • Количества электролитического состава, которым заполнен корпус.
  • Прочее.

При продолжительном разряде nicd источника специалисты рекомендуют пользоваться дисковыми батарейками, который дополнены крупногабаритными прессованными выводами. Поэтому при небольшом увеличении тока емкость разрядная, а также напряжение снижается. Дабы оптимизировать этот показатель, толщину выводов уменьшают, численность увеличивают.

Максимальное значение емкости наблюдается при комнатной температуре. Дальнейшее повышение температуры не влияет на этот параметр. Отрицательная температура провоцирует снижение разрядного напряжения, повышение разрядного тока.

Использование шуруповертов, которые укомплектованы никель-кадмиевыми источниками питания, в зимний период требует осторожности.

Зарядный процесс

В процессе зарядки ni cd аккумуляторов необходимо вводить ограничения по заряду. Ведь в процесс подзарядки внутри корпуса повышается давления, вырабатывается кислород, а коэффициент применения тока понижается.

Как заряжать ni cd батарею? Дабы полностью восстановить заряд, должна быть сообщена емкость в 150–160 процентов. Температурный диапазон – 0-+35 градусов. Если не учитывать температурный диапазон, то давление повысится. Через аварийный клапан будет выделяться кислородная смесь. Поэтому важно заранее определить, как правильно заряжать аккумуляторную батарею.

Разряженный никель-кадмиевый аккумулятор заряжают в различных режимах. От того, какой режим выбран, зависит время зарядки.

  1. Током в 0,2 от общей емкости в течение 7 часов.
  2. Током в 0,3 от общей емкости не более 4 часов.

Заряжая агрегат в ускоренном режиме (током в 0,4 от имеющейся емкости), перезаряд запрещен, так как это повлечет уменьшение емкости. Устанавливать, до скольки заряжен источник питания, можно с помощью соответствующих устройств. При работе с токами применяется амперметр. Дабы определить количество вольт, используют вольтметр или мультиметр.

Зарядник для никель-кадмиевых аккумуляторных батарей

Для заряда ni cd батареи используют реверсивные и автоматические зарядники.

Автоматическое зарядное устройство для ni cd отличается простотой использования. С его помощью можно подзарядить 2–4 батарейки для шуруповерта или другой бытовой техники. После размещения батарейки в ЗУ устанавливается режим, число. После этого агрегат подключают к сети.

Автоматические модели оснащены индикаторами, с помощью которых определяется состояние заряжаемых источников питания при работе с током. Такие устройства подходят и для того, чтобы разряжать ni cd батареи.

Импульсные зарядники отличаются более сложной конструкцией. Их можно использовать при работе со значительным током. Поскольку их относят к профессиональным агрегатам, перед использованием изучается, как зарядить источник питания, как выставить требуемые параметры.

Реверсные (импульсные) модели подходят для циклической подачи ток заряда и разряда. При разряде и заряде заранее определяются параметры тока, напряжения.

Особенности использования

Продолжительная эксплуатация влияет на функционирование и работоспособность кадмий никелевых акб. К ухудшению работоспособности и выходу из строя приводят:

  • Рабочая поверхность токопроводящих выводов уменьшается.
  • Активная масса токопроводящих выводов существенно уменьшается.
  • Щелочной электролитический состав меняет состав, неправильно перераспределяется по источнику питания.
  • Образуется утечка по проводящим элементам. В итоге, разрядка заряженного источника питания наступает достаточно быстро.
  • Расход жидкости, кислорода возрастает. При чрезмерном выделении кислорода процесс становится необратимым.
  • Органические составы начинают распадаться.

Восстановление никель-кадмиевых аккумуляторов

Процедура восстановления никель кадмиевых аккумуляторов, которые используются для комплектации шуруповёрта, иного портативного агрегата, занимает определенное время. Поскольку стоимость таких акб высокая, перед реализацией следует изучить особенности.

По сути, восстанавливаем никель-кадмиевый аккумулятор шуруповерта импульсным током, который подается в течение 2–4 секунд. Величина тока превышает параметры емкости в 10 и более раз.

Перед тем как восстановить АКБ, подготавливаются определенные элементы и инструменты:

  1. Работоспособный источник питания с сильными показателями тока. В качестве АКБ используют автоаккумулятор.
  2. Зажимы.
  3. Провода.
  4. Мультиметр, с помощью которого контролируется напряжение.
  5. Защитные предметы.

Процедура восстановления включает определенные мероприятия:

  • У блока портативного инструмента или отдельной батареи определяется положительный и отрицательный контакт.
  • Пользуясь зажимами или крокодилами, а также отрезками проводов присоединяются минусы.
  • Другой конец провода прижимают к положительному контакту. Длительность контакта провода составляет 1–2 секунды (возможно увеличение до 3 секунд). Подобные действия занимают немного времени. При контакте следят за тем, чтобы провода не прикипели к блоку, батарее.

По истечении одного цикла при помощи мультиметра замеряется уровень напряжения. Как только напряжение восстановилось, переходят к набору емкости. Дабы восстановить и выполнить ремонт источника питания, выполняется 2–4 цикла.

Такая методика приносит ожидаемый эффект лишь на короткий срок. Все потому, что электролитический состав меняется, изменяется и его объем. В результате, аккумуляторы как источники долго использовать нельзя.

Модернизированная методика

Дабы своими руками восстановить никель кадмиевые аккумуляторы, а также обеспечить их продолжительную эксплуатацию, выполняются следующие действия:

  • Все батарейки тщательно проверяются, измеряется напряжение. Те элементы, на которых напряжение близко к нулю, изымаются.
  • В корпусе при помощи соответствующего инструмента подготавливаются отверстия, дабы залить 1 см3 дистиллированной воды.
  • Источники питания отстаиваются в течение короткого временного промежутка, после чего проводят повторную проверку напряжения.
  • Если работоспособность АКБ восстановлена, то сформированные отверстия обрабатывают герметиком, пайкой.
  • Блок комплектуется батарейками, повторно заряжается. Портативный инструмент готов к эксплуатации, как только на заряднике индикатор изменит оттенок. Для этих целей стоит пользоваться импульсными зарядными устройствами, которые отличаются обширным функционалом, качественной комплектацией.
  • При нулевом напряжении в АКБ вводят дистиллированную воду вновь.
  • Процедуру повторяют до тех пор, пока не достигнут положительного результата.

Особенности хранения

На кадмиевые аккумуляторы правила эксплуатации подготовлены специалистами. В инструкции прописано, как хранить источники питания. Выделено несколько основных правил.

Хранить ni cd источники можно только при полной разрядке. Для этих целей используют зарядные устройства, которые оснащены соответствующей функцией. Для опустошения применяют и лампы накаливания с соответствующим количеством ампер.

Хранить аккумуляторные батареи, которые правильно подготовлены, можно долго. Температурные изменения не влияют на состояние и работоспособность.

Для хранения никель кадмиевых аккумуляторов используют помещения. Ведь температурные колебания не провоцируют разрядку, запуск необратимых процессов.

Хотя хранятся никель-кадмиевые аккумуляторы долго, на определенном этапе возникает потребность в утилизации. Для этого следует обратиться в организацию, которая выполняет подобные процессы.

Эффективность никель кадмиевых аккумуляторов сложно переоценить. Ими комплектуют портативные инструменты, используемые в быту и в промышленности. При правильном обращении, соблюдении техники безопасности и условий эксплуатации период применения превышает пять лет.

Видео про Никель кадмиевые аккумуляторы



Все о никель-кадмиевых аккумуляторах: характеристики, эксплуатация, плюсы и минусы

Никель-кадмиевые аккумуляторы (Ni-Cd) на данный момент все ещё достаточно широко используются в народном хозяйстве. По своей конструкции они относятся к группе щелочных аккумуляторов. Эти батареи востребованы, несмотря на то, что их производство и применение ограничивается из соображений охраны окружающей среды (кадмий является ядовитым веществом). Но полностью отказаться от них не получается, поскольку эти аккумуляторные батареи используют в устройствах, где другие батареи работать не могут. В частности это эксплуатация с разрядными и зарядными токами большой величины. Это достаточно простые в обслуживании устройства с длительным сроком эксплуатации. Поэтому они заслуживают рассмотрения в отдельной статье.

Первый никель-кадмиевый аккумулятор создал Вальдмар Юнгнер ещё в 1899 году. Но тогда производство этих щелочных аккумуляторов обходилось значительно дороже, чем других видов батарей. Так, что об этом изобретении на некоторое время забыли. В 1932 году был разработан метод осаждения активного материала на пористый никелевый электрод. Это приблизило выпуск промышленных аккумуляторов Ni-Cd.

В 1947 году был проведен ряд работ, в ходе которых осуществили рекомбинацию газов, выделяющихся при заряде, без их отведения. В результате на свет появились герметичные Ni-Cd аккумуляторы, которые применяются до сих пор. Среди производителей никель-кадмиевых аккумуляторов можно назвать такие крупные компании, как GP Batteries, Самсунг, Варта, GAZ, Konnoc, Advanced Battery Factory, Панасоник, Metabo, Ansmann и другие.

Несмотря на широкое распространение в народном хозяйстве за последние десятилетия, никель-кадмиевые аккумуляторы постепенно сужают область применения. Их постепенно теснят никель-металлогидридные, а также литиевые батареи.


В частности Ni-Cd батареи уступают им место портативной технике. Причиной тому является опасность кадмия для человека и окружающей среду. Для утилизации таких аккумуляторов требуется специальное оборудование для улавливания кадмия. для автомобиля проводится проще, быстрее и лучше отработана. Но до сих пор существует достаточно много направлений, где никель-кадмиевые батареи незаменимы.

Применение никель-кадмиевых аккумуляторов (Ni-Cd)

Никель-кадмиевые аккумуляторы с небольшими размерами применяются в технических устройствах, требующих для своей работы большой ток. В таких условиях Ni-Cd аккумуляторы выдают стабильную мощность и не перегреваются в отличие от других типов аккумуляторных батарей. Никель-кадмиевые аккумуляторы широко используются в троллейбусах, трамваях, в роли тяговых АКБ на электрических карах, встречаются промышленные аккумуляторы Ni-Cd. Кроме того, широкое применение они нашли на морском и речном транспорте.

Ni-Cd аккумуляторы можно встретить в вертолетах и самолетах в роли бортовых батарей, в портативных инструментах (шуруповёрт, перфоратор и т. п.). Однако в инструментах все чаще встречаются литиевыми батареями. Никель-кадмиевые аккумуляторные батареи пока не могут заменить в тех портативных устройствах, которые имеют потребление большой мощности. Хотя в некоторых устройствах их успешно заменяют , которые не имеют в своём составе вредного кадмия.

Широкое применение нашли Ni-Cd батареи в дисковом исполнении. Этот вариант широко использовался в качестве батареи для питания энергонезависимой памяти в первых персональных компьютерах. Они были распаяны на материнской плате. Впоследствии их заменили литиевыми аккумуляторами. Дисковые батарейки также широко применялись в фотоаппаратах, вспышках, калькуляторах, фонариках, радиоприёмниках, слуховых аппаратах и т. п.

Ni-Cd аккумуляторы могут долго храниться, просты в обслуживании, малочувствительны к низким температурам, имеют низкое внутреннее сопротивление и малый удельный вес. Все это пока перевешивает отрицательный момент, связанный с наличием в них ядовитого кадмия. Никель-кадмиевые аккумуляторы по-прежнему доминируют при использовании в авиации, военной технике, устройствах мобильной радиосвязи. Дополнительно можете прочитать материал о том, как восстанавливаются Ni─Cd .

Устройство никель-кадмиевых аккумуляторов (Ni-Cd)

Конструкция Ni-Cd аккумуляторов

Конструктивно никель-кадмиевый аккумулятор представляет собой положительный и отрицательный электрод, разделенные сепаратором. Они погружены в щелочной электролит и все это закрыто в герметичном металлическом корпусе. Положительный электрод имеет в своем составе NiOOH (оксид-гидроксид никеля). В составе отрицательного присутствует кадмий (Cd) в компаунде. В роли электролита выступает раствор KOH (гидроксид калия). Это сильная щелочь, не имеющая запаха. Преимущества KOH в том, что вещество не взрывоопасное и не пожароопасное. Массовая доля KOH в электролите по ГОСТ Р 50711-94 должна составлять не меньше 85 процентов в твердом и не меньше 45 процентов в жидком виде.

Чтобы увеличить площадь поверхности электродов, их выпускают из фольги малой толщины. Сепаратор между электродами делается из нетканого материала, который не взаимодействует со щелочью. Сам электролит в процессе реакции не расходуется.

Один никель-кадмиевый элемент выдает напряжение около 1 вольта. Поэтому они объединяются в батареи с плотностью энергии примерно 60 Вт-ч на один килограмм.

На изображении ниже можно посмотреть основные элементы щелочного никель кадмиевого аккумулятора серии KL.



Борн или токовывод предназначен для съем тока с аккумулятора и выступает в роли клеммы для соединения батарей. Через пробку обеспечивается заливка электролита, а также выход газа, образующегося в процессе зарядки. Соединение электродов вместе с контактными планками обеспечивает съём и подачу с электродов на борн. Контактные планки имеют сварное соединение с электродами.

Электрод представляет собой ламели, расположенные горизонтально. В них находится активное вещество в перфорированной ленте из стали. Ребро дает жесткость электрода и обеспечивает перетекание тока на контактную планку. Электроды разной полярности разделяются рамочным сепаратором, который не препятствует свободной циркуляции электролита.

Реакции, проходящие на электродах Ni-Cd аккумулятора

Процессы на положительном электроде

Основные электрохимические реакции, протекающие на положительном электроде никель-кадмиевой аккумуляторной батареи, можно описать следующими формулами:

В процессе заряда

Ni(OH) 2 + OH — ⇒ NiOOH + H 2 O + e —

В процессе разряда

NiOOH + H 2 O + e — ⇒ Ni(OH) 2 + OH —

Оксид-гидроксид никеля (NiOOH) на положительном электроде может быть в двух вариантах:

  • α- Ni(OH) 2 ;
  • β-Ni(OH) 2 .

Эти формы различаются по своей плотности и гидратации. Если батарея разряжена, то на положительном электроде есть обе эти формы гидроксида никеля. Когда Ni-Cd аккумулятор заряжается, то форма β-Ni(OH) 2 превращается в β-NiOOH. При этом кристаллическая решетка вещества несколько изменяется. На заключительной стадии зарядки происходит образование γ-NiOOH. Количество фаз β и γ гидроксида никеля будет зависеть от конкретных условий заряда.

Фаза γ интенсивно образуется при большой скорости зарядки или при перезаряде. В результате образования γ-NiOOH происходит коренная перестройка структуры оксидов. Для сравнения, плотность фазы β составляет 4,15, а фазы γ─3,85 гр./см 3 . По этой причине при перезаряде Ni-Cd аккумулятора происходит изменение объем активной массы положительного электрода. Электрохимические свойства β и γ также отличаются. Для формы γ-NiOOH заряд проходит менее эффективно и коэффициент использования по току в этом случае меньше формы β. Форма γ также имеет меньший разрядный потенциал и саморазряд в два раза меньший, чем для β.

Процессы на отрицательном электроде

На отрицательном электроде никель-кадмиевой батареи протекают следующие реакции:

При заряде

Cd(OH) 2 + 2e − ⇒ Cd + 2OH −

При разряде

Cd + 2OH − ⇒ Cd(OH) 2 + 2e −

Ёмкость кадмиевого электрода в никель-кадмиевых батареях превышает ёмкость положительного электрода примерно на 20─70 процентов. По этой причине считается, что потенциал отрицательного электрода при заряде-разряде, остается неизменным.

Характеристики никель-кадмиевых аккумуляторов (Ni-Cd)

Номинальное напряжение никель-кадмиевых герметичных аккумуляторов составляет 1,2 вольта. Заряд током 1/10 от ёмкости происходит за 16 часов. Замер ёмкости Ni-Cd аккумулятора производится при разряде током 2/10 от номинальной ёмкости до напряжения один вольт.

На изображении ниже можно видеть разрядные характеристики никель-кадмиевых аккумуляторов при различных режимах разряда.

На графиках ниже можно посмотреть зависимость разрядной ёмкости от нагрузочного тока и температуры.

Саморазряд никель-кадмиевых аккумуляторов зависит в основном от термодинамической неустойчивости электрода из оксида-гидроксида никеля. Влияние тока утечки между электродами на саморазряд небольшое. Но постепенно увеличивается со временем эксплуатации батареи. Тепловыделение в Ni-Cd аккумуляторах во многом зависит от степени заряженности. После того, как аккумулятор набрал 70 процентов емкости, активизируется процесс выделения кислорода. В результате из-за ионизации кислорода на отрицательных электродах происходит разогрев аккумулятора. По окончании зарядки температура в Ni-Cd аккумуляторе поднимается на 10─15 градусов Цельсия. Если заряд осуществляется в ускоренном режиме, то увеличение температуры может составлять 40─45 градусов Цельсия.

После отключения от заряда потенциал положительного (оксидно-никелевого) электрода уменьшается и происходит постепенное выравнивание заряда глубинного и поверхностного слоя. Через некоторое время интенсивность саморазряда снижается. У различных серий Ni-Cd аккумуляторов саморазряд и стабилизации остаточной емкости могут значительно различаться. Саморазряд, помимо снижения ёмкости, ещё приводит к понижению напряжения на 0,03─0,05 вольта. Это явление объясняется постепенным выравниванием заряда в глубине и на поверхности электрода. Кроме того, влияние оказывает частичная пассивация активной массы.

Хранение никель-кадмиевых аккумуляторов (равно, как и свинцово-кислотных) при низкой температуре снижает саморазряд. При 20 градусах Цельсия саморазряд в два раза больше, чем при 0.

На следующем изображении показан график изменения потери емкости для никель-кадмиевых аккумуляторов при различных температурах.

Чтобы компенсировать саморазряд при хранении аккумулятора, можно поставить его на подзарядку малым током. Обычно величина тока подзаряда составляет 0,03-0,05 от ёмкости. Но конкретное значение оговаривается производителем аккумулятора. Способность выдерживать длительный перезаряд у разная у никель-кадмиевых аккумуляторов различной конструкции. Дисковые щелочные никель-кадмиевые аккумуляторы, которые имеют ламельные электроды большой толщины, к перезаряду приспособлены меньше всего. Но есть и такие конструкции, которые способны без последствий выдержать перезаряд несколько месяцев.

Что касается энергетических характеристик Ni-Cd аккумуляторов, то они также различаются в зависимости от разновидностей батареи.

Дисковые никель-кадмиевые аккумуляторы с 2 электродами имеют удельные энергетические характеристики 15─18 Вт-ч на килограмм и 35─45 Вт-ч на литр. Та же разновидность, но с 4 электродами имеет удельные энергетические характеристики в два раза больше. Для цилиндрических Ni-Cd аккумуляторов эти величины составляют 45 Вт-ч на килограмм и 130 Вт-ч на литр.

Что влияет на разряд Ni-Cd аккумуляторов?

Разрядные характеристики конкретных моделей зависят от следующих характеристик:

  • толщина, структура, внутреннее сопротивление электродов;
  • плотность сборки групп электродов;
  • характеристики сепаратора (толщина и структура);
  • объем электролита;
  • специфические особенности конструкции батареи.


Дисковые Ni-Cd аккумуляторы с прессованными электродами большой толщины используются в условиях продолжительного разряда. В этом случае происходит постепенное снижение ёмкости и напряжения до 1,1 вольта. При разряде до 1 вольта ёмкости остаётся около 5─10 процентов от номинала. Такие аккумуляторные батареи демонстрируют значительное снижение разрядного напряжения и теряемой емкости Ni-Cd аккумуляторов при возрастании тока разряда до величины 0,2*C. Объясняется это тем, что активная масса не имеет возможности равномерно разряжаться на разной глубине электродов.

Для аккумуляторных батарей, работающих в режиме разряда средней интенсивности, делаются электроды меньшей толщины, и увеличивается их число до 4. В результате ток разряда возрастает до 0,6 от ёмкости.

Есть еще, так называемые, короткоразрядные аккумуляторы. В них установлены металлокерамические электроды с малым внутренним сопротивлением. Эти модели имеют самые высокие энергетические показатели среди других разновидностей никель-кадмиевых аккумуляторов. У них напряжение при разряде держится выше 1,2 вольта до того момента, пока они не исчерпают 90 процентов ёмкости батареи. Эти аккумуляторы могут использоваться при разрядке большими значениями тока (3─5С).

Стоит отметить ещё цилиндрические батареи с рулонными электродами. Эти современные аккумуляторы могут разряжаться длительное время током 7─10С. На графиках разряда, представленных выше можно видеть, что температура ОС оказывает существенное влияние на характеристики никель-кадмиевых аккумуляторов. Наибольшее значение ёмкости аккумулятор имеет при 20 градусах Цельсия. При повышении температуры она практически не меняется. Но при понижении до 0 градусов емкость падает тем быстрее, чем больше величина тока разряда. Это понижение ёмкости связано с уменьшением разрядного напряжения, которое вызвано ростом поляризационного и омического сопротивления. Сопротивление возрастает из-за малого объема электролита.

Так, что состав щелочи (электролита) и её концентрация существенно отражаются на характеристиках аккумулятора. От этого зависит температура образования солей, кристаллогидратов, льда и прочих элементов.

Если электролит замерз, то разряд вообще исключен. Нижнее значение рабочей температуры Ni-Cd аккумуляторов в большинстве случаев составляет минус 20 градусов Цельсия. Для некоторых видов батарей состав электролита корректируется, и нижняя граница температурного диапазона расширяется до минус 40 градусов Цельсия.

Что влияет на заряд Ni-Cd аккумуляторов?

При зарядке герметичного никель-кадмиевого аккумулятора важным является ограничение перезаряда. При перезарядке увеличивается давления внутри батареи из-за выделения кислорода. Так, что эффективность использования тока падает по мере приближения к 100-ной зарядке.

На изображении ниже можно посмотреть графики характеризующие зависимость ёмкости при разряде цилиндрического аккумулятора.



Зарядку Ni-Cd аккумуляторов допускается проводить в температурном диапазоне 0─40 градусов Цельсия. Рекомендуемый интервал 10─30 градусов. Поглощение кислорода на кадмиевом электроде замедляется при снижении температуры, что приводит к росту давления. Если температура выше рекомендуемой, то растёт потенциал и на положительном оксидно-никелевом электрода кислород начинает выделяться очень рано. При равной температуре кислород выделяется тем активнее, чем больше ток заряда. При это скорость поглощения кислорода почти не изменяется. У эта величина зависит от конструкции батареи, а точнее, от транспортировки кислорода от положительного к кадмиевому отрицательному электроду. На это влияет плотность компоновки, толщины, структура электродов, а также материала сепаратора и объема электролита.

Чем меньше толщина электродов и чем выше плотность их компоновки, тем эффективнее будет проходить процесс заряда. Цилиндрические аккумуляторы с рулонными электродами являются наиболее эффективными в этом плане. Для них эффективность заряда при изменении тока от 0,1 до 1С почти не меняется. Стандартным производители называют режим зарядки, в результате которого батарея с напряжением 1 вольт полностью заряжается за 16 часов током 0,1 от ёмкости. Некоторые модели при заряде в таком режиме требуют 14 часов. Конкретные показатели уже зависят от конструктивных особенностей и объема активной массы.

Все вышесказанное справедливо для гальваностатического заряда. Это заряд при постоянном значении силы тока. Но заряд может также вестись с плавным или ступенчатым снижением силы тока на заключительной стадии зарядки. Тогда на начальном этапе ток может устанавливаться гораздо выше стандартного значения 0,1 от ёмкости. Часто бывает реальная необходимость в увеличении скорости зарядки. Проблему решают с использованием аккумуляторов, характеристики которых позволяют эффективно принимать заряд током высокой плотности. Ток поддерживается постоянным на протяжении всего процесса зарядки. Также совершенствуются системы контроля, которые не допускают перезаряд батареи.

Цилиндрические никель-кадмиевые аккумуляторы обычно заряжаются в следующих режимах:

  • 6─7 часов током 0,2 от ёмкости;
  • 3─4 часа током 0,3 от ёмкости.

При ускорении не рекомендуется допускать перезаряд больше 120─140 процентов. Тогда будет обеспечена ёмкость не меньше номинала. Ni-Cd аккумуляторы для работы в ускоренных режимах заряжаются ещё быстрее (примерно около одного часа). Однако в последнем случае нужен контроль напряжения и температуры. Иначе, из-за быстрого роста давления, может начаться процесс деградации аккумуляторов.

После того, как заряд закончен в герметичном аккумуляторе еще продолжается выделение кислорода из-за окисления гидроксильных ионов на положительном электроде. За счет процесса саморазряда уменьшается потенциал, и процесс выделения кислорода постепенно уменьшается и становится равным поглощению его на кадмиевом электроде. Тогда давление уменьшается. О том, детально разобрано по указанной ссылке.

Благодаря совершенствованию производства Ni-Cd-батареи сегодня применяются в большинстве портативных электронных устройств. Приемлемая стоимость и высокие эксплуатационные показатели сделали представленную разновидность аккумуляторов популярной. Такие устройства сегодня широко применяются в инструментах, фотоаппаратах, плеерах и т. д. Чтобы батарея прослужила долго, необходимо узнать, как заряжать Ni- Cd-аккумуляторы . Придерживаясь правил эксплуатации подобных устройств, можно значительно продлить срок их службы.

Основные характеристики

Чтобы понять, как заряжать Ni- Cd-аккумуляторы , необходимо ознакомиться с особенностями подобных приборов. Их изобрел В. Юнгнер еще в далеком 1899 году. Однако их производство было тогда слишком затратным. Технологии совершенствовались. Сегодня в продаже представлены простые в эксплуатации и относительно недорогие батареи никель-кадмиевого типа.

Представленные устройства требуют, чтобы заряд происходил быстро, а разряд медленно. Причем опустошение емкости батареи необходимо выполнять полностью. Подзарядка производится импульсными токами. Этих параметров следует придерживаться на протяжении всего срока эксплуатации устройства. Зная, Ni- Cd, можно продлить срок его службы на несколько лет. При этом подобные батареи эксплуатируются даже в самых тяжелых условиях. Особенностью представленных аккумуляторов является «эффект памяти». Если периодически не разряжать батарею полностью, на пластинах ее элементов будут формироваться крупные кристаллы. Они снижают емкость аккумулятора.

Преимущества

Чтобы понять, как правильно заряжать Ni-Cd-аккумуляторы шуруповерта, фотоаппарата, камеры и прочих портативных приборов, необходимо ознакомиться с технологией этого процесса. Она простая и не требует особых знаний и умений от пользователя. Даже после длительного хранения батареи ее можно быстро зарядить снова. Это одно из преимуществ представленных устройств, которые делают их востребованными.

Никель-кадмиевые батареи обладают большим количеством циклов заряда и разряда. В зависимости от производителя и условий эксплуатации этот показатель может достигать более 1 тысячи циклов. Преимуществом Ni-Cd-батареи является ее выносливость и возможность работы в нагруженных условиях. Даже при эксплуатации ее на морозе оборудование будет работать исправно. Его емкость в таких условиях не меняется. При любой степени зарядки аккумулятор можно будет хранить длительное время. Немаловажным преимуществом его является низкая стоимость.

Недостатки

Одним из недостатков представленных устройств является факт, что пользователь обязательно должен изучить, как правильно заряжать Ni- Cd-аккумуляторы. Представленным батареям, как уже говорилось выше, присущ «эффект памяти». Поэтому пользователь должен периодически проводить профилактические мероприятия по его устранению.

Энергетическая плотность представленных аккумуляторов будет несколько ниже, чем у других разновидностей автономных источников питания. К тому же при изготовлении этих приборов применяются токсичные, небезопасные для экологии и здоровья людей материалы. Утилизация подобных веществ требует дополнительных затрат. Поэтому в некоторых странах применение подобных аккумуляторов ограничено.

После длительного хранения Ni- Cd -батареи требуют проведения цикла заряда. Это связано с высокой скоростью саморазряда. Это также является недостатком их конструкции. Однако, зная, как правильно заряжать Ni- Cd-аккумуляторы , правильно их эксплуатировать, можно обеспечить свою технику автономным источником питания на долгие годы.

Разновидности зарядных устройств

Чтобы правильно заряжать аккумулятор никель-кадмиевого типа, нужно применять специальное оборудование. Чаще всего оно поставляется в комплекте с батареей. Если же зарядного устройства по каким-то причинам нет, можно приобрести его отдельно. В продаже сегодня представлены автоматические и реверсивные импульсные разновидности. Применяя первый тип устройств, пользователю не обязательно знать, до какого напряжения заряжать Ni- Cd-аккумуляторы . Процесс выполняется в автоматическом режиме. При этом одновременно можно заряжать или разряжать до 4 батареек.

При помощи специального переключателя устройство устанавливается в режим разрядки. При этом цветовой индикатор будет светиться желтым цветом. Когда эта процедура будет выполнена, прибор самостоятельно переключается в режим зарядки. Загорится красный индикатор. Когда аккумулятор наберет требуемую емкость, устройство перестанет подавать на батарею ток. При этом индикатор загорится зеленым светом. Реверсивные относятся к группе профессионального оборудования. Они способны выполнять несколько циклов зарядки и разрядки с разной длительностью.

Специальные и универсальные зарядные устройства

Многих пользователей интересует вопрос о том, как заряжать аккумулятор шуруповерта Ni- Cd типа. В этом случае не подойдет обычный прибор, рассчитанный на пальчиковые батарейки. В комплекте с шуруповертом чаще всего поставляется специальное зарядное устройство. Именно его следует применять при обслуживании батареи. Если же зарядного устройства нет, следует приобрести оборудование для аккумуляторов представленного типа. При этом можно будет зарядить только батарею шуруповерта. Если в эксплуатации имеются батареи различного типа, стоит приобрести универсальное оборудование. Оно позволит обслуживать автономные источники энергии практически для всех устройств (камеры, шуруповерта и даже АКБ). Например, сможет заряжать Ni-Cd-аккумуляторы iMAX B6. Это простой и полезный в хозяйстве прибор.

Разрядка прессованной батареи

Особой конструкцией характеризуются прессованные Ni- и выполнять разрядку представленных устройств, зависит от их внутреннего сопротивления. На этот показатель влияют некоторые конструкционные особенности. Для длительной работы оборудования применяются аккумуляторы дискового типа. Они имеют плоские электроды достаточной толщины. В процессе разрядки их напряжение медленно падает до 1,1 В. Это можно проверить при помощи построения графика кривой.

Если батарею продолжить разряжать до показателя 1 В, ее разрядная емкость составит 5-10% от первоначального значения. Если ток увеличить до 0,2 С, существенно снижается напряжение. Также это касается и емкости батареи. Это объясняется невозможностью разрядить массу по всей поверхности электрода равномерно. Поэтому сегодня толщину их снижают. При этом в конструкции дисковой батареи присутствует 4 электрода. Их можно в этом случае разряжать током 0,6 С.

Цилиндрические батареи

Сегодня широко применяются батареи с металлокерамическими электродами. Они обладают малым сопротивлением и обеспечивают высокие энергетические показатели устройства. Напряжение заряженного Ni- Cd-аккумулятора этого типа удерживается на уровне 1,2 В до потери 90% заданной емкости. Около 3% ее теряется при последующем разряде с 1,1 до 1 В. Представленный тип батарей допускается разряжать током 3-5 С.

Электроды рулонного типа установлены в цилиндрических аккумуляторах. Их можно разряжать током с более высокими показателями, который находится на уровне 7-10 С. Показатель емкости будет максимальным при температуре +20 ºС. При ее увеличении это значение несущественно меняется. Если температура снизится до 0 ºС и ниже, разрядная емкость уменьшается прямопропорционально приросту разрядного тока. Как заряжать Ni- Cd-аккумуляторы, разновидности которых представлены в продаже, необходимо рассмотреть подробно.

Общие правила зарядки

При совершении зарядки никель-кадмиевого аккумулятора крайне важно ограничивать излишний ток, поступающий на электроды. Это необходимо из-за роста внутри устройства при таком процессе давления. При зарядке будет выделяться кислород. Это влияет на коэффициент использования тока, который будет снижаться. Существуют определенные требования, которые объясняют, как заряжать Ni- Cd-аккумуляторы. Парамерты процесса учитывают производители специального оборудования. Зарядные устройства в процессе своей работы сообщают батарее 160% от номинального значения емкости. Интервал температур на протяжении всего процесса должен оставаться в рамках от 0 до +40 ºС.

Режим стандартной зарядки

Производители обязательно указывают в инструкции, сколько заряжать Ni- Cd-аккумулятор и каким током это нужно делать. Чаще всего режим выполнения этого процесса стандартный для большинства разновидностей батарей. Если аккумулятор имеет напряжение 1 В, его зарядка должна выполняться в течение 14-16 часов. При этом ток должен быть 0,1 С.

В некоторых случаях характеристики процесса могут немного отличаться. На это влияют конструкционные особенности устройства, а также увеличенная закладка активной массы. Это необходимо для наращивания емкости батареи.

Пользователя также может интересовать, каким током заряжать аккумулятор Ni- Cd . В этом случае есть два варианта. В первом случае ток будет постоянным в течение всего процесса. Второй вариант позволяет длительно заряжать аккумулятор без риска его повреждения. Схема предполагает применение ступенчатого или плавного снижения тока. На первой стадии он будет значительно превышать показатель 0,1 С.

Ускоренная зарядка

Существуют и другие способы, которые приемлют Ni- Cd-аккумуляторы. Как заряжать батарею этого тип в ускоренном режиме? Здесь существует целая система. Производители увеличивают скорость этого процесса благодаря выпуску особых устройств. Они могут заряжаться при повышенных показателях тока. В этом случае прибор обладает особой системой контроля. Она предупреждает сильный перезаряд аккумулятора. Такую систему может иметь либо сама батарея, либо ее зарядное устройство.

Цилиндрические разновидности устройств заряжают током постоянного типа, величина которого составляет 0,2 С. Процесс при этом будет длиться всего 6-7 часов. В некоторых случаях допускается заряжать батарею током 0,3 С в течение 3-4 часов. В этом случае контроль процесса крайне необходим. При ускоренном выполнении процедуры показатель перезаряда должен составлять не более 120-140% емкости. Существуют даже такие аккумуляторы, которые можно будет зарядить полностью всего за 1 час.

Прекращение зарядки

Изучая вопрос того, как заряжать Ni- Cd-аккумуляторы, необходимо рассмотреть завершение процесса. После того как ток перестает поступать на электроды, внутри батареи давление все еще продолжает расти. Этот процесс происходит из-за окисления на электродах гидроксильных ионов.

В течение некоторого времени происходит постепенное уравнение скорости выделения кислорода и поглощения на обоих электродах. Это приводит к постепенному понижению давления внутри аккумулятора. Если перезаряд был существенным, этот процесс будет выполняться медленнее.

Настройка режима

Чтобы правильно зарядить Ni- Cd-аккумулятор , необходимо знать правила настройки оборудования (если они предусмотрены производителем). Номинальная емкость батареи должна иметь ток заряда до 2 С. Необходимо выбрать тип импульса. Он может быть Normal, Re-Flex или Flex. Порог чувствительности (понижение давления) должен составлять 7-10 мВ. Его еще называют Delta Peak. Его лучше выставлять на минимальном уровне. Ток подкачки требуется установить в диапазоне 50-100 мА-ч. Чтобы иметь возможность полноценно использовать мощность аккумулятора, нужно выполнять зарядку большим током. Если же требуется его максимальная мощность, аккумулятор заряжают малым током в нормальном режиме. Рассмотрев, как заряжать Ni- Cd-аккумуляторы, каждый пользователь сможет выполнить этот процесс правильно.

Несмотря на то, что никель-кадмиевые аккумуляторы с этого года запрещены к производству в странах Евросоюза, эти неустанные труженики до сих пор используются во многих недорогих и мощных автономных устройствах (шуруповерты, электробритвы, фонари).

Даже если в инструкции по эксплуатации о типе аккумулятора устройства ничего не сказано, определить то, что именно никель-кадмиевый аккумулятор служит источником тока достаточно просто - чаще всего время зарядки указывается в диапазоне 5-12 часов и присутствует указание на необходимость самостоятельного отключение зарядного по истечению времени заряда.

Для никель-кадмиевых батарей предпочтительнее быстрая импульсная зарядка чем медленная постоянным током. Эти батареи могут выдать большую мощность, что что определяет их выбор для мощных автономных устройств. Никель-кадмиевые батареи единственный тип батарей, который выдерживает полную разрядку при большой нагрузке без каких-либо последствий. Остальные типы батарей требуют неполной разрядки при относительно невысоких мощностных нагрузках.

Никель-кадмиевые батареи не любят длительной зарядки при эпизодической небольшой нагрузке. Периодическая полная разрядка необходима для них как воздух для человека - при отсутствии полной разрядки на электродах образуются большие кристаллы металла (что приводит к проявлению так называемого "эффекта памяти") - аккумулятор скачкообразно теряет свою емкость. Для долгой и эффективной работы NiCd батарей необходимы циклы обслуживания батареи - полная разрядка с последующей полной зарядкой, исходя из большинства рекомендаций - раз в месяц, в крайнем случае раз в 2-3 месяца.

Никель-кадмиевые аккумуляторы являются самыми «дуракоустойчивыми» из современных массовых аккумуляторов - для их использования не требуется даже системы мониторирования параметров аккумулятора, что определяет их использование в недорогих и мощных устройствах.

Зарядка малыми токами за 5-12 часов позволяет обойтись без каких-либо предосторожностей в виде систем контроля заряда-разряда. При перезаряде аккумулятор просто медленно будет терять емкость (на радость производителя). Необходимо помнить об этом при использовании «bad-boy» зарядных устройств (зарядных без механизма автоматического контроля заряда). Поэтому, лучше всего заряжать полностью разряженный аккумулятор и строго соблюдать время зарядки, что позволит сохранить емкость NiCd аккумулятора достаточно долгое время.

При использовании «быстрой» зарядки (со временем заряда менее 5 часов) желательно иметь зарядное устройство с температурным датчиком, поскольку при заряде повышается температура аккумулятора, вместе с температурой растет емкость, с ростом емкости зарядный прибор может перезарядить батарею свыше необходимого уровня, что приводит к еще большему росту температуры (явление «терморазгона» аккумулятора) и, как минимум, к ухудшению параметров батареи. Подобная ситуация существует и при заряде батареи при низких температурах. Температурный датчик позволяет сдвинуть параметры заряда в зависимости от температуры аккумулятора, а также отключить батарею от заряда при превышении скорости роста температуры выше 1 градуса Цельсия в минуту или по достижении температуры батареи в 60 градусов Цельсия что позволяет избежать трагических последствий терморазгона.

В качестве иллюстрации необходимости термодатчика в зарядном могу привести пример двухлетней давности заряда никель-кадмиевой батареи для профессионального шуруповерта на зарядном без термодатчика (на фото - это самое зарядное устройство), позволяющего заряжать батарею ускоренным темпом – за час. В то время была температура в квартире около 30°C, зарядное автоматически должно заряжать аккумулятор до достижения целевого напряжения и автоматически отключаться, что английским по-белому было сказано в инструкции в разделе безопасность. Утром первый аккумулятор из комплекта был заряжен без всяких эксцессов – через 50 минут зарядное отключилось, ближе к вечеру второй аккумулятор при заряде преподнес сюрприз: из-за отсутствия термодатчика в зарядном, батарея вошла в режим терморазгона. Так как заряд был ускоренным проблема была замечена поздно – когда аккумулятор пошел дымом и стал разбрызгивать горячий электролит. Быстро отключенный от сети зарядник удалось спасти. Аккумулятор же еще долго сопел в агонии, пытаясь причинить как можно больше вреда при отходе в мир иной, однако ему это не удалось и вред ограничился стоимостью самого аккумулятора – 15USD. С тех пор зарядное подключается к сети через таймер.

Несмотря на свои недостатки, никель-кадмиевые аккумуляторы до сих пор существуют среди нас. Надеюсь, немного теории и практического опыта, изложенного в статье, позволят читателю получить от никель-кадмиевого аккумулятора своего устройства максимум того, на что он способен.

Никель-кадмиевый аккумулятор (НК) является одним и старейших и наиболее хорошо изученных типов химических источников тока. Никель-кадмиевая химическая система была предложена в 1899 году Вальдемаром Джунгером, что в историческом смысле ставит НК на второе место после свинцово-кислотных аккумуляторов. Спустя сравнительно короткое время, НК аккумуляторы начали активно использоваться в различных областях индустрии, а после изобретения способа изготовления герметичных никель-кадмиевых аккумуляторов (НКГ) последовало резкое улучшение эксплуатационных качеств, что еще более расширило границы применения НКГ.

Именно по этой причине, компания АО "НИАИ "Источник" специализируется на производстве НКГ аккумуляторов, обладающих высочайшими потребительскими характеристиками:

  • Отсутствие необходимости в обслуживании
  • Отсутствие выделения газа и электролита
  • Способность работать в любом положении
  • Устойчивость к тяжелым климатическим условиям
  • Механическая прочность и устойчивость к сверхзаряду
  • Большой срок службы (до 7 лет)
  • Высокая сохраняемость заряда и высокая стабильность характеристик.

Никель-кадмиевый аккумулятор состоит из двух рабочих электродов. В разряженном состоянии положительный электрод содержит гидрат закиси никеля, а отрицательный - гидроксид кадмия. Электроды и сепаратор имеют достаточно большую пористость и пропитаны водным раствором щёлочи.

Основная реакция, протекающая в аккумуляторе, описывается уравнением:

2 Ni (OH) 2 +Cd (OH) 2 2Ni OOH+Cd+H 2 O

Во время заряда из активной массы электродов в электролит выделяется вода, которая разбавляет электролит и увеличивает его объём. Во время разряда происходит обратный процесс.

В конце заряда на положительном электроде идёт побочная реакция выделения кислорода:

4 OH - O 2 + 2 H 2 O +4e

Выделившийся на положительном электроде кислород ионизируется на отрицательном электроде.

Конструкция аккумуляторов и аккумуляторных батарей (АБ)

Электроды . В герметичных призматических никель-кадмиевых аккумуляторах применяются спечённые (металлокерамические) электроды, состоящие из подложки, выполненной из растяжной никелевой решётки, на которую нанесён высокопористый слой никеля. Пористый слой заполняется активной массой с помощью химической пропитки. В последнее время в качестве основы электродов стал применяться пеноникель, получаемый никелированием пенополиуретана с последующим отжигом в восстановительной среде. В пеноникель вмазывается активная электродная масса.

Аккумуляторы . Герметичные аккумуляторы производятся в металлических корпусах. Улотнение борнов призматических аккумуляторов осуществляется, как правило, при помощи резиновых колец. В качестве сепараторов используются ткани и нетканные материалы (войлоки, фетры) из поливинилхлорида, полипропилена, полиамида, капрона и других материалов. Могут комбинироваться несколько слоёв сепараторов из различных материалов.

В герметичных аккумуляторах ёмкость отрицательного электрода должна быть больше, чем ёмкость положительного. Экспериментально определяемое соотношение емкостей должно быть не менее 1,2. Такое соотношение позволяет избежать выделения водорода на отрицательном электроде.

В качестве электролита используются 20-40 % раствор КОН с добавкой LiOH. Конкретный состав электролита выбирается в зависимости от температуры при эксплуатации. Если аккумуляторы предназначены для работы при отрицательной температуре, то концентрацию КОН повышают, а содержание LiOH уменьшают до нуля. Улучшение работоспособности при повышенной температуре достигается использованием 20-30 процентный раствора КОН с добавкой 15-50 Г/л LiOH. Для герметичных аккумуляторов большое значение имеет правильный выбор количества электролита, что также определяется условиями эксплуатации аккумулятора. Для поглощения кислорода, выделяющегося при заряде, необходимо, чтобы часть порового пространства отрицательного электрода и сепаратора была свободна от электролита. При слишком большом количестве электролита поглощение кислорода замедляется, и аккумулятор во время заряда может деформироваться (при заряде по времени) или преждевременно отключиться от заряда при срабатывании сигнализатора давления. При недостаточном количестве электролита, особенно при малых токах заряда и повышенной температуре окружающей среды аккумулятор может попасть в так называемый «тепловой разгон», когда из-за повышенной скорости ионизации кислорода аккумулятор начинает разогреваться, в результате чего напряжение на нём снижается. При ещё большем уменьшении количества электролита это начинает сказывается на разрядных характеристиках аккумулятора. В различных типах аккумуляторов количество электролита колеблется от 2 до 4 см 3 /Ач. С увеличением концентрации электролита его плотность растёт, а объём уменьшается.

Батареи . Крепление аккумуляторов в батарее должно обеспечить отсутствие перемещения любого из них при механических перегрузках. Расположение герметичных аккумуляторов в пространстве произвольное, но вниз крышкой не рекомендуется, особенно для аккумуляторов с аварийным клапаном, т.к. в конце заряда часть электролита из блока электродов стекает на крышку аккумулятора. Межэлементные соединения должны быть рассчитаны на минимальные потери напряжения и не вызывать механических нагрузок на токовыводы аккумуляторов. Пайка непосредственно к корпусу или крышке аккумулятора не допускается. В батареях из герметичных аккумуляторов рекомендуется предусматривать выводы от каждого аккумулятора, выполняемые по двухпроводной схеме, при помощи которых осуществляется поэлементный доразряд и контроль за напряжением аккумуляторов. Если поэлементный контроль вызывает затруднения, то допускается контролировать напряжение на группах из 2-5 аккумуляторов. Напряжение на каждой группе должно контролироваться автоматическим устройством, прекращающем разряд при достижении предельно допустимого напряжения. Потребление устройства на собственные нужды должно быть минимальным при работе и равным нулю при хранении батареи в составе изделия. Значения уставок должны составлять:

  • для одного аккумулятора - (0,5 ± 0,4) В,
  • для двух аккумуляторов - (1,7 ± 0,3) В,
  • для трёх аккумуляторов - (2,8 ± 0,2) В,
  • для четырёх аккумуляторов - (3,8 ± 0,2) В,
  • для пяти аккумуляторов - (5,0 ± 0,2) В.

Если в батарее не более пяти аккумуляторов, контроль напряжения ведётся на выводах батареи. Если батарея не делится на одинаковое количество групп, то допустим перекрёстный контроль нескольких аккумуляторов соседними отключающими устройствами.

Обозначение аккумуляторов и батарей

В наименовании аккумуляторов буквы НК указывают на электрохимическую систему (никель-кадмиевая). Буква Г относятся к конструктивному исполнению аккумуляторов - герметичные. После букв через тире проставляют номинальную ёмкость аккумулятора. За значением номинальной ёмкости проставляются буквы, указывающие режим разряда: К - короткий (менее 1 часа), С - средний (2-8 ч), Д - длинный (10-20 ч). Буква А ставится в тех случаях, когда аккумулятор снабжён датчиком давления. Цифры перед буквенным обозначением аккумулятора соответствуют количеству аккумуляторов в батарее. В отдельных случаях в конце обозначения записывается климатическое исполнение и категория размещения.

С 1993 г. введён ГОСТ 26367.3-93 (МЭК 622-88) на герметичные призматические никель-кадмиевые аккумуляторы, являющийся прямым применением соответствующего стандарта МЭК, которым предусматриваются следующие обозначения аккумуляторов латинским шрифтом. Первая буква K относится к никель-кадмиевой электрохимической системе. Далее записывается одна из букв, обозначающих форму корпуса: С - призматический (герметичный), R - В - дисковый. После этого для герметичных призматических аккумуляторов указывается вид положительной пластины: Р - ламельная, S - спечённая (металлокерамическая). Затем для всех типов аккумуляторов записывается режим разряда: L - длительный, М - средний, Н - короткий, Х - сверхкороткий, после чего для призматических аккумуляторов указывается номинальная ёмкость, а для дисковых и цилиндрических - диаметр и высота (через дробь). Для дисковых аккумуляторов габариты указываются в десятых долях миллиметра. В конце обозначения записывают класс стойкости к воздействию температуры. Класс I - температура от -30 до 50 о С (без обозначения); класс II - от -40 до 60 о С; класс III - от -60 до 60 о С.

Обозначение батареи состоит, как правило, из обозначения аккумулятора, перед которым стоит цифра, указывающая количество аккумуляторов в батарее. В конце иногда указывают климатическое исполнение батареи (например, 10НКГ-8К-В1). В некоторых случаях производитель даёт батарее условный индекс (например, 11МО1).

Способы заряда

Заряд аккумуляторов, как правило, проводится постоянным током, при этом аккумуляторам сообщается 105-150 % номинальной ёмкости. Ток заряда обычно составляет 0,1-0,3 Сн. Для герметичных аккумуляторов кроме контроля времени заряда применяется также контроль конечного напряжения заряда, внутреннего давления (при помощи сигнализаторов давления) и сообщенной ёмкости (при помощи электронных счётчиков ампер-часов). В некоторых случаях применяют датчики максимального напряжения, уставка срабатывания которых зависит от температуры и (или) тока заряда, или термореле, выдающие сигнал на отключение заряда при повышении температуры до заданного значения.

Хотя герметичные аккумуляторы дороже открытых и для первых требуется более сложное зарядное и контрольно-испытательное оборудование, эксплуатационные расходы для них меньше, чем для открытых аккумуляторов, так как для герметичных аккумуляторов не требуются устройства вентиляции и периодическая доливка электролита, что связано с содержанием дополнительного персонала.

Эффективность заряда зависит от температуры и тока заряда. С увеличением тока заряда напряжение заряда возрастает. Для герметичных аккумуляторов следует избегать условий, при которых напряжение заряда достигает значений 1,6 В, т.к. это способствует выделению водорода. Для аккумуляторов, предназначенных для коротких режимов разряда, с увеличением тока заряда разрядная ёмкость возрастает, а для аккумуляторов, предназначенных для средних режимов, проходит через максимум. Оптимальным является заряд при температуре 15-25 о С током 0,1-0,5 Сн. С повышением температуры заряда и снижением тока заряда отдаваемая при разряде ёмкость снижается и может составлять до 50-70 % от номинальной. В диапазоне температур 15-25 о С возможен заряд герметичных аккумуляторов при постоянном напряжении 1,45 - 1,50 В. При напряжениях выше 1,5 В заряд при постоянном напряжении не рекомендуется, т.к. в результате перегрева аккумуляторы могут быть перезаряжены. Перезаряд аккумуляторов при заряде их от источника с постоянным напряжением опасен в результате явления, получившего название «тепловой разгон». Суть его заключается в том, что когда аккумуляторы полностью заряжены, весь ток расходуется на выделение на положительном электроде кислорода, большая часть кислорода, в свою очередь, поглощается на кадмиевом электроде, в результате чего практически всё проходящее электричество превращается в тепло, и аккумулятор начинает быстро разогреваться. С повышением температуры напряжение аккумуляторов снижается, что приводит к повышению тока заряда и дальнейшему лавинообразному разогреву. Если при комнатной температуре «тепловой разгон» открытых аккумуляторов начинается при напряжениях, близких к 1,7 В, то после длительного перезаряда, сопровождавшегося перегревом, тепловой разгон может начинаться и при напряжении 1,3 В. Обычно это происходит в процессе длительного заряда при постоянном напряжении, когда в результате разогрева аккумулятора ток ионизации кислорода на отрицательном электроде возрастает настолько, что скорость прохода кислорода через сепаратор и скорость выхода кислорода из блока электродов становятся соизмеримыми. После нескольких циклов в таких условиях кадмиевый электрод пассивируется до такой степени, что при заряде на нём выделятся водород. Для герметичных аккумуляторов тепловой разгон может начаться при напряжениях ниже 1,7 В, поскольку в них весь выделяющийся при заряде кислород должен поглотиться внутри аккумулятора. Для того чтобы избежать теплового разгона следует размещать батарею вдали от источников тепла (двигатели, мощные приборы и т.п.), тщательно выбирать режим заряда, а сам заряд проводить на автоматизированных стендах, имеющих несколько уровней зашиты (по времени заряда, напряжению, току, по ёмкости и т.д.). Необходимо, чтобы погрешность стабилизации напряжения была не более ±1 %. При выборе напряжения заряда необходимо, чтобы после сообщения аккумулятору 110 - 150 % номинальной ёмкости значение зарядного тока не превышало 0,02 - 0,003 Сн А. Заряд при повышенных напряжениях можно использовать только при одновременном ограничении его длительности. При низкой температуре заряд при постоянном напряжении теряет свою эффективность из-за значительного снижения токов заряда.

При параллельном соединении батарей заряжать их надо через разделительные диоды или подключать каждую батарею к собственному зарядному устройству. Батареи не следует длительное время хранить в заряженном или полузаряженном состоянии (кроме, конечно, батарей хранения), т.к. из-за различия токов саморазряда аккумуляторов может появиться разбаланс по степени заряженности, что с одной стороны создаёт опасность перезаряда наиболее полно заряженных аккумуляторов, что снижает ёмкость батареи вследствие падения напряжения наиболее разряженных аккумуляторов. Разбаланс по уровню заряженности может привести к переполюсовке одного из аккумуляторов во время разряда и выделению на оксидно-никелевом электроде водорода, что может сопровождаться срабатыванием клапана или сигнализатора давления и даже деформацией герметичных аккумуляторов. Перед длительным хранением в разряженном состоянии рекомендуется доразрядить каждый аккумулятор на индивидуальные резисторы до напряжения не выше 0,1 В, что позволяет выровнять заряженность аккумуляторов.

Срок службы никель-кадмиевых батарей

Ресурс аккумуляторов определяется как их конструкцией, так и режимом эксплуатации. Если конкретный тип аккумулятора не имеет явных конструктивных недостатков, то определяющим фактором являются условия эксплуатации. В большинстве случаев циклирование аккумуляторов является наиболее часто употребимым способом их эксплуатации. Достаточно широкое распространение получило использование аккумуляторов в аварийных режимах, когда заряженные аккумуляторы большую часть времени хранятся в заряженном состоянии, как правило, при небольшом токе подзаряда, который компенсирует саморазряд аккумуляторов и небольшое снятие ёмкости при кратковременных подключениях аккумуляторов на нагрузку.

Работоспособность аккумуляторов при различных режимах циклирования

К основным параметрам режима эксплуатации относятся ток разряда, разрядная ёмкость, способ защиты от переразряда, ток заряда, способ защиты от перезаряда, температура. При разряде никель- кадмиевые аккумуляторы нагреваются, а в начале заряда до того как начнётся интенсивное выделение кислорода - охлаждаются.

Увеличение тока разряда и снижение температуры ведут к снижению среднего напряжения разряда и потере ёмкости, если защита от перезаряда основана на прекращении разряда при снижении напряжения до достаточно высокого уровня (выше чем 1 В на аккумулятор). Срок службы существенно зависит и от глубины разряда. Он уменьшается почти в 10 раз при её изменении от 10 до 70 %.

Снижение тока заряда ведёт к увеличению длительности заряда и уменьшению коэффициента использования тока, в результате чего снижается разрядная ёмкость, особенно, если температура заряда превышает 30 о С. Увеличение тока заряда также может приводить к снижению разрядной ёмкости, если заряд прекращается при достижении достаточно низкого напряжения (менее 1,5 В при 25 о С). КПД по энергии колеблется от 70 до 85 % и растёт при увеличении напряжения разряда, снижении напряжения заряда и увеличении КПД по току.

Срок службы герметичных аккумуляторов зависит также от сочетания значений конечного напряжения заряда и конечного напряжения разряда. Наибольшие потери ёмкости происходят при циклировании режимами, где заряд ограничивается низким напряжением (около 1,48 В), а разряд - высоким напряжением (1,10 - 1,16 В). Достаточно быстро снижается ёмкость и в тех случаях, когда заряд постоянно прекращается по срабатыванию сигнализатора давления, а глубина разряда находится на уровне 15 - 20 % с ограничением разряда по напряжению (не ниже 1,09 В). В этом случае кислород не успевает поглощаться, и избыточное давление в аккумуляторе находится на уровне 123 - 147 кПа, при этом увеличивается крутизна зарядных и разрядных кривых. Изменение характеристик связано с пассивацией активных масс электродов.

Снижение напряжения разряда может вызвано образованием в активной массе кадмиевого электрода интерметаллического соединения Ni5Cd21, которое разряжается при напряжении на аккумуляторе 1,05 - 0,95 В (так называемая «вторая площадка» или «эффект памяти»). Наиболее характерно образование этого сплава для электродов, полученных пропиткой спечённых основ. Образованию сплава способствуют заряды при повышенной температуре. Интерметаллическое соединение полностью разрушается при разряде аккумулятора до 0,8 - 0,5 В. Лучше всего проводить поэлементный разряд батареи на сопротивления, при этом напряжение каждого аккумулятора снижается до нуля вольт без опасности переполюсовки. После поэлементного доразряда ёмкость аккумуляторов восстанавливается до значений, близких к первоначальным.

Потери ёмкости уменьшаются при снижении конечного напряжения разряда с 1,16 до 1,04 В и увеличении конечного напряжения заряда с 1,48 до 1,54 В. Наибольшей стабилизации ёмкости можно добиться, уменьшив конечное напряжение разряда до 0,5-0,8 В. При дополнительном проведении периодических закорачиваний на сопротивления каждого аккумулятора батареи до нуля вольт ёмкость может даже увеличиться по сравнению с начальной

Работоспособность аккумуляторов при подзаряде

В режиме длительного подзаряда используются в основном призматические аккумуляторы. Срок эксплуатации в зависимости от тока подзаряда составляет от 2 до 15 лет и более. Оптимальным является ток, численно равный 0,001 - 0,005 Сн А. При увеличении тока подзаряда срок службы и надёжность сокращаются. При эксплуатации в режиме подзаряда типы отказов те же, что и при циклировании, но их интенсивность ниже.

На первом разряде после длительного подзаряда напряжение батареи несколько ниже, чем у свежезаряженных, но после нескольких циклов оно быстро возвращается к нормальному уровню. Снижение напряжения разряда после длительного подзаряда связано с уменьшением уровня заряженности положительного электрода.

Ёмкость аккумулятора после 10 лет подзаряда до 25 %, а после 16 лет - до 35 % выше начальной, что свидетельствует об увеличении ёмкости положительного электрода. При определении ёмкости электродов в избытке электролита в негерметичном виде установлено, что ёмкость положительного электрода возросла на 58 - 70 %, а ёмкость отрицательных электродов на 10 - 13 %. Ёмкость отрицательного электрода падает. После длительного подзаряда практически весь избыток ёмкости отрицательного электрода находится в заряженном состоянии, поэтому на разряде ёмкость аккумулятора ограничивается не положительным электродом, как в начале срока службы, а обоими электродами сразу. Напряжение заряда аккумуляторов после 10 лет подзаряда находится на обычном уровне и не превышает 1,5 В. После 16 лет подзаряда на контрольном цикле напряжение заряда повышается до 1,55 - 1,58 В, а у трети аккумуляторов оно достигает 1,6 - 1,7 В, причём, повышение с 1,55 до 1,65 В происходит в конце заряда, что также является следствием избыточной заряженности отрицательного электрода. Причины этих явлений те же, что и при циклировании аккумуляторов.

Герметичные никель-кадмиевые аккумуляторы нашего производства нашли самое широкое применение в космической, военной, общепромышленной и бытовой технике.

В настоящее время, АО «НИАИ Источник» является единственным в России разработчиком и одновременно изготовителем герметичных никель-кадмиевых аккумуляторных батарей для космических аппаратов. Нами выпускается 10 типов аккумуляторов НКГ, которые применяются в 21 батареях, работающих и работавших на таких космических аппаратах, как:

  • Международная космическая станция
  • Орбитальные станции «Мир», «Салют» и «Алмаз».
  • Межпланетные станции «Марс», «Венера» и «Вега»
  • Спутники серий «Метеор», «Молния», «Астрон», «Надежда» и «Космос».

Кроме того, аккумуляторы типа НКГ применяются в наземных установках ракетных войск стратегического назначения, на кораблях, подводных лодках и прочих объектах, где требуется обеспечение энергий вне зависимости от обстоятельств.

Руководитель отдела никель-кадмиевых аккумуляторов,

кандидат технических наук,