Двигатели внутреннего сгорания с изменяемой степенью сжатия. Двигатель SAAB с изменяемой степенью сжатия. Как изменяют степень сжатия

Недавно на автосалоне в Париже марка Infiniti (читай, альянс Renault-Nissan) представила двигатель с изменяемой степенью сжатия. Фирменная технология Variable Compression-Turbocharged (VC-T) позволяет варьировать эту самую степень, буквально высасывая все соки из двигателя.

В «идеальной вселенной» правило простое - чем выше степень сжатия топливо-воздушной смеси, тем лучше. Смесь максимально расширяется, поршни движутся как заведенные, следовательно, мощность и КПД мотора максимальны. Другими словами, топливо сжигается чрезвычайно эффективно.

Все было бы замечательно, если б не сама природа топлива. В ходе издевательств его терпению когда-то наступает предел: чем ровнее сгорает смесь - тем лучше, но при высоких нагрузках (высокая степень сжатия, большие обороты) смесь начинает взрываться, а не сгорать. Такое явление называется детонацией, и эта штука весьма разрушительна. Стенки камеры сгорания и сам поршень испытывают серьезные ударные нагрузки и постепенно, но довольно быстро разрушаются. Кроме того, падает эффективность мотора - нормальное рабочее давление на поршень падает.

Таким образом, наиболее выгодный вариант - когда двигатель в любом режиме работает на грани детонации, не допуская этого явления. Инженеры Infiniti составили график, на котором обозначили для себя эффективные режимы работы двигателя в зависимости от нагрузки, величины оборотов и степени сжатия топливо-воздушной смеси. (На самом деле эффективность сгорания топлива можно повышать и другими способами, например, увеличением количества клапанов на цилиндр, настройкой графика их работы, даже выбором места над поршнем, куда направляется впрыск порции топлива. Конечно, мы об этом помним.) Первые два параметра, понятно, зависят как от внешних факторов, так и от тщательного подбора трансмиссии. А третий - степень сжатия - также решено было изменять в пределах от 8:1 до 14:1.

Технически это выглядит как введение в конструкцию кривошипно-шатунного механизма дополнительного элемента - коромысла между шатуном и коленвалом. Коромысло управляется электромотором - рычаг можно сдвигать таким образом, что диапазон хода поршня варьируется в пределах 5 мм. Этого достаточно для существенного изменения степени сжатия.

Достоинств без недостатков не бывает. На первый взгляд, они очевидны: увеличение сложности конструкции, некоторая прибавка в весе... Однако насчет этих минусов грех жаловаться - двигатель получился очень сбалансированным, благодаря чему из конструкции были выведены балансировочные валы. Вероятно также, что двигатель особо чувствителен к марке и качеству топлива. Думается, эта проблема - во всяком случае, в значительной степени - решается программными методами.

Уже больше десятилетия основой бизнеса этого китайского бренда являются сервисы в области телевидения и музыки, однако теперь он стремительно выходит на рынок смартфонов и прочей потребительской электроники. Согласно предварительным данным, мобильные устройства LeEco отлично расходятся в Китае и других странах. Возможно, столь же успешным окажется дебют компании и в автомобильном бизнесе? На прошлой неделе газета South China Morning Post сообщила о том, что LeEco собирается построить завод по выпуску электромобилей. Ожидаемая мощность — 400 тысяч машин в год.

По предварительным данным, LeEco собирается инвестировать около 1,8 миллиарда долларов в новую производственную площадку, которая будет расположена в провинции Чжэцзян. Впоследствии завод должен стать частью технологического парка Eco Experience Park. Пока говорится о том, что возведение фабрики закончится в 2018 году.

Ранее LeEco искала партнеров на китайском рынке, которые бы смогли предоставить собственные производственные мощности. К примеру, компания вела переговоры с BAIC и GAC. Но достаточно выгодных предложений не нашлось, поэтому руководство решилось на строительство собственного завода. По предварительным данным, на нем будут не только собирать электрокары, но и выпускать важнейшие компоненты, в том числе электромоторы и тяговые аккумуляторы. К текущему моменту LeEco владеет 833 патентами в области электромобилей.

Возможно, в перспективе LeEco будет выпускать электрокары и в США: в Неваде сейчас идет строительство завода компании Faraday Future, которая является стратегическим партнером LeEco.

Также на прошлой неделе стало известно о некоторых планах Ford . Американцы уже сейчас занимаются гибридными и электрическими автомобилями: Ford продает модели C-Max Hybrid, C-Max Energi, Focus Electric, Fusion Hybrid и Fusion Energi. Однако в перспективе производитель намерен выделить специальную серию инновационных моделей. Вероятно, она получит название Model E .

Американская компания подала патент на имя Model E еще в 2013 году. Она уже много лет выпускает фургоны Ford E-Series, однако вряд ли новое название как-то с ними связано. При этом глава Tesla Motors Элон Маск в 2014 году сокрушался над тем, что ему не удастся выпустить автомобиль Model E: «Мы собирались назвать новинку Model E, но затем Ford в судебном порядке запретил нам это делать, говоря, что он сам собирается использовать такое имя. Я думал, что это безумие: Ford пытается убить SEX (у "Теслы" было бы три модели — Model S, Model E и Model X. — прим. ред.) ! Поэтому нам пришлось придумать другое имя. Новая модель будет называться Model 3 ».

Под маркой Model E будет существовать целая серия электрических и гибридных моделей Ford. Производитель пока не делится точными сведениями о них, зато уже сейчас известно, что как минимум некоторые из них будут предлагаться сразу в нескольких версиях: гибрид, гибрид с возможностью внешней зарядки и электрокар. Схожий подход использован в новой модели Hyundai IONIQ .

Сейчас уже идет строительство нового завода для автомобилей серии Ford Model E. Это будет первая полностью новая производственная площадка компании на территории Северной Америки за последние 20 лет. Общие инвестиции в фабрику должны составить 1,6 миллиарда долларов, что является огромной суммой даже по меркам американского автомобилестроения. Примечательно, что завод будет находиться в Мексике, а вовсе не в США.

Строительство новой фабрики должно быть завершено в 2018 году, а первые серийные гибриды и электрокары сойдут с конвейера в 2019-м. В прошлом году Ford анонсировал планы вложить около 4,5 миллиарда долларов в электрические транспортные средства до 2020 года. На эти деньги планируется разработать и запустить в производство 13 новых моделей. Предполагается, что они должны составить конкуренцию автомобилям Tesla, Chevrolet Bolt и Nissan Leaf. При этом полностью электрические версии должны получить запас хода в районе 320 километров. Скорее всего, большинство инновационных моделей будут хетчбэками и компактными кроссоверами.

Тем временем в Норвегии с 2025 года собираются полностью запретить продажи бензиновых и дизельных машин. Подобную инициативу мы обсуждали несколько месяцев назад . Тогда норвежская газета Dagens Næringsliv сообщила, что четыре ключевых партии Норвегии договорились о введении с 2025 года запрета на продажу новых автомобилей, сжигающих топливо. Однако теперь представитель Министерства транспорта страны официально опроверг эту информацию.

В целом подобная инициатива выглядит вполне логично. Во-первых, в этой северной европейской стране уже давно действуют высокие пошлины на модели с ДВС. Благодаря этому в 2015 году продажи электрокаров и гибридов выросли сразу на 71 %. Во-вторых, в стране отсутствует собственное производство машин, которое необходимо поддерживать любыми способами. Справедливости ради отметим, что Норвегия является лидером Европы по добыче нефти, поэтому пропаганда электрических транспортных средств может идти вразрез с интересами страны.

В Министерстве транспорта подтвердили информацию о том, что Национальный план развития транспорта Норвегии предусматривает определенные шаги, направленные на снижение объема выброса вредных веществ в атмосферу, однако он не включает в себя предложения о полном запрете всех видов двигателей внутреннего сгорания с 2025 года. При этом официальный представитель ведомства упомянул о том, что «правительство хочет поощрять более экологически чистые виды транспорта, но использовать пряник вместо кнута». Об этом он сообщил изданию autonews.com.

Любопытно, что на прошлой неделе многие российские СМИ поспешили заявить о том, что Норвегия планирует полностью запретить продажи новых легковых автомобилей с ДВС с 2025 года. Таким образом, они поделились устаревшей неофициальной информацией либо неверно восприняли новое сообщение Министерства транспорта европейской страны.

Автомобильные технологии

Двигатель внутреннего сгорания изначально был самым сложным агрегатом автомобиля. С момента появления первых машин прошло более ста лет, но в этом плане ничего не изменилось (если не брать в расчет электрокары). При этом ведущие производители идут ноздря в ноздрю в плане технического прогресса. Сегодня у каждой уважающей себя компании есть турбомоторы с непосредственным впрыском топлива и системой изменения фаз газораспределения как на впуске, так и на выпуске (если речь идет о бензиновых двигателях). Более высокотехнологичные решения распространены меньше, но все же встречаются. К примеру, недавно кроссовер Audi SQ7 TDI получил первый в мире двигатель с электрическим турбонаддувом, а BMW представила дизельный мотор с четырьмя турбокомпрессорами. Среди самых экзотических серийных решений выделяется система FreeValve разработки Koenigsegg: моторы шведской компании вообще лишены распределительных валов. Нетрудно заметить, что в основном любят экспериментировать инженеры европейских фирм. Однако теперь появилась любопытная новость из Японии: инженеры Infiniti представили первый двигатель с изменяемой степенью сжатия.

Многие зачастую путают понятия степени сжатия и компрессии, причем нередко это делают люди, по роду деятельности связанные с автомобилями и их обслуживанием или ремонтом. Поэтому для начала кратко расскажем, что же такое степень сжатия и чем она отличается от компрессии.

Степень сжатия (СЖ) — отношение объема цилиндра над поршнем в нижнем положении (нижняя мертвая точка) к объему пространства над поршнем при его верхнем положении (верхняя мертвая точка). Таким образом, речь идет о безразмерном параметре, который зависит только от геометрических данных. Грубо говоря, это отношение объема цилиндра к объему камеры сгорания. Для каждого автомобиля это строго фиксированная величина, которая не меняется со временем. Сегодня на нее можно повлиять только установкой других поршней или головки блока цилиндров. При этом компрессией называют максимальное давление в цилиндре, которое замеряют при выключенном зажигании. Иначе говоря, это показатель степени герметичности камеры сгорания.

Так вот, инженерам Infiniti удалось создать двигатель Variable Compression-Turbocharged (VC-T), который способен изменять степень сжатия. Разумеется, при всем желании на ходу невозможно поменять поршни и иные элементы конструкции, поэтому японская компания использовала принципиально иной подход, благодаря которому ДВС способен варьировать степень сжатия от 8:1 до 14:1.

У основной массы современных моторов степень сжатия составляет около 10:1. Одним из исключений являются бензиновые двигатели Mazda Skyactiv-G, в которых этот параметр увеличен до 14:1. В теории чем выше СЖ, тем более высокого КПД можно добиться на данном моторе. Однако у этой медали есть и обратная сторона: при большой нагрузке высокая СЖ может провоцировать возникновение детонации — неконтролируемого взрыва топливо-воздушной смеси. Этот процесс может привести к существенным повреждениям деталей ДВС.

Производители давно мечтали создать такой двигатель, который бы обладал высокой степенью сжатия при малых оборотах и нагрузках и низкой — при больших. Это позволило бы повысить эффективность работы мотора, что положительно влияет на мощность, расход топлива и количество вредных выбросов, но в то же время позволяет избежать риска возникновения детонации. По указанным выше причинам в ДВС с традиционной компоновкой такую задумку осуществить невозможно. Поэтому инженерам Infiniti пришлось существенно усложнить конструкцию.

На схематичном изображении VC-T описывается общий принцип работы инновационного механизма. В данном случае шатун крепится не напрямую к коленчатому валу, как в обычных ДВС, а к специальному коромыслу (Multi-link). С другой его стороны отходит дополнительный рычаг, который посредством вала управления (Control Shaft) и рычага привода (Actuator Arm) соединяется с модулем волновой передачи (Harmonic Drive). В зависимости от положения последнего элемента будет меняться позиция коромысла, которое, в свою очередь, задает верхнее положение поршня.

VC-T будет способен менять степень сжатия на ходу. Требуемые параметры будут зависеть от нагрузки, оборотов и наверняка даже качества топлива: компьютер будет учитывать все эти данные, чтобы выставить оптимальное положение всех элементов. На данный момент разработчики обнародовали далеко не все параметры нового мотора: известно лишь, что это будет четырехцилиндровый двигатель объемом два литра. Из самого названия Variable Compression-Turbocharged становится очевидно, что он будет оснащен турбокомпрессором. Скорее всего, именно по этой причине инженеры вообще решились на создание необычного ДВС: при высоком давлении наддува существенно повышается риск детонации. Здесь и пригодится возможность снижения степени сжатия. Иными словами, для атмосферного мотора столь сложная конструкция и не понадобилась бы. По данным Infiniti, новый двигатель придет на смену 3,5-литровому атмосферному V6.

Мировая премьера нового мотора состоится 29 сентября на Международном автосалоне в Париже. Ожидается, что первым новый двигатель VC-T получит кроссовер Infiniti QX50 следующего поколения, который должен появиться в 2017 году. Вероятно, чуть позже перспективный агрегат станет доступен для автомобилей Nissan. Не исключено, что со временем он будет предлагаться и для легковушек Mercedes-Benz (сегодня наблюдается обратная ситуация: для некоторых моделей Infiniti предлагается двухлитровый турбомотор Mercedes-Benz).

Судя по всему, двигатель VC-T можно заочно наградить премией «Прорыв года». Даже если этот проект полностью провалится, а затраты на его разработку не окупятся, более революционного изменения в двигателях внутреннего сгорания в 2016 году уже не предвидится. При этом необходимо отметить, что инженеры Infiniti/Nissan вовсе не одиноки в погоне за изменяемой степенью сжатия. К примеру, в 2000 году много говорили про SVC — Saab Variable Compression engine. При этом в нем использовался совершенно другой принцип: головка блока могла двигаться вверх-вниз, что и обеспечивало изменение объема камеры сгорания. Речь уже шла о скором появлении в продаже машин с SVC, однако американский концерн General Motors после выкупа полного пакета акций Saab в 2000 году решил закрыть проект. А вот двигатель MCE-5 разработки Peugeot во многом схож с VC-T. Его представили в 2009 году, однако до сих пор никто не говорит о применении MCE-5 на серийных машинах.

Чуть выше мы уже упомянули компанию Koenigsegg , поскольку она причастна к разработке революционных моторов без распредвалов. На прошлой неделе появились очередные новости о передовых технологиях шведского производителя. Теперь они касаются каталитического конвертера. Напомним: этот компонент должен уменьшить количество вредных веществ в выхлопе автомобиля. Сегодня такие устройства устанавливаются на все новые легковые машины, и сверхмощные спорткары не являются исключением. Тех, кто гонится за каждой дополнительной лошадиной силой, это не сильно радует: каталитические конвертеры являются препятствием на пути свободного движения газов из камеры сгорания в атмосферу. В итоге мощность двигателя несколько снижается. Инженеры Koenigsegg не захотели мириться с таким положением вещей и изобрели собственную уникальную систему.

Вместо того чтобы просто установить каталитический нейтрализатор после турбокомпрессора, как в обычных машинах, разработчики поместили небольшой «предварительный» катализатор на перепускной клапан (вестгейт) турбины. Первое время после запуска двигателя активируется заслонка, которая блокирует прохождение выхлопных газов через турбокомпрессор: они идут через тот самый перепускной клапан и небольшой «предварительный» катализатор. При этом на выходе из турбины предусмотрен основной конвертер. Поскольку он начинает работать только после того, как вся система уже хорошо прогрелась (каталитические нейтрализаторы становятся эффективными только при выходе на рабочую температуру), то его удалось сделать существенно короче. Благодаря этому заметно снизились потери, вызванные затрудненным прохождением воздуха.

По словам инженеров Koenigsegg, запатентованная схема с использованием двух катализаторов позволяет прибавить (вернее, не потерять) около 300 лошадиных сил. Так что владельцы купе Koenigsegg Agera могут без зазрения совести говорить о том, что один только нейтрализатор в их машине дает больше мощности, чем развивает двигатель в большинстве современных легковушек.

Теперь перейдем к другой теме, которая актуальна каждую неделю — новостям из сферы разработки умных машин. Ранее многие известные люди из автомобильного бизнеса, в том числе глава Tesla Motors Элон Маск (Elon Musk), не единожды говорили о том, что создание автомобилей с полноценными автопилотами не только перевернет привычный уклад жизни многих людей, но и существенно повлияет на автомобильную отрасль, а также связанный с ней бизнес. К примеру, ожидается существенный рост спроса на услуги каршеринга: в развитых странах эта услуга только начинает набирать обороты, но по-настоящему выстрелит она лишь в эру самоходных машин. Некоторые производители уже начали готовиться к этому. К примеру, на прошлой неделе представители Ford Motor Company заявили о начале поставок массовых беспилотных автомобилей для бизнеса в 2021 году.

«Следующее десятилетие будет определяться автономными автомобиля, и мы видим, что такие транспортные средства оказывают существенное влияние на общество, как и ввод компанией Ford сборочного конвейера 100 лет назад, — заявил исполнительный директор автомобильной компании Марк Филдс (Mark Fields). — Мы прилагаем все усилия, чтобы выпустить на дороги автономное транспортное средство, которое сможет повысить безопасность и решить социальные и экологические проблемы миллионов людей, а не только тех, кто может позволить себе роскошные автомобили».

За пафосными словами стоят вполне конкретные действия. Компания Ford вдвое увеличила размер своей лаборатории в Силиконовой долине. Теперь общая площадь зданий производителя достигла 16 тысяч квадратных метров, а штат насчитывает 260 сотрудников. К тому же на прошлой неделе американский автомобильный гигант объявил о совместных с китайским информационным конгломератом Baidu инвестициях : на пару они вложат 150 миллионов долларов в разработку технических и программных средств для создания автопилотов. Часть средств досталась компании Velodyne, которая выпускает лидары.

По данным представителей Velodyne, инвестиции будут использованы для ускорения разработки и выпуска нового поколения сенсоров. Они должны стать более высокопроизводительными, но при этом недорогими. Дополнительно к этому Ford поглотил израильский стартап SAIPS. Компания занимается разработками в области алгоритмических решений и технологий распознавания образов и машинного обучения. SAIPS была основана в 2013 году, однако, несмотря на скромный возраст, ее услугами уже пользуются HP, Israel Aerospace Industries и Wix.

Если задумка руководства Ford себя оправдает, то уже к 2021 году в арсенале компании будет автомобиль, который сможет полностью обходиться без человека. При этом «голубой овал» планирует сделать ставку на корпоративный сектор: в первую очередь Ford надеется заинтересовать компании, специализирующие на каршеринге, а также бренды вроде Uber и Lyft, связанные с сервисом такси.

О будущем умных машин говорили и в Tesla Motors . Но рассказали об этом не представители компании, а сотрудники издания electrek.co. По их данным, сейчас уже вовсю кипит работа над системой Autopilot 2.0.

Как мы знаем, в сентябре 2014 года Tesla впервые внедрила в свои электрокары такие аппаратные средства, как фронтальная камера и радар, а также ультразвуковой сенсор, бьющий на 360 градусов вокруг. Год спустя, в октябре 2015-го, производитель выпустил обновление под название Autopilot update (версия ПО 7.0), которое и предоставило возможность активации электронного ассистента, способного взять на себя управление на трассе или припарковать машину в автоматическом режиме. После этого компания несколько раз обновляла программное обеспечение, но при этом «железо» оставалось прежним. Разумеется, у каждого оборудования есть свой предел, поэтому далеко не все проблемы можно решить с помощью нескольких новых строк кода.

Теперь компания задумалась над внедрением системы Autopilot 2.0. Она привнесет масштабные изменения в конфигурацию сенсоров. Ожидается, что новое оборудование позволит добиться выхода на третью степень автоматизации управления, которая подразумевает, что машина уже не будет требовать постоянного контроля со стороны водителя, как в текущей версии Tesla Autopilot, но при определенных условиях компьютер все же будет обращаться за помощью к человеку. При этом разработчики допускают, что в перспективе программные обновления смогут вывести систему на заветную четвертую ступень автоматизации, при которой машины смогут без труда ездить по любым дорогам (впереди останется только пятый уровень, когда из салона вообще пропадут органы управления вроде руля и педалей).

Неназванные источники, близко знакомые с программой Autopilot, рассказали журналистам electrek.co о некоторых подробностях новой системы. Ожидается, что следующее поколение сохранит прежний фронтальный радар, но при этом получит еще два таких же в придачу. Скорее всего, они будут установлены по краям переднего бампера. Дополнительно к этому комплекс пополнится тройной фронтальной камерой. По неофициальным данным, новый корпус для нее начали устанавливать на серийные электрокары Model S уже с прошлой недели.

Судя по всему, даже в Autopilot 2.0 компания Элона Маска собирается обойтись без лидаров. И хотя один из подобных прототипов на базе Model S был замечен возле штаб-квартиры Tesla Motors, это мог быть эксперимент, никак не связанный с разработкой системы автопилотирования следующего поколения.

Возможно, новая тройная фронтальная камера будет основана на системе Front-facing Trifocal Constellation от компании Mobileye. В ней будет использоваться основной сенсор с углом обзора 50 градусов, а также два дополнительных с полем зрения 25 и 150 градусов. Последний позволит лучше распознавать пешеходов и велосипедистов.

В качестве центра обработки информации для Autopilot 2.0 потребуется производительная платформа. Возможно, это будет модуль NVIDIA Drive PX 2 . Впервые он был представлен на выставке CES 2016 в январе, однако поставки должны начаться только осенью.

Скорее всего, система Autopilot 2.0 будет представлена в ближайшее время. Анонимные источники внутри компании сообщают, что на конвейер для Model S уже поставляются обновленные жгуты проводов, в которых предусмотрены разъемы для тройной камеры и другого нового оборудования. Это свидетельствует о том, что производитель вовсю готовится к началу поставок новой версии вспомогательной системы. К тому же — с учетом недавнего смертельного случая с участием Tesla Autopilot — Элон Маск постарается максимально ускорить разработку очередного крупного обновления, чтобы рассказать всем об избавлении от ошибок прошлых версий.

О технологии нового двигателя Infiniti мы уже писали в наших обзорных статьях. Уникальная модель бензинового мотора способная «на лету» изменять степень сжатия может быть мощной как обычный бензиновый силовой агрегат и экономичной, словно вы едите на дизельном моторе.

Сегодня Джейсон Фенске объяснит суть работы двигателя и то как он достигает наибольшей мощности и эффективности.

Технология переменного сжатия, или если хотите турбированный двигатель с переменным коэффициентом компрессии, может практически мгновенно изменять давление поршня на топливно-воздушную смесь в соотношении от 8:1 до 14:1 , одновременно предлагая высокоэффективное сжатие при малых нагрузках (в городе, к примеру, или на шоссе) и низкую компрессию, необходимую для турбины при резком ускорении, с максимальным открытием дроссельной заслонки.

Джейсон совместно с Infiniti объяснил принцип работы технологии, не забыв отметить нюансы и ранее неизвестные детали работы удивительного инновационного мотора. Эксклюзивный материал можно посмотреть в видеоролике, который мы опубликуем ниже, не забудьте включить перевод субтитров при необходимости. Но прежде мы выберем техническое «зерно» моторостроения будущего и отметим те нюансы, которые ранее были неизвестны.

Центральной технологией уникального мотора стала система специального поворотного механизма, которая благодаря сложному штоку поршня имеет центральную поворотную многорычажную систему, которая способна изменять свой угол работы, что приводит к изменению эффективной длины штока поршня, что в свою очередь изменяет длину хода поршня в цилиндре, которое в конечном итоге, изменяет степень сжатия.

Детально технология привода выглядит следующим образом:

1. Электромотор поворачивает рычаг исполнительного механизма 1.30 минута видео

2. Рычаг поворачивает приводной вал по схожему принципу, привода обычных распредвалов, при помощи системы кулачков.

3. Третье, нижний рычаг изменяет угол многозвенного привода, соединенного с верхним рычагом. Последний соединен с поршнем (1.48 минута видео)

4. Вся система при определенных настройках и позволяет поршню изменять высоту верхней мертвой точки, снижая или повышая степень сжатия.

К примеру, если двигатель переходит из режима «максимальной мощности» в режим «экономии топлива и повышения эффективности», волновой редуктор будет вращаться в левую сторону. Показано на правой фотографии (2.10 минута видео). Вращение передастся на приводной вал, который потянет нижний рычаг немного вниз, что приподнимет многозвенный привод, который в свою очередь сместит поршень ближе к головке блока, уменьшив объем и увеличив тем самым компрессию.

Дополнительно происходит переход от традиционного цикла работы ДВС Отто, в цикл Аткинсона, отличающийся соотношением времени тактов цикла, что достигается изменением времени закрытия впускных клапанов.

Кстати, переход, по данным Фенске, от одного режима работы мотора, в другой занимает не более 1.2 секунды!

Более того, новая технология способна варьировать степень сжатия во всем диапазоне от 8:1 до 14:1, перманентно подстраиваясь под стиль вождения, нагрузки и другие факторы, влияющие на работу двигателя.

Но даже объяснение работы столь сложной технологии не является окончанием истории. Еще одной важной характеристикой нового мотора является уменьшение давление поршня на стенки цилиндра, что позволит избежать овализации последнего, поскольку в паре с системой привода поршня применена система уменьшения трения поршня о стенки цилиндра, которая действует путем уменьшения угла атаки шатуна при ходе поршня.

В видео было отмечено, что рядный четырехцилиндровый двигатель ввиду особенностей конструкции получился несколько разбалансированным, поэтому инженеры были вынуждены добавить уравновешивающий вал, что усложняет конструкцию двигателя, но оставляет ей шанс на долгую жизнь без убийственных вибраций, которые возникают из-за работы сложного шатуна.

Двигатель VC-T. Изображение: Nissan

Японский автопроизводитель Nissan Motor представил новый тип бензинового двигателя внутреннего сгорания , который по некоторым параметрам превосходит продвинутые современные дизельные двигатели.

Новый двигатель Variable Compression-Turbo (VC-T) способен при необходимости изменять степень сжатия газообразной горючей смеси, то есть изменять шаг хода поршней в цилиндрах ДВС. Этот параметр обычно является фиксированным. Судя по всему, VC-T станет первым в мире ДВС с изменяемой степенью сжатия смеси.

Степень сжатия - отношение объёма надпоршневого пространства цилиндра двигателя внутреннего сгорания при положении поршня в нижней мёртвой точке (полный объём цилиндра) к объёму надпоршневого пространства цилиндра при положении поршня в верхней мёртвой точке, то есть к объёму камеры сгорания.

Повышение степени сжатия в общем случае повышает его мощность и увеличивает КПД двигателя, то есть способствует снижению расхода топлива.

В обычных бензиновых двигателях степень сжатия обычно составляет от 8:1 до 10:1, а в спортивных машинах и гоночных болидах может достигать 12:1 или больше. При повышении степени сжатия двигатель нуждается в топливе с бóльшим октановым числом.


Двигатель VC-T. Изображение: Nissan

На иллюстрации показана разница в шаге поршней на разной степени сжатия: 14:1 (слева) и 8:1 (справа). В частности, демонстрируется механизм изменения степени сжатия от 14:1 к 8:1. Он происходит таким образом.

  1. В случае необходимости изменить степень сжатия активируется модуль Harmonic Drive и сдвигает рычаг актуатора.
  2. Рычаг актуатора поворачивает приводной вал (Control Shaft на схеме).
  3. Когда приводной вал поворачивается, он изменяет угол наклона многорычажной подвески (Multi-link на схеме)
  4. Многорычажная подвеска определяет высоту, на которую каждый поршень способен подняться в своём цилиндре. Таким образом, изменяется степень сжатия. Нижняя мёртвая точка поршня, судя по всему, остаётся прежней.
Конструкция запатентована Nissan (патент США № 6,505,582 от 14 июня 2003 года).

Изменение степени сжатия в ДВС можно в каком-то смысле сравнить с изменением угла атаки в винтах регулируемого шага - концепции, которая много десятилетий применяется в воздушных и гребных винтах. Изменяемый шаг винта позволяет поддерживать эффективность движителя близкой к оптимальной вне зависимости от скорости движения носителя в потоке.

Технология изменения степени сжатия ДВС даёт возможность сохранить мощность двигателя при соблюдении строгих нормативов к экономичности двигателя. Вероятно, это вообще самый реальный способ соблюсти эти нормативы. «Все сейчас работают над изменяемой степень сжатия и другими технологиями, чтобы значительно улучшить экономичность бензиновых двигателей, - говорит Джеймс Чао (James Chao), управляющий директор по Азиатско-Тихоокеанскому региону и консультант IHS, - По крайней мере последние двадцать лет или около того». Стоит упомянуть, что в 2000 году компания Saab показывала прототип такого двигателя Saab Variable Compression (SVC) для Saab 9-5, за который удостоилась ряда наград на технических выставках. Затем шведскую фирму купил концерн General Motors и прекратил работу над прототипом.


Двигатель Saab Variable Compression (SVC). Фото: Reedhawk

Двигатель VC-T обещают вывести на рынок в 2017 году с автомобилями марки Infiniti QX50. Официальная презентация назначена на 29 сентября на Парижском автосалоне. Этот двухлитровый четырёхцилиндровый двигатель будет обладать примерно такой же мощностью и крутящим моментом, что и 3,5-литровый двигатель V6, место которого займёт, но обеспечит экономию топлива 27%, по сравнению с ним.

Инженеры Nissan говорят также, что VC-T будет дешевле, чем современные продвинутые дизельные двигатели с турбонаддувом, и будет полностью соответствовать современным нормам на выбросы оксида азота и других выхлопных газов - такие правила действуют в Евросоюзе и некоторых других странах.

После Infiniti новыми двигателями планируется оснащать другие автомобили Nissan и, возможно, партнёрской компании Renault.


Двигатель VC-T. Изображение: Nissan

Можно предположить, что усложнённая конструкция ДВС в первое время вряд ли будет отличаться надёжностью. Есть смысл выждать несколько лет, прежде чем покупать автомобиль с двигателем VC-T, если только вы не хотите участвовать в тестировании экспериментальной технологии.

Все чаще звучат авторитетные мнения, что сейчас развитие двигателей внутреннего сгорания достигло наивысшего уровня и больше невозможно заметно улучшить их характеристики. Конструкторам остается заниматься ползучей модернизацией, шлифуя системы наддува и впрыска, а также добавляя все больше электроники. С этим не соглашаются японские инженеры. Свое слово сказала компания Infiniti, которая построила двигатель с изменяемой степенью сжатия. Будем разбираться, в чем преимущества такого мотора, и какое у него будущее.

В качестве вступления напомним, что степенью сжатия называют отношение объема над поршнем, находящимся в нижней «мертвой» точке, к объему, когда поршень находится в верхней. Для бензиновых двигателей этот показатель составляет от 8 до 14, для дизелей — от 18 до 23. Степень сжатия задается конструкцией фиксировано. Рассчитывается она в зависимости от октанового числа применяемого бензина и наличия наддува.

Возможность динамически изменять степень сжатия в зависимости от нагрузки позволяет поднять КПД турбированного мотора, добившись того, чтобы каждая порция топливовоздушной смеси сгорала при оптимальном сжатии. Для малых нагрузок, когда смесь обедненная, используется максимальное сжатие, а в нагруженном режиме, когда бензина впрыскивается много и возможна детонация, мотор сжимает смесь минимально. Это позволяет не регулировать «назад» угол опережения зажигания, который остается в наиболее эффективной позиции для снятия мощности. Теоретически система изменения степени сжатия в ДВС позволяет до двух раз уменьшить рабочий объем мотора при сохранении тяговых и динамических характеристик.

Схема двигателя с изменяемым объемом камеры сгорания и шатуны с системой подъема поршней

Одной из первых появилась система с дополнительным поршнем в камере сгорания, который перемещаясь, изменял ее объем. Но сразу возник вопрос о размещении еще одной группы деталей в головке блока, где уже и так теснились распредвалы, клапаны, инжекторы и свечи зажигания. Притом нарушалась оптимальная конфигурация камеры сгорания, отчего топливо сжигалось неравномерно. Поэтому система так и осталась в стенах лабораторий. Не пошла дальше эксперимента и система с поршнями изменяемой высоты. Разрезные поршни были чрезмерно тяжелыми, притом сразу возникли конструктивные трудности с управлением высотой подъема крышки.

Система подъема коленвала на эксцентриковых муфтах FEV Motorentechnik (слева) и траверсный механизм для изменения высоты подъема поршня

Другие конструкторы пошли путем управления высотой подъема коленвала. В этой системе опорные шейки коленвала размещены в эксцентриковых муфтах, приводимых в действие через шестерни электромотором. Когда эксцентрики поворачиваются, коленвал поднимается или опускается, отчего, соответственно, меняется высота подъема поршней к головке блока, увеличивается или уменьшается объем камеры сгорания, и изменяется тем самым степень сжатия. Такой мотор показала в 2000 году немецкая компания FEV Motorentechnik. Система была интегрирована в турбированный четырехцилиндровый двигатель 1.8 л от концерна Volkswagen, где варьировала степень сжатия от 8 до 16. Мотор развивал мощность 218 л.с. и крутящий момент 300 Нм. До 2003 года двигатель испытывался на автомобиле Audi A6, но в серию не пошел.

Не слишком удачливой оказалась и обратная система, также изменяющая высоту подъема поршней, но не за счет управления коленвалом, а путем подъема блока цилиндров. Действующий мотор подобной конструкции продемонстрировал в 2000 году Saab, и также тестировал его на модели 9-5, планируя запустить в серийное производство. Получивший название Saab Variable Compression (SVC) пятицилиндровый турбированный двигатель объемом 1,6 л, развивал мощность 225 л. с. и крутящий момент 305 Нм, при этом расход топлива при средних нагрузках снизился на 30%, а за счет регулируемой степени сжатия мотор мог без проблем потреблять любой бензин — от А-80 до А-98.

Система двигателя Saab Variable Compression, в которой степень сжатия изменяется за счет отклонения верхней части блока цилиндров

Задачу подъема блока цилиндров в Saab решили так: блок был разделен на две части — верхнюю с головкой и гильзами цилиндров, и нижнюю, где остался коленвал. Одной стороной верхняя часть была связана с нижней через шарнир, а на другой был установлен механизм с электроприводом, который, как крышку у сундука, приподнимал верхнюю часть на угол до 4 градусов. Диапазон степени сжатия при поднимании - опускании мог гибко варьироваться от 8 до 14. Для герметизации подвижной и неподвижной частей служил эластичный резиновый кожух, который оказался одним из самых слабых мест конструкции, вместе с шарнирами и подъемным механизмом. После приобретения Saab корпорацией General Motors американцы закрыли проект.

Проект МСЕ-5 в котором применен механизм с рабочим и управляющим поршнями, связаными через зубчатое коромысло

На рубеже веков свою конструкцию мотора с изменяемой степенью сжатия предложили и французские инженеры компании MCE-5 Development S.A. Показанный ими турбированный 1.5-литровый мотор, в котором степень сжатия могла варьироваться от 7 до 18, развивал мощность 220 л. с. и крутящий момент 420 Нм. Конструкция тут довольно сложная. Шатун разделен и снабжен наверху (в части, устанавливаемой на коленвал) зубчатым коромыслом. К нему примыкает другая часть шатуна от поршня, оконечник которой имеет зубчатую рейку. С другой стороной коромысла связана рейка управляющего поршня, приводимого в действие через систему смазки двигателя посредством специальных клапанов, каналов и электропривода. Когда управляющий поршень перемещается, он воздействует на коромысло и высота поднятия рабочего поршня изменяется. Двигатель экспериментально обкатывался на Peugeot 407, но автопроизводитель не заинтересовался данной системой.

Теперь свое слово решили сказать конструкторы Infiniti, представив двигатель с технологией Variable Compression-Turbocharged (VC-T), позволяющей динамически изменять степень сжатия от 8 до 14. Японские инженеры применили траверсный механизм: сделали подвижное сочленение шатуна с его нижней шейкой, которую, в свою очередь, связали системой рычагов с приводом от электромотора. Получив команду от блока управления, электродвигатель перемещает тягу, система рычагов меняет положение, регулируя тем самым высоту подъема поршня и, соответственно, изменяя степень сжатия.

Конструкция системы Variable Compression у мотора Infiniti VC-T: а - поршень, b - шатун, с - траверса, d - коленвал, е - электродвигатель, f - промежуточный вал, g - тяга.

За счет данной технологии двухлитровый бензиновый турбомотор Infiniti VC-T развивает мощность 270 л.с., оказываясь на 27% экономичнее других двухлитровых двигателей компании, имеющих постоянную степень сжатия. Японцы планируют запустить моторы VC-T в серийное производство в 2018 году, оснастив ими кроссовер QX50, а затем и другие модели.

Заметим, что именно экономичность выступает сейчас основной целью разработки моторов с изменяемой степенью сжатия. При современном развитии технологий наддува и впрыска, нагнать мощности в моторе для конструкторов не составляет больших проблем. Другой вопрос: сколько бензина в супернадутом двигателе будет вылетать в трубу? Для обычных серийных моторов показатели расхода могут оказаться неприемлемы, что и выступает ограничителем для надувания мощности. Японские конструкторы решили этот барьер преодолеть. Как считают в компании Infiniti, их бензиновый двигатель VC-T, способен выступить как альтернатива современным турбированным дизелям, показывая тот же расход топлива при лучших характеристиках по мощности и более низкой токсичности выхлопа.

Каков итог?

Работы над двигателями с изменяемой степенью сжатия ведутся уже не один десяток лет — этим направлением занимались конструкторы Ford, Mercedes-Benz, Nissan, Peugeot и Volkswagen. Инженерами исследовательских институтов и компаний по обе стороны Атлантики получены тысячи патентов. Но пока ни один такой мотор не пошел в серийное производство.

Не все гладко и у Infiniti. Как признаются сами разработчики мотора VC-T, у их детища пока остаются общие проблемы: возросла сложность и стоимость конструкции, не решены вопросы с вибрацией. Но японцы надеются доработать конструкцию и запустить ее в серийное производство. Если это произойдет, то будущим покупателям осталось только понять: сколько придется переплатить за новую технологию, насколько такой мотор будет надежен и сколько позволит экономить на топливе.