Бесконтактная система зажигания. Какое зажигание лучше: кулачковое или электронное Как отличить контактное зажигание бесконтактного

В народе трамблером называется датчик – распределитель либо прерыватель – распределитель, все зависит от устройства системы зажигания. Трамблер предназначен для коммутации с катушкой зажигания (передачи сигнала к коммутатору) и распределения искры зажигания на свечи.
Устройство трамблеров с контактной и бесконтактной системой зажигания практически одинаковое. Главными узлами трамблера являются прерыватель либо датчик и распределитель.
Для ваз 2109 схема трамблера с датчиком холла приведена на верхнем рисунке. Прерыватель служит для коммутации катушки при контактном зажигании или служит датчиком в контактно транзисторном зажигании.
Устройство прерывателя и датчика практически идентичное. Единственно чем отличается на ваз 2109 устройство трамблера это контакты либо датчик вместо них.

Детальное устройство и принцип работы трамблера

Начнем рассматривать на ваз 21093, схема трамблера (внизу) с контактной группой:

  • Прерыватель собран из таких деталей: корпуса (фото вверху), вала, бегунка, контактной пластины с грузиками и пружинами, вакуумного октан-корректора, конденсатора
  • Сам вал выполнен из двух частей подвижно связанных между собой
  • На верхней либо нижней его части расположены кулачки, тут все зависит от конструкции, количество кулачков соответствует числу цилиндров
  • Обе части вала соединяется между собой подвижно, посредством центробежного октан-корректора, который собран из кулачков, а так же пружин разной степени жесткости
  • Когда вал вращается кулачки, расходятся под воздействием центробежной силы, при этом растягиваются пружины и проворачивается только верхняя часть по отношению к нижней на определенный угол
  • А вакуумный октан-корректор соединяется посредством тяги с контактной пластинкой и вакуумной трубкой связан с впускным коллектором
  • Когда происходит открытие , тогда разряжение воздуха во впускном коллекторе растет, что приводит к поворачиванию подвижной контактной пластины относительно кулачков
  • Чтобы снизить искрение, и повысит вторичное напряжение, на корпусе трамблера находится конденсатор, который подключен в электрическую схему параллельно контактам
  • А на верхней части этого вала надет ротор (народное название «бегунок»), который предназначен для распределения тока высокого напряжения на свечки зажигания, распределение происходит через выводы на крышке трамблера

Чем отличается устройство трамблера на ваз 2109 с датчиком холла:

  • Трамблер автомобилей ВАЗ с бесконтактной системой зажигания отличается полным отсутствием в его устройстве контактов, их роль играет электронный коммутатор
  • Здесь вместо контактов в трамблере установлен датчик, работа которого основана на эффекте, открытом Холлом, исследовавшим поведение полупроводников в электромагнитном поле

  • На подвижную пластину трамблера установлен датчик, имеющий специальную прорезь
  • В этой прорези расположены с одной стороны постоянный магнит, с другой стороны полупроводник
  • На вал трамблера установлена металлическая шторка, имеющая с прорези прямоугольной формы, которая в процессе вращения проходит сквозь прорезь датчика, она перекрывает магнитный поток, идущий к полупроводнику от магнита
  • Датчик в это время перестает пропускать ток, проходящий через него на коммутатор
  • Вращаясь далее, шторка проходит вырезом мимо датчика и тогда полупроводник попадает в поле действия постоянного магнита, и тогда пропускает ток, который проходит на вывод коммутатора
  • А коммутатор зависимости от этого открывает либо закрывает силовой транзистор, посредством которого соединяется вывод от катушки зажигания с массой

Вот мы и рассмотрели ваз 2109 трамблера устройство, и принцип работы, чтобы разобрать его и отремонтировать понадобится другая статья. Водителям часто приходится сталкиваться с регулировкой угла опережения зажигания, думаю, вам это тоже будет полезно знать.

Установка опережения зажигания

После того как мы изучили на ваз 2109 устройство трамблёра, переходим к регулировке угла опережения зажигания.
Для выполнения этой работы вам понадобятся:

  • Кривой стартер, либо ключ для храповика
  • Шлицевая (плоская) отвертка прочная и с мощным широким жалом
  • Набор щупов
  • Рожковый ключ «12х13»
  • Конусная резиновая пробка
  • Свечной ключ, либо подходящая вместо него головка с воротком

Подготовка к регулировке

Чтобы мотор вашей машины работал, как положено, необходимо, чтобы проскакивала искра в нужное время, которая воспламеняла бы смесь к моменту прохождения поршня ВМТ и газ, выполнив работу по расширению, толкал поршень вниз. Чтобы образование искры происходило вовремя, в системе зажигания применяется распределитель, основными узлами которого являются контактная группа и бегунок. наиболее важные регулировки кулачкового зажигании это: зазоры между кулачками, углы замкнутого состояния контактов (УЗСК) и момент опережение зажигания.
Прежде чем начинать установку опережения зажигания своими руками вам надо убедиться что:

  • Свечи зажигания исправны и годятся для дальнейшей эксплуатации
  • Если на них присутствует масляный нагар, тогда рекомендуется их прокалить
  • Применять для чистки наждачную бумагу, даже мелкую не рекомендуется, мелкий абразив от нее может остаться на керамическом изоляторе и как результат свечку начнет пробивать
  • Докрасна прокаливать свечки совсем не обязательно главное, выжечь масляные отложения
  • Затем отрегулируем зазоры всех свечей, в соответствии с руководством
  • Для этого используйте проволочный щуп
  • Непременно проверяем состояние контактов нашего прерывателя
  • Если на них следы выгорания металла, или следы коррозии замените контакты
  • Ремонтировать их не рекомендуется, по одной простой причине, после ремонта контакты прослужат не долго! Проще их заменить и позабыть на долгое время
  • Проверяем конденсатор с помощью тестера на заряд и разряд
  • Ток стекать должен плавно и медленно
  • Для этого лучше использовать стрелочный тестер, на нем нагляднее видно
  • Надо убедиться в хорошем контакте главного провода идущего от катушки зажигания
  • Её кстати проверить, тоже не мешает
  • Проверять можно тоже тестером, мегомметром или проще всего и совершенно бесплатно в хорошем магазине автомобильных запчастей на стенде
  • Удаляем грязь с катушки зажигания, крышки распределителя и трамблера
  • Если образовался на крышке распределителя нагар, надо замените ее
  • Не стоит экономить, берите фирменную заводскую крышку, цена окупится качеством
  • Грамотно оцениваем состояние карбюратора
  • Если карбюратор не отзывается на регулировку, ему пора в ремонт. Но об этом отдельная статья
  • Проверяем работу вакуумного опережения зажигания
  • Чтобы его привод ходил без заедания, а трубка была толстостенная без трещин и прорывов

Вставляем сам прерыватель-распределитель

Убедившись, что все элементы системы исправны, проступаем к регулировке, сначала рассмотрим ситуацию, когда трамблер снимался целиком:

  • Теперь, чтобы вставить его на место, необходимо выбрать один из цилиндров 1-вый или 4-тый в котором поршень идет в такт сжатия ВМТ при совмещении отметок шкива коленвала и лобовой крышки
  • Делается это просто. Берем резиновую конусную пробку, выкручиваем свечу первого цилиндра, вставляем пробку в свечное отверстие, потуже
  • Плавно вращаем коленвал кривым стартером либо ключом храповика
  • Как только нужный (первый в нашем случае) цилиндр придет в ВМТ резиновая пробка из него
  • Советую сразу привязать пробку, чтобы долго ее искать потом
  • Теперь совмещаем отметки на шкиве и лобовой крышке (с самой длинной)
  • Потом вставляем трамблер строго по шлицам, чтобы бегунок стоял ровно и перпендикулярно плоскости головки двигателя и смотрел на нее
  • Затем приподымаем трамблер по чуть-чуть, чтобы дать возможность крутить вал и не зацепить шлицы, и переставляем по направлению перемещения часовой стрелки на один зуб
  • Мы выполняем это чтобы, дать трамблеру максимально полный ход для регулировки

Непосредственно регулировка

Инструкция по регулировке, когда трамблер на месте:

  • Необходимо выставить зазор между контактами, строго по руководству автомобиля
  • Для классики этот зазор равен 0.45
  • Углы замкнутого состояния выставляются лишь на специальных тестерах, поэтому самостоятельно их выставлять не надо, просто не получится
  • Подключаем все провода, как положено, и выставляем регулировку момента по середине хода
  • Затем вставляем свечу 1-вого цилиндра в свечной провод, соответствующий первому цилиндру и включаем зажигание
  • Вращаем шкив против движения часовой стрелки примерно градусов на 45
  • Затем создаем контакт массы свечи зажигания и плавно проворачиваем шкив в направлении движения часовой стрелки
  • Как только между электродами проскочит искра, прекращаем вращать коленвал
  • Проверяем отметки (на крышке и шкиве)
  • Если между ними есть разбег, надо провернуть трамблер на один — два градуса в необходимую сторону
  • Когда отметка шкива убегает вперед от отметки лобовой крышки в направлении вращения, значит, зажигание позднее и следует повернуть трамблер против движения часовой стрелки
  • Когда отметка наоборот не доходит до отметки на крышке, значит, зажигание раннее и следует повернуть трамблер по направлению движения часовой стрелки
  • Далее повторяем предыдущую процедуру с вращением шкива назад и снова ловим момент проскакивания искры, сравниваем отметки и регулируем
  • При некотором опыте все получится быстро и легко

Совет: чем аккуратнее и медленнее и вы вращаете шкив, тем точнее получится выставить зажигание

  • Когда достигли точного совпадения отметок, затягиваем трамблер и проворачиваем коленвал на два полных оборота, затем проверяем регулировку еще раз
  • При появлении разбега, устраняем его, если всё совпало, заводим мотор, и прогреваем
  • Далее разгоняем автомобиль до скорости 40-50километров в час, и включаем четвертую передачу, затем резко жмем на газ
  • Если вдруг услышали звук перебора клапанов, тогда зажигание надо выставить попозднее
  • Обычно при точной регулировке больше настраивать не надо

Быстрый метод

Более быстрый метод годится для первого запуска двигателя после ремонта:

  • Устанавливаете трамблер на место по выше описанному принципу
  • Момент опережения выставить проще
  • Найдя ВМТ поршня 4-того цилиндра, совмещаем отметку коленвала со средней отметкой на крышке
  • Затем проворачиваем трамблер медленно по часовой и против часовой стрелки, как только проскочит искра, прекращаем, фиксируем трамблер
  • Зажигание выставлено

Выставляем опережение по стробоскопу

Существует способ регулировки зажигания по стробоскопу. Он наиболее простой, и точный, однако зависит от исправности прибора.
Все стробоскопы разные по конструкции, однако, принцип действия у всех один:

  • Подключаем провода питающие стробоскоп на клеммы, а провод, принимающий импульсы на колпачок свечки не снимая его

  • Настройка выполняется на оборотах холостого хода
  • Стробоскоп наводим на отверстие (лючок) в кожухе сцепления(см.)
  • Лучше пометить отметку на маховике коленвала ярким белым маркером либо корректором
  • Направляем на шкив стробоскоп и под действием вспышек выдаваемых стробоскопом с некоторой частотой, видим помеченную отметку неподвижной

  • Вращаем трамблер в необходимую сторону до совпадения необходимых отметок и фиксируем

Предупреждение:: если отметка под лучами стробоскопа движется туда-сюда, это сообщает о неисправности системы зажигания (как правило, конденсатора либо контактов).

Вот регулировка завершена, видео по этому вопросу прояснит все непонятные моменты.

Катушка системы зажигания – очень важный элемент, основная задача которого заключается в преобразовании напряжения из низковольтного в высоковольтное. Данное напряжение поступает непосредственно из аккумуляторной батареи или генератора. Катушка контактной системы зажигания довольно сильно отличается от аналогичного элемента в бесконтактной системе.

Катушка контактной системы зажигания

В контактной системе зажигания катушка состоит из нескольких важнейших элементов: сердечника, первичной и вторичной обмотки, картонной трубки, прерывателя и добавочного резистора. Особенность первичной обмотки по сравнению со вторичной – меньшее число витков медного провода (до 400). Во вторичной обмотке катушки их число может достигать 25 тысяч, но при этом их диаметр в разы меньше. Все медные провода в катушке зажигания хорошо изолированы. Сердечник катушки уменьшает образование вихревых токов, он состоит из полосок трансформаторной стали, которые также друг от друга хорошо изолированы. Нижняя часть сердечника устанавливается в специальный фарфоровый изолятор. Сейчас нет надобности перечислять принцип работы катушки подробно, достаточно лишь упомянуть, что в контактной системе такой элемент (преобразователь напряжения) имеет ключевое значение.

Катушка бесконтактной системы зажигания

В бесконтактной системе зажигания катушка выполняет точно такие же функции. И отличие проявляется лишь в непосредственном строении элемента, преобразующего напряжение. Также стоит отметить, что электронный коммутатор осуществляет прерывание цепи питания первичной катушки. Что касается самой системы зажигания, то бесконтактная значительно лучше по многим параметрам: возможность пуска и работы двигателя при низкой температуре, в цилиндрах не замечается нарушения равномерности распределения искры, нет вибрации. Все эти преимущества дает сама катушка в бесконтактной системе зажигания.

Сравнение катушек

Когда речь заходит о признаках отличия катушки контактной системы зажигания от бесконтактной, все сразу обращают внимание на маркировку. Действительно, по ней можно сразу узнать, для какой системы используется катушка. Однако нас интересует именно внешние и технические различия катушек, поэтому мы приведем отличия именно по этим параметрам:

  • Катушка в контактной системе зажигания имеет большее количество витков в первичной обмотке. Это изменение напрямую влияет на сопротивление и количество проходящего тока. Кроме того, ограничение тока на контактах связано с безопасностью (чтобы контакты не обгорали).
  • Контакты прерывателя катушки в бесконтактной системе зажигания не загрязняются и не обгорают. Такая надежность позволяет получить одно важное преимущество: установка момента зажигания не занимает много времени.
  • Катушка в бесконтактной системе зажигания мощнее и надежнее. Это преимущество связано непосредственно с тем, что самая бесконтактная система зажигания – более надежный вариант. Поэтому в такой системе катушка и дает большую мощность двигателя.

Выводы сайт

  1. У них разная маркировка, обозначающая различие между двумя катушками.
  2. В контактной системе катушка имеет большее количество витков.
  3. Контакты прерывателя катушки бесконтактной системы надежней.
  4. Сама катушка в бесконтактной системе зажигания дает большую мощность.
Современный бесконтактный распределитель и катушка

Современная бесконтактная система зажигания или БСЗ является передовым и конструктивным решением, своеобразным продолжением старой контактно-транзисторной системы. Здесь обычный контакт-предохранитель заменен специальным и производительным регулятором. А чем же еще отличаются эти обе системы? Давайте узнаем.

КСЗ

КСЗ – первый, уже устаревший вариант зажигания, применяющийся до сих пор на редких автомоделях. В КСЗ ток и его сегрегация осуществляется трамблером с помощью контактной группы.

Включает в свой состав КСЗ такие компоненты, как мехраспределитель и мехпрерыватель, катушку зажигания, вакуум-датчик и т. д.

Мехпрерыватель или размыкатель

Контактная система зажигания схема

Это компонент, на который ложится функция осуществления разъединения звена низкого токового накала. Другими словами - тока, образующегося в первичной обмотке. Вольтаж идет на контактную группу, элементы которой защищены от обгорания специальным покрытием. Кроме того, предусмотрен конденсатор-теплообменник, подключенный симультанно контактной группе.

Катушка зажигания в КСЗ является преобразователем тока. Именно здесь ток низкого напряжения трансформируется в высокий ток. Как и в случае с БСЗ, используется два типа обмоток.

Механический распределитель или просто трамблер

Этот компонент способен обеспечить эффективную подачу высокого тока к СЗ. Сам трамблер состоит из множества элементов, но основными являются крышка и ротор или бегунок (народ.).

Крышка изготовлена так, что с внутренней стороны оснащена соединителями основного и дополнительного типа. Высокий ток принимается центральным контактом, а рассредотачивается по свечам – через боковые (дополнительные).

Мехпрерыватель и распределить – это единый тандем, как и датчик холла с коммутатором в БСЗ. Они приводятся в действие приводом коленвала. В просторечье оба элемента называют единым словом «трамблер».

ЦРОЗ – регулятор, служащий для изменения УОЗ в зависимости от количества оборотов коленвала силовой установки. Априори состоит из 2-х грузиков, воздействующих на пластинку.

УОЗ другими словами, это угол поворота коленвала, такой при котором происходит непосредственная передача тока с высоким вольтажом на СЗ. Для того чтобы горючая смесь без остатков сгорела, зажигание осуществляется с опережением.

УОЗ в КСЗ выставляется с помощью спецприспособления.

ВРОЗ или вакуумный датчик

Он обеспечивает изменение УОЗ в зависимости от нагрузки на мотор. Другими словами, этот показатель – прямое следствие степени открытия дроссзаслонки, зависящей от силы нажатия педали акселератора. ВРОЗ находится за дроссзаслонкой, и способен изменять УОЗ.

Бронепровода – обязательные элементы, своеобразные коммуникации, служащие для передачи тока с высоким вольтажом к трамблеру и от последнего к свечам.

Функционирование КСЗ осуществляется следующим образом.

  • Контакт-прерыватель замкнут – в катушке задействован ток с низким вольтажом.
  • Контакт разомкнут – уже во вторичной обмотке задействуется ток, но с высоким вольтажом. Он подается на верхнюю часть трамблера, а затем растекается по бронепроводам дальше.
  • Увеличивается число вращений коленвала – одновременно повышается количество оборотов вала прерывателя. Грузики под воздействием расходятся, подвижная пластина перемещается. УОЗ увеличивается за счет размыкания контактов прерывателя.
  • Обороты коленвала силовой установки сокращаются – УОЗ автоматически уменьшается.
Вакуумный регулятрор трамблер

Контактно-транзисторная система зажигания – это дальнейшая модернизация старой КСЗ. Отличие в том, что стал применяться уже коммутатор. В результате этого увеличился срок службы контактной группы.

Катушка

В КСЗ одним из обязательных, важных элементов выступает катушка. Она включает линейку очень значимых компонентов, таких как обмотки, трубка, резистор, сердечник и т. д.

Отличие низковольтной и высоковольтной обмотки заключается не только в характере напряжения. В первичной обмотке сделано меньшее количество витков, чем во вторичной. Разница достигать может очень большого количества. Например, 400 и 25000 витков, но размер этих самых витков будет в разы меньше.

Из каких элементов состоит БСЗ

БСЗ – это модернизированная трансформация КСЗ. В ней механический прерыватель заменен датчиком. Сегодня таким зажиганием оснащается большинство отечественных моделей и иномарок.

Примечание. БСЗ может выступать, как дополнительный элемент КСЗ или функционировать полностью автономно.

Использование БСЗ позволяет значительно увеличить мощностные показатели силовой установки. Особенно важно, что снижается топливный расход, а также выбросы СО2.

Одним словом, БСЗ включает целый ряд компонентов, среди которых особое место занимает выключатель, регулятор импульсов, коммутатор и т. д.

БСЗ – устройство, которое аналогично контактной системе зажигания, имеет целый ряд положительных сторон. Однако, как утверждают некоторые эксперты, не лишено и минусов.

Рассмотрим основные элементы БСЗ, чтобы составить более обзорное представление.

Датчик Холла

Регулятор импульсов или ДЭИ* - данный компонент предназначен для создания электроимпульсов низкого напряжения. В современной технопромышленности принято использовать 3 типа ДЭИ, но в автомобильной сфере широкое применение нашел лишь один из них – датчик Холла.

Как известно, Холл – гениальный ученый, которому первому пришла в голову идея рационально и эффективно применять магнитное поле.

Состоит регулятор этого типа из магнита, пластины-полупроводника с чипа и затвором с выемками, которые собственно и пропускают магнитное поле.

Примечание. Обтюратор имеет прорези, но помимо этого, еще и стальной экран. Последний ничего не просеивает, и таким образом, создается чередование.

ДЭИ – датчик электроимпульсов

Регулятор конструктивным образом соединяется с трамблером, тем самым способом, образуется устройство единого типа – регулятор-трамблер, внешне схожий во многих функциях с прерывателем. Например, оба имеют аналогичный привод от коленвала.

КТТ

Коммутатор транзисторого типа (КТТ) – полезнейший компонент, служащий для прерывания электричества в цепи катушки зажигания. Конечно же, КТТ функционирует в соответствие с ДЭИ, составляя вместе с последним единый и практичный тандем. Прерывается электрический заряд за счет отпирания/запирания выходного транзистора.

Катушка

И в БСЗ катушка выполняет те же функции, что и на КСЗ. Отличия, безусловно, имеются (подробно представлены ниже). Кроме этого, здесь применяется электрокоммутатор, осуществляющий прерывание цепи.

БСЗ-катушка надежнее и лучше во всех отношениях. Улучшается пуск силовой установки, эффектнее становится работа мотора на разных режимах.

Как функционирует БСЗ

Вращение коленвала силовой установки воздействует на тандем трамблер-регулятор. Таким образом формируются импульсы напряжения, передающиеся на КТТ. Последний создает ток в катушке зажигания.

Примечание. Следует знать, что в автоэлектрике принято говорить о двух типах обмоток: первичной (низкой) и вторичной (высокой). Импульс тока создается в низкой, а большой вольтаж – в высокой.

Схема функционирования БСЗ

Далее высокое напряжение передается из катушки на трамблер. В распределителе его принимает центральный контакт, от которого ток и передается по всем бронепроводам на свечи. Последние осуществляют воспламенение горючей смеси, и ДВС запускается.

Как только увеличиваются обороты коленвала, ЦРОЗ* осуществляет регулирование УОЗ**. А если нагрузка на силовую установку меняется, то за УОЗ отвечает уже вакуумный датчик.

ЦРОЗ – центробежный регулятор опережения зажигания

УОЗ – угол опережения зажигания

Безусловно, трамблер сам по себе, будь он старого или нового образца, является обязательным элементом системы зажигания автомобиля, способствующий появлению качественного искрообразования.

В трамблере нового образца устранены все недочеты распределителя контактного. Правда, новый распределить стоит на порядок дороже, но это окупается, как правило, впоследствии.

Как и было написано выше, при эксплуатации БСЗ применяется новый распределитель, не имеющий контактную группу. Здесь роль прерывателя и соединителя выполняют КТТ и датчик Холла.

ЭСЗ

Система зажигания, в которой распределение высокого напряжения по двигательным цилиндрам осуществляется с помощью электроустройств, называется ЭСЗ. В некоторых случаях данную систему принято называть также «микропроцессорной».

Отметим, что обе прежние системы – КСЗ и БСЗ тоже включали некоторые элементы электроустройств, но ЭСЗ вообще не подразумевает использование каких бы то ни было механических составляющих. По сути, это та же БСЗ, только более модернизированная.

Электронная система зажигания

На современных автомашинах ЭСЗ – это обязательная часть управляющей системы ДВС. А на более новых машинах, вышедших совсем недавно, ЭСЗ работает в группе с выпускной, впускной и охладительной системами.

Моделей таких систем на сегодняшний день немало. Это и всемирно известные Бош Мотроник, Симос, Магнетик Марелли, и менее именитые аналоги.

  1. В контактном зажигании прерыватели или контакты смыкаются механическим путем, а в БСЗ – электронным. Другими словами, в КСЗ применяются контакты, в БСЗ – датчик Холла.
  2. БСЗ – это больше стабильности и сильнее искра.

Отличия имеются и между катушками. У обоих систем разная маркировка и разные катушки зажигания. Так, у катушки БСЗ больше витков. Кроме того, катушка БСЗ считается надежнее и мощнее.

Таким образом, мы выяснили, что на сегодняшний день в применении 3 варианта зажигания. Используются, соответственно, и разные трамблеры.

Как платить за БЕНЗИН В ДВА РАЗА МЕНЬШЕ

  • Цены на бензин растут с каждым днем, а аппетит автомобиля только увеличивается.
  • Вы бы рады сократить расходы, но разве можно в наше время обойтись без машины!?
Но есть совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год! Подробнее об этом по ссылке.

ozapuske.ru

Разница между катушкой контактной системы зажигания и бесконтактной

Катушка системы зажигания – очень важный элемент, основная задача которого заключается в преобразовании напряжения из низковольтного в высоковольтное. Данное напряжение поступает непосредственно из аккумуляторной батареи или генератора. Катушка контактной системы зажигания довольно сильно отличается от аналогичного элемента в бесконтактной системе.

Катушка контактной системы зажигания

В контактной системе зажигания катушка состоит из нескольких важнейших элементов: сердечника, первичной и вторичной обмотки, картонной трубки, прерывателя и добавочного резистора. Особенность первичной обмотки по сравнению со вторичной – меньшее число витков медного провода (до 400). Во вторичной обмотке катушки их число может достигать 25 тысяч, но при этом их диаметр в разы меньше. Все медные провода в катушке зажигания хорошо изолированы. Сердечник катушки уменьшает образование вихревых токов, он состоит из полосок трансформаторной стали, которые также друг от друга хорошо изолированы. Нижняя часть сердечника устанавливается в специальный фарфоровый изолятор. Сейчас нет надобности перечислять принцип работы катушки подробно, достаточно лишь упомянуть, что в контактной системе такой элемент (преобразователь напряжения) имеет ключевое значение.

К содержанию

Катушка бесконтактной системы зажигания

В бесконтактной системе зажигания катушка выполняет точно такие же функции. И отличие проявляется лишь в непосредственном строении элемента, преобразующего напряжение. Также стоит отметить, что электронный коммутатор осуществляет прерывание цепи питания первичной катушки. Что касается самой системы зажигания, то бесконтактная значительно лучше по многим параметрам: возможность пуска и работы двигателя при низкой температуре, в цилиндрах не замечается нарушения равномерности распределения искры, нет вибрации. Все эти преимущества дает сама катушка в бесконтактной системе зажигания.

Когда речь заходит о признаках отличия катушки контактной системы зажигания от бесконтактной, все сразу обращают внимание на маркировку. Действительно, по ней можно сразу узнать, для какой системы используется катушка. Однако нас интересует именно внешние и технические различия катушек, поэтому мы приведем отличия именно по этим параметрам:

  • Катушка в контактной системе зажигания имеет большее количество витков в первичной обмотке. Это изменение напрямую влияет на сопротивление и количество проходящего тока. Кроме того, ограничение тока на контактах связано с безопасностью (чтобы контакты не обгорали).
  • Контакты прерывателя катушки в бесконтактной системе зажигания не загрязняются и не обгорают. Такая надежность позволяет получить одно важное преимущество: установка момента зажигания не занимает много времени.
  • Катушка в бесконтактной системе зажигания мощнее и надежнее. Это преимущество связано непосредственно с тем, что самая бесконтактная система зажигания – более надежный вариант. Поэтому в такой системе катушка и дает большую мощность двигателя.
к содержанию

Выводы TheDifference.ru

  1. У них разная маркировка, обозначающая различие между двумя катушками.
  2. В контактной системе катушка имеет большее количество витков.
  3. Контакты прерывателя катушки бесконтактной системы надежней.
  4. Сама катушка в бесконтактной системе зажигания дает большую мощность.

thedifference.ru

Контактная и бесконтактная система зажигания ВАЗ 2107

На автомобилях ВАЗ 2107 применяются два типа зажигания: устаревшая контактная и современная бесконтактная система. Последний тип начал применяться на «классике» ВАЗа относительно недавно, в основном на моделях, оборудованных инжекторными двигателями. Однако преимущества бесконтактной схемы в полной мере раскрываются и на карбюраторных моторах ВАЗ.

Контактная система зажигания ВАЗ 2107

Классическая контактная система, применяемая на ВАЗ, состоит из 6 компонентов:

  • Выключатель зажигания.
  • Прерыватель-распределитель.
  • Свечи зажигания.
  • Низковольтные провода.
  • Катушка зажигания.
  • Высоковольтные провода.

Выключатель зажигания совмещает в себе две детали: замок с противоугонным устройством и контактную часть. Выключатель крепится двумя винтами слева от рулевой колонки.

Катушка зажигания является повышающим трансформатором, преобразующим ток низкого напряжения в высокое напряжение, необходимое для получения искры в свечах зажигания. Первичная и вторичная обмотки катушки помещены в корпус и залиты трансформаторным маслом, обеспечивающим их охлаждение во время работы.

Распределитель зажигания – наиболее сложный элемент системы, состоящий из множества деталей. Функция распределителя – преобразования постоянного низкого напряжения в высокое импульсное с распределением импульсов по свечам зажигания. В конструкцию распределителя входят прерыватель, центробежный и вакуумный регуляторы опережения зажигания, подвижная пластина, крышка, корпус и прочие детали.

Свечи зажигания воспламеняют бензино-воздушную смесь в цилиндрах двигателя при помощи искровых разрядов. Во время эксплуатации сечей необходимо контролировать зазор между электродами и исправность изоляторов.

Бесконтактная система зажигания ВАЗ 2107

Название «бесконтактной» электронная схема зажигания ВАЗ 2107 получила потому, что размыкание/замыкание цепи производится не контактами прерывателя, а электронным коммутатором, управляющим работой выходного полупроводникового транзистора. Комплекты электронной (бесконтактной) системы зажигания ВАЗ 2107 на карбюраторных и инжекторных двигателях несколько отличаются, поэтому существует ошибочное мнение, что электронное и бесконтактное зажигание являются разными системами. В реальности принцип работы электронных систем зажигания одинаков.

Технология плазменной резки крайне редко применяется в быту, зато в промышленной сфере получила очень широкое распространение. Благодаря тому, что с помощью плазмореза можно легко, быстро и качественно разрезать практически любой токопроводящий металл, а также другие материалы - камень и пластик, его используют в машиностроении, судостроении, коммунальной сфере, изготовлении рекламы, для ремонта техники и многого другого. Срез всегда получается ровным, аккуратным и красивым. Тех, кто только собрался освоить данную технологию, может интересовать резонный вопрос, что собой представляет аппарат плазменной резки, каков принцип его работы, а также какие разновидности плазморезов бывают и для чего используется каждый из них. Все это даст общее понимание технологии плазменной резки, позволит сделать правильный выбор при покупке и освоить работу с аппаратом.

Как работает плазморез? И что подразумевается под словом «плазма»? Для работы плазмореза необходимо только две вещи - электричество и воздух. Источник энергии подает на резак (плазмотрон) токи высокой частоты, благодаря чему в плазмотроне возникает электрическая дуга, температура которой 6000 - 8000 °С. Затем в плазмотрон направляется сжатый воздух, который на большой скорости вырывается из патрубка, проходит через электрическую дугу, нагревается до температуры 20000 - 30000 °С и ионизируется. Воздух же, который ионизировался, теряет свойства диэлектрика и становится проводником электричества. Плазмой как раз и является этот воздух .

Вырываясь из сопла, плазма локально разогревает заготовку, в которой необходимо выполнить рез, металл плавится. Образованные на лобовой поверхности реза частички расплавленного металла сдуваются потоком воздуха, вырывающимся на огромной скорости. Так происходит резка металла.

Скорость плазменного потока (разогретого ионизированного воздуха) возрастает, если увеличить расход воздуха. Если же увеличить диаметр сопла, через которое плазма вырывается, то скорость уменьшится. Параметры скорости плазмы примерно таковы: на токе 250 А она может быть 800 м/с.

Чтобы рез получился ровным, плазмотрон необходимо держать перпендикулярно плоскости реза, максимальное допустимое отклонение 10 - 50 °. Также большое значение имеет скорость реза. Чем она меньше, тем ширина реза становится больше, а поверхности реза становятся параллельными. То же самое происходит при увеличении силы тока.

Если увеличить расход воздуха, то ширина реза уменьшится, зато кромки реза станут непараллельными.

Аппарат плазменной резки состоит из источника питания , плазмотрона и кабель-шлангового пакета , с помощью которого соединяются источник питания и компрессор с плазмотроном.

Источником питания для аппарата плазменной резки может служить трансформатор или инвертор, которые подают на плазмотрон большую силу тока.

Плазмотрон , собственно, и является главным элементом аппарата - плазменным резаком. Иногда по ошибке весь аппарат называют плазмотроном. Возможно, это связано с тем, что источник питания для плазмореза не отличается никакой уникальностью, а может быть использован вместе со сварочным аппаратом. А единственным элементом, отличающим плазморез от другого аппарата, и является плазмотрон.

Основные составляющие плазмотрона - электрод, сопло и изолятор между ними.

Внутри корпуса плазмотрона находится цилиндрическая камера малого диаметра, выходной канал из которой довольно мал и позволяет формировать сжатую дугу. В тыльной стороне дуговой камеры располагается электрод, служащий для возбуждения электрической дуги.

Электроды для воздушно-плазменной резки могут быть изготовлены из бериллия, гафния, тория или циркония. На поверхности этих металлов образуются тугоплавкие оксиды, предотвращающие разрушение электрода. Но для образования этих оксидов нужны определенные условия. Самыми распространенными являются электроды из гафния. А вот из бериллия и тория их не делают, и виной тому те самые оксиды: оксид бериллия - крайне радиоактивен, а оксид тория - токсичен. Все это может крайне негативно сказаться на работе оператора.

Так как возбуждение электрической дуги между электродом и заготовкой обрабатываемого металла напрямую затруднительно, сначала зажигается так называемая дежурная дуга - между электродом и наконечником плазмотрона. Столб этой дуги заполняет весь канал. После этого в камеру начинает подаваться сжатый воздух, который, проходя сквозь электрическую дугу, нагревается, ионизируется и увеличивается в объеме в 50 - 100 раз. Сопло плазмотрона сужено книзу и формирует из разогретого ионизированного газа/воздуха поток плазмы, вырывающийся из сопла со скоростью 2 - 3 км/с. При этом температура плазмы может достигать 25 - 30 тыс. °С. В таких условиях электропроводимость плазмы становится примерно такой же, как и у обрабатываемого металла.

Когда плазма выдувается из сопла и касается факелом обрабатываемого изделия, образуется режущая плазменная дуга - рабочая, а дежурная дуга гаснет. Если вдруг по какой-то причине рабочая дуга тоже погасла, необходимо прекратить подачу воздуха, снова включить плазмотрон и сформировать дежурную дугу, а затем пустить сжатый воздух.

Сопло плазмотрона может иметь различные размеры и от этого зависят возможности всего плазмотрона и технология работы с ним. Например, от диаметра сопла плазмотрона зависит количество воздуха, которое может проходить сквозь этот диаметр за единицу времени. От количества расхода воздуха зависит ширина реза, скорость работы и скорость охлаждения плазмотрона. В плазморезах используют сопла не больше 3 мм диаметром, зато довольно длинные - 9 - 12 мм. Длина сопла влияет на качество реза, чем длиннее сопло, тем качественнее рез. Но здесь нужно быть осторожным, везде важна мера, так как слишком большое сопло будет быстрее изнашиваться и разрушаться. Оптимальной считается длина, в 1,5 - 1,8 раз больше диаметра сопла.

Крайне важно, чтобы катодное пятно фокусировалось строго по центру катода (электрода). Для этого используют вихревую подачу сжатого воздуха/газа. Если вихревая (тангенциальная) подача воздуха нарушена, то катодное пятно будет смещаться относительно центра катода вместе с дугой. Все это может привести к нестабильному горению плазменной дуги, образованию двойной дуги и даже выходу плазмотрона из строя.

В процессе плазменной резки используются плазмообразующие и защитные газы. В аппаратах плазменной резки с силой тока до 200 А (можно разрезать металл толщиной до 50 мм) используют только воздух. В таком случае воздух является плазмообразующим газом и защитным, а также охлаждающим. В сложных промышленных портальных аппаратах используют другие газы - азот, аргон, водород, гелий, кислород и их смеси.

Сопло и электрод в аппарате плазменной резки являются расходными материалами, которые необходимо своевременно заменять, не дожидаясь их полного износа.

В основном плазморезы принято покупать в готовом виде, главное - правильно подобрать нужный агрегат, тогда не придется ничего «доделывать напильником». Хотя в нашем отечестве есть «Кулибины», которые могут сделать аппарат плазменной резки своими руками, закупив некоторые детали отдельно.

Разновидности аппаратов плазменной резки

Плазморезы различают по нескольким различным параметрам. Аппараты плазменной резки могут представлять собой переносные установки, портальные системы, шарнирно-консольные машины, специализированные конструкции и установки с координатным приводом. Особенно выделяются машины плазменной резки с ЧПУ (числовым программным управлением), которые минимизируют вмешательство человека в процесс резки. Но помимо этих существуют и другие градации.

Аппараты для ручной и машинной резки

Используется для резки металла вручную, когда плазмотрон держит в руках оператор-человек и ведет его по линии реза. В связи с тем, что плазмотрон все время находится на весу над обрабатываемой заготовкой, рука человека может слегка дрогнуть даже в процессе обычного дыхания, все это отражается на качестве реза. На нем могут быть наплывы, неровный рез, следы рывков и т.д. Чтобы облегчить работу оператору, существуют специальные упоры, которые надеваются на сопло плазмотрона. С помощью него можно поставить плазмотрон непосредственно на заготовку и аккуратно вести его. Зазор между соплом и обрабатываемой заготовкой всегда будет одинаковым и соответствующим требованиям.

Аппараты машинной резки представляют собой плазморезы портального типа и аппараты автоматического раскроя деталей и труб. Такие аппараты используются на производстве. Качество реза таким плазморезом получается идеальным, дополнительная обработка кромок не требуется. А программное управление позволяет делать резы различной фигурной формы в соответствии с чертежом без страха дернуть рукой в неподходящий момент. Рез выполняется точно и гладко. На подобные аппараты плазменной резки металла цена на порядок выше, чем на ручные аппараты.

Трансформаторные и инверторные аппараты плазменной резки

Существуют трансформаторные и инверторные плазморезы.

тяжелее инверторных и больше по размеру, зато они более надежны, так как не выходят из строя в случае скачков напряжения. Продолжительность включения таких аппаратов выше, чем у инверторных, и может достигать 100 %. Такой параметр, как продолжительность включения, напрямую влияет на специфику работы с аппаратом. Например, если ПВ равна 40 %, это означает, что 4 минуты резак может работать без перерыва, а затем ему необходимо 6 минут отдыха, чтобы остыть. ПВ 100 % используется в производстве, там, где работа аппарат продолжается весь рабочий день. Недостатком трансформаторного плазмореза является высокое энергопотребление.

С помощью трансформаторных плазменных резаков можно обрабатывать заготовки большей толщины. На подобный аппарат воздушно-плазменной резки цена выше, чем на инверторный. Да и представляет он собой короб на колесиках.

Используются чаще в быту и на маленьких производствах. Они намного экономнее в энергопотреблении, обладают меньшим весом и габаритами и чаще всего представляют собой ручной аппарат. Достоинством инверторного плазмореза является стабильное горение дуги и КПД на 30 % выше, компактность и возможность вести работы в труднодоступных местах.

Аппарат воздушно-плазменной резки и водно-плазменной резки

Стоит отметить, что существуют не только аппараты воздушно-плазменной резки, принцип действия которых и устройство были описаны выше, но и аппараты водно-плазменной резки.

Если в воздушно-плазменных резаках воздух выступает и как плазмообразующий, и как защитный, и как охлаждающий газ, то в водно-плазменных резаках вода выступает в качестве охладителя, а водяной пар плазмообразователя.

Достоинствами воздушно-плазменной резки являются низкая цена и небольшой вес, зато недостаток - ограничена толщина разрезаемой заготовки, зачастую не более 80 мм.

Мощность водно-плазменных резаков позволяет разрезать толстые заготовки, зато их цена несколько выше.

Принцип работы аппарата водно-плазменной резки заключается в том, что вместо сжатого воздуха в нем используется водяной пар. Это дает возможность отказаться от использования компрессора для воздуха или газовых баллонов. Водяной пар более вязкий по сравнению с воздухом, поэтому его необходимо намного меньше, запаса в баллончике хватает примерно на месяц-два. Когда в плазмотроне протекает электрическая дуга, в него подается вода, которая испаряется. Одновременно с этим рабочая жидкость поднимает катод отрицательного полюса от катода положительного полюса сопла. В результате загорается электрическая дуга, пар ионизируется. Еще до того, как плазмотрон приблизится к обрабатываемой заготовке, загорается плазменная дуга, которая выполняет резку. Ярким представителем данной категории плазморезов является аппарат Горыныч, на такой аппарат плазменной резки цена около 800 у.е.

В зависимости от того, включен разрезаемый материал в электрическую схему плазменной резки или нет, зависит тип резки - контактный и бесконтактный.

Контактная плазменная резка или резка плазменной дугой выглядит так: дуга горит между электродом плазмотрона и обрабатываемой деталью. Это еще называется дугой прямого действия. Столб электрической дуги совмещен с плазменной струей, которая вырывается из сопла на большой скорости. Продуваемый через сопло плазмотрона воздух обжимает дугу и придает ей проникающие свойства. За счет высокой температуры воздуха 30000 °С, повышается скорость его истечения и плазма оказывает сильной механическое воздействие на выдуваемый металл.

Контактный тип резки применяется при работах с металлами, которые могут проводить электричество. Это изготовление деталей с прямолинейными и криволинейными контурами, резка труб, полос и прутков, выполнение отверстий в заготовках и многое другое.

Бесконтактная плазменная резка или резка плазменной струей выглядит так: электрическая дуга горит между электродом и формирующим наконечником плазмотрона, часть плазменного столба выносится за пределы плазмотрона через сопло и представляет собой высокоскоростную плазменную струю. Именно данная струя и является режущим элементом.

Бесконтактная резка используется при работе с нетокопроводящими материалами (неметаллами), например, камнем.

Работа с аппаратом плазменной резки и технология воздушно-плазменной резки - это целое искусство, требующее знаний, терпения и соблюдения всех правил и рекомендаций. Знание и понимание устройства плазмореза помогает выполнять работу качественно и аккуратно, так как оператор понимает, какие процессы происходят в плазмотроне и за его пределами в тот или иной момент, и может ими управлять. Также немаловажно соблюдать все меры предосторожности и технику безопасности, например, работать с плазморезом необходимо в костюме сварщика, в щитке, перчатках, в закрытой обуви и плотных штанах из натуральной ткани. Некоторые окислы, выделяемые в процессе резки металла, могут нанести непоправимый вред легким человека, поэтому необходимо работать в защитной маске или хотя бы обеспечить хорошую вентиляцию в рабочей зоне.

Бесконтактная система зажигания является конструктивным продолжение контактно-транзисторной системы зажигания. В данной системе зажигания контактный прерыватель заменен бесконтактным датчиком. Бесконтактная система зажигания стандартно устанавливается на ряде моделей отечественных автомобилей, а также может устанавливаться самостоятельно вместо контактной системы зажигания.

Применение бесконтактной системы зажигания позволяет повысить мощность двигателя, снизить расход топлива и выбросы вредных веществ за счет более высокого напряжения разряда (30000В) и соответственно более качественного сгорания топливно-воздушной смеси.

Конструктивно бесконтактная система объединяет ряд элементов, среди которых источник питания, выключатель зажигания, датчик импульсов, транзисторный коммутатор, катушка зажигания , распределитель и конечно свечи зажигания . Распределитель соединен со свечами и катушкой зажигания с помощью проводов высокого напряжения.

В целом устройство бесконтактной системы зажигания аналогично контактной системе зажигания , за исключением датчика импульсов и транзисторного коммутатора.

Датчик импульсов предназначен для создания электрических импульсов низкого напряжения. Различают датчики импульсов следующих типов: Холла, индуктивный и оптический.

Наибольшее применение в бесконтактной системе зажигания нашел датчик импульсов использующий эффект Холла (возникновение поперечного напряжения в пластине проводника с током под действием магнитного поля). Датчик Холла состоит из постоянного магнита, полупроводниковой пластины с микросхемой и стального экрана с прорезями (обтюратора).

Прорезь в стальном экране пропускает магнитное поле и в полупроводниковой пластине возникает напряжение. Стальной экран не пропускает магнитное поле, и напряжение на полупроводниковой пластине не возникает. Чередование прорезей в стальном экране создает импульсы низкого напряжения.

Датчик импульсов конструктивно объединен с распределителем и образуют одно устройство – датчик-распределитель. Датчик-распределитель внешне подобен прерывателю-распределителю и имеет аналогичный привод от коленчатого вала двигателя .

Транзисторный коммутатор служит для прерывания тока в цепи первичной обмотки катушки зажигания в соответствии с сигналами датчика импульсов. Прерывание тока осуществляется за счет отпирания и запирания выходного транзистора.

Принцип работы бесконтактной системы зажигания

При вращении коленчатого вала двигателя датчик-распределитель формирует импульсы напряжения и передает их на транзисторный коммутатор. Коммутатор создает импульсы тока в цепи первичной обмотки катушки зажигания. В момент прерывания тока индуцируется ток высокого напряжения во вторичной обмотке катушки зажигания. Ток высокого напряжения подается на центральный контакт распределителя. В соответствии с порядком работы цилиндров двигателя ток высокого напряжения подается по проводам высокого напряжения на свечи зажигания. Свечи зажигания осуществляют воспламенение топливно-воздушной смеси.

При увеличении оборотов коленчатого вала регулирование угла опережения зажигания осуществляется центробежным регулятором опережения зажигания.

При изменении нагрузки на двигатель регулирование угла опережения зажигания производит вакуумный регулятор опережения зажигания.