Подвеска автомобиля - все, что нужно знать о ней автовладельцам. Упругие элементы Металлические упругие элементы

Упругие элементы подвесок. Наиболее распространены листовые рессоры. Они просты в изготовлении и ремонте. Им не нужны, в отличие от пружинных и торсионных рессор, рычажные направляющие приспособления.

Листовые рессоры бывают трех типов (рис. 22.2, У): полуэллипти- ческие (а), кантилеверные (б) и четвертные (в).

Форма набора листов соответствует эпюре изгибающих моментов, т.е. рессора представляет собой балку равного сопротивления.

Крепление рессор первых двух типов асимметричное, что обеспечивает сопротивление крену и «клевкам» при торможении. Коэф-

Рис. 22.2.

/ - листовые рессоры: а - полуэллиптическая; б - кантилеверная; в - четвертная; II - пневмоэлементы: а - двухсекционный; б, в - диафрагменные;

г - рукавный фициент асимметрии г = (1 2 - 1 {)/1 = 0,1-0,3- Коэффициент деформации полуэллиптической рессоры 5 = 1,45-1,25.

Листовая рессора состоит из коренного листа, который соединен с рамой, и притянутых к нему хомутами остальных листов. Перед сборкой листы имеют разную кривизну. Продольное смещение листов ограничивают выступы, которые входят в углубление смежного листа, или центральный стяжной болт. Для снижения трения на листы наносят слой графитовой смазки или размещают между ними неметаллические прокладки. Сечение рессор бывает прямоугольным, Т-образным или трапецеидальным. Рессору крепят к мосту стремянками с накладками, один конец коренного листа крепят к кузову шарнирно, а другой - через серьгу. Применяют также крепление концов рессор на резиновых подушках. Такое крепление не требует смазки и снижает скручивание рессоры при перекосах рамы.

Спиральные рессоры (пружины) чаще применяют при независимой подвеске колес. Цилиндрические рессоры имеют линейную характеристику, а конические - прогрессивную.

Торсионы представляют собой вал или пучок валов, скручивающиеся во время воздействия дороги на подвеску. Их применяют при независимой подвеске колес многоосных автомобилей, в прицепах и малолитражных автомобилях. Энергия упругой деформации торсионов в 2-3 раза больше, чем у листовых рессор.

Упругие пневматические элементы часто применяют на автомобилях с меняющейся подрессоренной массой (автобусах, контейнеровозах, трейлерах и т.д.). Характеристика пневмоподвески нелинейная, ее параметры можно менять за счет изменения давления воздуха. Высокая плавность хода может быть получена при относительно малых перемещениях масс кузова и неподрессоренной части. Меняя давление воздуха, можно регулировать положение кузова относительно дороги, а при независимой подвеске - дорожный просвет.

Баллонные и диафрагменные упругие элементы (рис. 22.2, II) изготовляют из двухслойных резинокордовых оболочек. Для корда используют капрон или нейлон, для наружного слоя баллона - масло- бензостойкую резину, а для внутреннего слоя - каучук. Для баллонов (рис. 22.2, //, а) характерна высокая герметичность. Однако для работы с ними на низкочастотных колебаниях применяют дополнительные резервуары. Применяя диафрагменные и рукавные элементы (рис. 22.2, //, б , в, г), можно получить низкую собственную частоту подвески. Для работы этих элементов требуется меньший объем воздуха. Однако вследствие трения их оболочки о поршень они быстрее изнашиваются.

Гидропневматические элементы телескопического типа передают газовой подушке давление через жидкость. Эти устройства компактнее пневматических, так как работают при давлении до 20 МПа.

Направляющие устройства определяются схемой подвески. При зависимой подвеске (рис. 22.3, а) оба колеса жестко соединены с балкой моста. При изменении положения одного из колес по высоте меняется угол X. В этом случае при вращении колеса возникает гироскопический эффект, стремящийся вернуть ось в предыдущее положение, что приводит к износу шин и осей. При независимой подвеске (рис. 22.3, б-д) каждое колесо подрессорено отдельно. При однорычажной подвеске (см. рис. 22.3, б) в системе также действует гироскопический эффект. При двухрычажной подвеске параллело- граммной (см. рис. 22.3, в) и трапециевидной с рычагами разной длины (см. рис. 22.3, г) углового перемещения колеса нет, но возникает боковое смещение Д/, которое приводит к боковому износу колес.

На легковых автомобилях широко применяют рычажно-телескопическую подвеску «качающаяся свеча» («свеча Макферсона», см.

Рис. 22.3.

а - зависимая; б - независимая однорычажная; виг - независимые двухрычажные с рычагами равной и разной длины; д - независимая рычажно-телескопическая рис. 22.3, д ). Она обеспечивает незначительное изменение колеи и развала колес, имеет малую массу, большое расстояние между опорами правого и левого колес, большой ход по высоте.

Балансирные подвески (рис. 22.4) применяют на многоосных автомобилях. Подвески с коротким балансиром (рис. 22.4, а) используют на полуприцепах и автомобилях с колесной формулой 6x2. В подвеске, изображенной на рис. 22.4, б, под листовой рессорой установлен большой балансир, а над ним - реактивные тяги (в автомобилях МАЗ). В схеме на рис. 22.4, в сама рессора является балансиром, а сверху и снизу установлены реактивные штанги, ограничивающие перемещение мостов (автомобили ЗИЛ, КрАЗ, УралАЗ).

Рис. 22.4. Схемы балансирных подвесок: а - четырехрессорная с балансиром; б - двухрессорная с жесткой балансирной балкой; в - с балансирными рессорами и реактивными штангами

Стабилизаторы. При повороте автомобиля под действием центробежной силы кузов накреняется, положение центра масс изменяется, что может привести к опрокидыванию машины. Для предотвращения этого явления подвеска должна иметь угловую жесткость в поперечном направлении, что достигается установкой стабилизаторов. Часто стабилизатор представляет собой торсион, который при наклоне кузова закручивается. На легковых автомобилях стабилизатор устанавливают на переднем мосту и редко - на заднем. Иногда функцию стабилизатора выполняет в задней подвеске U-образная балка заднего моста (автомобили ВАЗ).

Подвески автомобиля классифицируются по конструкции (или типам) направляющих устройств и упругих элементов. Направляющие устройства служат для восприятия и передачи тяговых, тормозных и поперечных сил, возникающих при повороте, от колес к кузову. Конструкция направляющего устройства влияет на характер изменения положения кузова и колес автомобиля при движении. Упругие элементы в подвеске являются основными преобразователями динамических нагрузок, передающихся через колеса от дороги к кузову. Наибольшим эффектом снижения динамических нагрузок обладают "мягкие" подвески, имеющие упругие элементы с небольшой жесткостью. Такие подвески могут обеспечить низкие частоты колебаний кузова (не более 1 Гц), создающие наибольший комфорт при движении автомобиля, так как позволяют изолировать кузов от воздействия сил, возникающих при взаимодействии колес с неровностями дороги.

Считается, что для легковых автомобилей наилучший комфорт (отсутствие утомляемости водителя при длительной езде и отсутствие ощущения колебаний кузова при движении по дороге с твердым покрытием на различных скоростях) достигается, если ускорения кузова не превышают 0,5-1 м/с 2 при вертикальных собственных колебаниях кузова на частотах до 1 Гц.

Направляющее устройство подвески определяет кинематику колес по отношению к кузову и дороге, оказывающую значительное влияние на эксплуатационные свойства автомобиля. Отвлекаясь от некоторых конструктивных особенностей применяемых направляющих устройств, их можно представить в виде простых схем (рис. 2) .


Направляющее устройство представляет совокупность рычагов различной конструкции, штанг и шарниров, связывающих колесо с кузовом и обеспечивающих передачу сил и моментов. Для передачи осевых сил применяют, как правило, простые штанги с шарнирными опорами, исключающими изгибающие нагрузки. Примером таких штанг могут служить продольные штанги подвески ведущих колес автомобилей ВАЗ-2101; -2107, "Мазда-РХ7", "Фольксваген", "Даймлер-Бенц" и поперечные, например, тяга Панара, воспринимающая поперечные силы в зависимых подвесках. Профиль сечения таких штанг может быть различным, но обеспечивающим высокое сопротивление продольному изгибу. Наибольшее применение нашли штанги круглого сечения.

В независимых подвесках, где необходима передача усилий в поперечном и продольном направлениях, используются рычаги треугольной или серповидной формы, устойчивые к продольным силам и обладающие прочностью на изгиб от продольных и поперечных нагрузок. Рычаги изготавливаются штамповкой или поковкой из стали или алюминиевых сплавов. В ряде случаев применяют литье и сварные конструкции. Из алюминиевого сплава изготовлены поперечные рычаги автомобилей "Порше", "Даймлер-Бенц" и др.

Рычаги направляющего устройства подвески соединяются с колесом и кузовом с помощью шаровых шарниров и втулок. Шарниры могут быть направляющими и несущими. Например, в независимой подвеске на поперечных рычагах на нижний рычаг опирается упругий элемент. Шаровой шарнир такого рычага воспринимает силы, действующие в различных направлениях, следовательно, шарнир должен быть несущим. Шарнир на верхних рычагах не воспринимает вертикальные силы, а передает в основном поперечные. В этом случае применяется направляющий шарнир. На рис. 3 показаны несущие шаровые шарниры и направляющий шарнир, применяющиеся на автомобилях. Следует отметить, что аналогичные шарниры применяются и на рулевых тягах. Шарниры имеют цилиндрический или конусный (1:10) направляющий хвостовик, шаровая головка охватывается пластмассовым (из ацетильной смолы) вкладышем, защитный чехол заполняется специальной смазкой. Такие шарниры (фирмы-изготовители Эренрайх", "Лемфёрдер Метальва-рен") обладают хорошей герметичностью от попадания грязи и практически не требуют обслуживания.

Обращает на себя внимание несущий шарнир (рис.3б) , имеющий дополнительную шумоизоляцию в виде упругих резиновых вкладышей, используемый фирмой "Даймлер-Бенц" для изоляции шумов от качения радиальных шин.

Опорные узлы направляющего устройства подвески должны иметь не большое трение, быть достаточно жесткими и обладать шумопоглощающимн свойствами. Для обеспечения этих требований в конструкцию опорных элементов вводятся резиновые или пластмассовые вкладыши. В качестве материалов вкладышей применяют такт которые не требуют обслуживания процессе эксплуатации, например полиуретан, полиамид, тефлон и др Использование резиновых вкладышей во втулках обеспечивает хорошую шумоизоляцию, эластичность при кручении и упругое смещение под нагрузкой.

Наибольшее распространение в опорных элементах получили сайлентблоки (рис. 4) , состоящие из резиновой цилиндрической втулки, запрессованной большим обжатием между наружной и внутренней металлическими втулками. Эти втулки допускают углы закручивания ±15° и перекос до 8° (рис. 4,а) . Втулка (рис. 4,б) применяется на автомобиле БMB-528i, изготовлена методом вулканизации резины между двумя стальными втулками, обладает хорошими шумопоглощающими свойствами и достаточной жесткостью. Втулка (рис. 4,в) нашла широкое применение и поперечных тягах и амортизаторах.

На поперечных рычагах автомобилей "Даймлер-Бенц 280S/500SEC" и "Фольксваген" устанавливают так называемые скользящие опоры, в которых промежуточная втулка может скользить по внутренней, обеспечивая малую жесткость при кручении (деформация не превышает 0,5 мм при боковой силе 5кН). Опору смазывают, а подвижную часть герметизируют торцевыми уплотнениями.

Для обеспечения поглощения таких шумов на автомобилях БМВ 5-й серии применяют резиновые опоры, запрессовываемые в поперечину задней подвески с обеих сторон и имеющие различную жесткость в зависимости от направления деформации. В передней подвеске автомобилей "Хонда Прелюд" и "Форд Фиеста" применяется комбинированная втулка из полиуретана, пластмассы и стальных шайб, обеспечивающих в зависимости от направления действия сил различные жесткостные характеристики. На переднеприводных автомобилях "Ауди-100/200" и "Опель Корса" используют цельную фигурную резиновую втулку в поперечных рычагах, которая в зависимости от направления сил сопротивления качению имеет различную жесткость при необходимой эластичности в боковом и вертикальном направлениях.

Упругие элементы подвески различают по конструкции и материалу, из которого они изготовлены. Основной характеристикой упругого элемента является жесткость (отношение нагрузки к деформации или прогибу, которые она вызывает), т.е. упругое сопротивление материала различным видам нагрузок.

Таким свойством в наибольшей степени обладают металлы, резина, некоторые пластмассы и газы. Наилучшим видом упругой характеристики является прогрессивная характеристика, обладающая определенной жесткостью в средней части (зоне создания колебаний кузова), обеспечивающих наибольший комфорт при движении автомобиля) и большой жесткостью в крайних положениях направляющего устройства подвески при сжатии и отбое для исключения жесткого удара.

Поэтому в подвесках используют комбинацию упругих элементов, каждый из которых выполняет свою определенную функцию. Как правило, в состав упругих элементов входят: основные упругие элементы, воспринимающие вертикальную нагрузку, создаваемую массой автомобиля; дополнительные упругие элементы, обеспечивающие увеличение жесткости основного упругого элемента и ограничивающие ход подвески, исключая жесткий удар; стабилизатор, обеспечивающий увеличение жесткости основного упругого элемента при поперечно-угловых колебаниях и наклонах кузова при поворотах автомобиля. Металлические упругие элементы имеют линейную упругую характеристику и изготавливаются из специальных сталей, обладающих высокой прочностью при больших деформациях. К таким упругим элементам относятся листовые рессоры, торсионы и пружины. Листовые рессоры на современных легковых автомобилях практически не применяются, за исключением некоторых моделей автомобилей многоцелевого назначения. Можно отметить модели легковых автомобилей, выпускавшиеся ранее с листовыми рессорами в подвеске, которые продолжают эксплуатироваться и в настоящее время. Продольные листовые рессоры устанавливались в основном в зависимой подвеске колес и выполняли функцию упругого и направляющего устройства. Использовались как многолистовые, так и однолистовые рессоры.

Пружины как упругие элементы применяются в подвеске многих легковых автомобилей. В передней и задней подвесках, выпускаемых различными фирмами большинства легковых автомобилей, применяются винтовые цилиндрические пружины с постоянными сечением прутка и шагом навивки. Такая пружина имеет линейную упругую характеристику, а необходимая прогрессивность обеспечивается дополнительными упругими элементами из полиуретанового эластомера и резиновыми буферами отбоя. На ряде автомобилей для обеспечения прогрессивной характеристики применяется комбинация цилиндрических и фасонных пружин с переменной толщиной прутка.

Фасонные пружины имеют прогрессивную упругую характеристику и называются "миниблоками" за небольшие размеры по высоте. Такие фасонные пружины применяют, например, в задней подвеске автомобилей "Фольксваген", "Ауди", "Опель" и др. Фасонные пружины имеют различные диаметры в средней части пружины и по краям, а пружины "миниблок" имеют и различный шаг навивки. На автомобилях БМВ 3-й серии в задней подвеске устанавливают бочкообразную пружину с прогрессивной характеристикой, достигаемой за счет формы пружины и применения прутка переменного сечения. На отечественных легковых автомобилях в подвесках применяют цилиндрические винтовые пружины с постоянными сечением прутка и шагом в сочетании с резиновыми отбойными буферами.

Торсионы, как правило, круглого сечения применяются на автомобилях в качестве упругого элемента и стабилизатора. Упругий крутящий момент передается торсионом через шлицевые или четырехгранные головки, расположенные на его концах. Торсионы на автомобиле могут быть установлены в продольном или поперечном направлении. К недостаткам торсионов следует отнести их большую длину, необходимую для создания требуемых жесткости и рабочего хода подвески, а также высокую соосность шлицов на концах торсиона. Однако следует отметить, что торсионы имеют небольшую массу и хорошую компактность, что позволяет успешно применять их на легковых автомобилях среднего и высокого классов (например, "Рено-1 Г, "Фиат-130", в подвеске передних колес автомобилей "Хондж Сивик" и др.).

Пневматические и пневмогидравлические упругие элементы еще не нашли широкого применения в подвесках легковых автомобилей. Использование газа как упругого элемента имеет большую перспективу, поскольку позволяет, как никакие другие упругие элементы, регулировать упругую характеристику подвески и дорожный просвет. Пневмогидравлические упругие элементы имеют металлическую оболочку, в которой газ сжимается поршнем через жидкость, играющую роль затвора, т.е. обеспечивающую совместно с уплотнениями подвижного поршня необходимую герметичность. Помимо фирмы "Ситроен" в Европе для некоторых автомобилей класса "8" пневмогидравлические упругие элементы изготавливает фирма "Фихтель и Закс".

Стабилизаторы на легковых автомобилях в зависимости от типа и конструкции подвески могут быть различной формы: прямые, П-образные, дугообразные и т.п. Стабилизатор устанавливается на резиновых втулках для обеспечения упругой деформации в опорах. Как правило, стабилизаторы изготавливают из пружинной стали.

Зависимая подвеска на легковых автомобилях устанавливается на задних колесах. Отличительной особенностью конструкции применяющихся зависимых подвесок является наличие упругих элементов, передающих вертикальные нагрузки и не имеющих трения, жестких тяг и рычагов, воспринимающих поперечные (боковые) нагрузки и обеспечивающих колесу и кузову определенную кинематику.

В зависимых подвесках для восприятия и передачи поперечных сил используется тяга Панара, представляющая собой жесткую штангу, концы которой шарнирно крепятся: один к балке моста, другой - к кузову. Расположение этой тяги относительно оси моста и ее длина оказывают влияние на положение оси крена и характер входа автомобиля в поворот, усиливая или ослабляя недостаточную или избыточную поворачиваемость. Расположение тяги Панара сзади оси моста по направлению движения способствует ослаблению избыточной поворачиваемости, присущей автомобилям с задним приводом колес, а расположение перед осью способствует ослаблению недостаточной поворачиваемости, присущей переднеприводным автомобилям. Расположение тяги по оси колес практически не оказывает влияния на поворачиваемость автомобиля.

Характерной конструкцией задней зависимой подвески заднеприводного автомобиля (классическая компоновка) является подвеска автомобиля ВАЗ (рис. 5) .

В подвеску установлены под углом к вертикальной оси автомобиля два амортизатора. Такое расположение амортизаторов обеспечивает дополнительно к гашению вертикальных колебаний повышение поперечной устойчивости кузова. Аналогичная установка амортизаторов принята в подвесках автомобилей "Фольксваген", "Опель", "Форд", "Фиат" и др. Для восприятия боковых сил вместо тяги Панара на ряде легковых автомобилей применяется механизм Уатта. Механизм Уатта может располагаться как по оси несущей балки, так и перпендикулярно к ней.

На автомобиле "Мазда-КХ7", имеющем привод на задние колеса и зависимую подвеску колес, рычаги механизма Уатта располагаются по оси моста. Механизм расположен перед балкой моста и совместно с продольными рычагами подвески сохраняет нейтральную поворачиваемость на поворотах, обеспечивает вертикальное перемещение моста и воспринимает боковые силы. Такое усложнение зависимой подвески автомобиля с ведущими задними колесами позволило развивать на нем скорость до 200 км/ч. Для обеспечения нейтральной поворачиваемости независимо от нагрузки на ось применяется подвеска ведущих колес с косыми верхними рычагами без поперечной тяги (автомобиль "Форд Таунус").

Наиболее совершенная зависимая подвеска ведущих колес автомобиля применяется на автомобиле "Вольво-740/760": подвеска имеет два длинных рычага, крепящихся под балкой моста, на которых установлены пружина и амортизатор. Нижние рычаги крепятся к кузову на резиновых опорах, имеющих некоторую податливость при скручивании. Боковые силы воспринимаются поперечной тягой Панара, расположенной сзади балки моста на высоте оси колес.

Зависимая задняя подвеска автомобилей с приводом на передние колеса состоит из несущей балки, чаще всего открытого профиля, соединяющей оси колес, двух или четырех продольных рычагов, шарнирно или жестко крепящихся к балке. Нижние рычаги изготавливаются таким образом, чтобы на них опирались упругие элементы и амортизаторы. Боковые силы, как правило, воспринимаются тягой Панара.

Задняя зависимая подвеска автомобиля "Сааб-900" имеет силовую балку, к которой шарнирно крепятся продольные (верхний и нижний) рычаги, образующие механизм Уатта. Над силовой балкой расположена тяга Панара, воспринимающая поперечные нагрузки и практически не влияющая на поворачиваемость автомобиля, а также повышающая центр крена, что эффективно для переднеприводных автомобилей. Расположение нижних рычагов перед балкой, а верхних за ней создает нагружение всех рычагов растягивающими силами при торможении и параллельное перемещение балки при крене кузова на повороте. Недостатком такой схемы подвески является смещение положения центра продольного крена при изменении нагрузки: при малой нагрузке центр крена расположен перед осью колес, а при полной нагрузке - сзади оси. Такое изменение положения центра продольного крена приводит к "клевку" автомобиля при торможении.

На автомобиле "Форд Фиеста" тормозные и тяговые силы воспринимаются двумя нижними продольными рычагами на балке и кронштейнами, закрепленными на усиленных штоках амортизаторов и через резиновые втулки связанными с кузовом. Пружинные упругие элементы расположены на силовой балке, а кронштейны крепления амортизаторов вынесены назад по отношению к оси балки. Такая конструкция подвески обеспечивает разгрузку средней части балки от скручивающих сил при разгоне и торможении.

На некоторых моделях автомобилей "Рено" и "Даймлер-Бенц" имеются два нижних продольных рычага и один верхний треугольный рычаг, закрепленный на балке с возможностью поворота и углового перекоса. Такая схема обеспечивает прямолинейное перемещение задней оси без бокового смещения и уменьшение крена кузова на повороте.

На автомобилях "Ауди-100", "Мицубиси Талант", "Тойота Стартет" применяется подвеска задних ведомых колес с двумя продольными рычагами, работающими на изгиб (рис. 6) .

Через широко разнесенные рычаги, жестко связанные с поперечной балкой, передаются тяговый и тормозной моменты, а за счет восприятия изгибающего момента рычагами и скручивающих нагрузок поперечной балкой уменьшается продольный и поперечный крены кузова. Такая подвеска используется и на автомобилях "Рэнджровер", "Даймлер-Бенц", в первом случае в передней подвеске, во втором - в передней и задней подвесках полноприводных автомобилей.

На автомобиле АЗЛК-2141 применяется также подвеска с поперечной балкой, работающей на скручивание, и продольными рычагами, воспринимающими изгибающие нагрузки, отличающаяся от показанной на рис.7 расположением упругих элементов - пружин непосредственно на рычагах.

Широкое распространение на легковых автомобилях получила конструкция подвески (в ряде случаев ее называют полузависимой) со связанными продольными рычагами. Простейшим вариантом такой конструкции может служить подвеска задних колес переднеприводных автомобилей ВАЗ (рис. 7) (в том числе ВАЗ-1111), ЗАЗ-1102, "Рено 5СТ-турбо", "Фольксваген Поло", "Сирокко", "Пассат", "Гольф", "Аскона" и др.


Рис. 7. Задняя подвеска автомобиля ВАЗ-2109: 1 - ступица заднего колеса; 2 - рычаг задней подвески; 3 - кронштейн крепления рычага подвески; 4,5 - соответственно резиновая и распорная втулки шарнира рычага; 6 - болт крепления рычага подвески; 7 - кронштейн кузова; 8 - опорная шайба крепления штока амортизатора; 9 - верхняя опора пружины подвески; 10 - распорная втулка; 11- изолирующая прокладка пружины подвески; 12 - пружина задней подвески; 13 - подушка крепления штока амортизатора; 14 - буфер хода сжатия; 15 - шток амортизатора; 16 - защитный кожух амортизатора; 17 - нижняя опорная чашка пружины подвески; 18 - амортизатор; 19 - соединительная балка; 20 - ось ступицы колеса; 21 - колпак ступицы; 22 - гайка крепления ступицы колеса; 23 - шайба подшипника; 24 - уплотнительное кольцо; 25 - подшипник ступицы; 26 - щит тормозов; 27,28 - соответственно стопорное и грязеотражательное кольца; 29 - фланец рычага подвески; 30 - втулка амортизатора; 31 - кронштейн для крепления амортизатора; 32 - резинометаллический шарнир рычага подвески

Такая подвеска в переднеприводных автомобилях обеспечивает легкость компоновки всех элементов подвески, небольшое количество деталей в подвеске, отсутствие направляющих рычагов и штанг, оптимальное передаточное отношение от кузова к упругому устройству подвески, исключение стабилизатора, высокую стабилизацию схода и колеи при разных ходах подвески, благоприятное расположение центров крена, уменьшающих возможность "клевка" кузова при торможении.

Простую конструкцию подвески со связанными рычагами имеют автомобили "Фольксваген Гольф", "Сирокко" с поперечной связью, расположенной близко к опорам концов продольных рычагов (коэффициент изменения развала близок к единице).

На автомобиле "Рено-турбо" установлена подвеска с поперечной связью и торсионными упругими элементами. С каждым колесом связаны два торсиона разного диаметра (передний - малого диаметра, задний - большого), работающие одновременно при равностороннем ходе подвески, а при разноименном нагружаются задние торсионы и поперечина, связывающая рычаги. Амортизаторы в подвеске устанавливаются под углом к вертикальной оси с наклоном вперед, воспринимая силы при торможении и разгоне.

Независимая подвеска на двойных поперечных рычагах применяется на передних и задних колесах автомобилей. Подвеска состоит из двух поперечных рычагов, шарнирно соединяющих каждое колесо с кузовом, упругих элементов, амортизаторов и стабилизатора. У передней подвески наружные концы рычагов соединяются посредством шаровых шарниров с поворотной цапфой или кулаком. Чем больше расстояние между верхним и нижним рычагами направляющего устройства, тем точнее кинематика подвески. Нижние рычаги выполняются более мощными, чем верхние, так как дополнительно к продольным силам воспринимают и боковые. Подвеска на двойных поперечных рычагах позволяет в зависимости от взаимного положения рычагов обеспечить желаемое (оптимальное) расположение центров поперечного и продольного крена.

К тому же, за счет разной длины рычагов (трапециевидные подвески) можно добиться различных угловых перемещений колес при ходах отбоя и сжатия и исключения изменения колеи при относительных перемещениях кузова и колес. Примером подвески на двойных поперечных рычагах является передняя подвеска автомобилей ВАЗ (рис.8) . Аналогичная конструкция применяется и на автомобилях "Опель", "Хонда", "Фиат", "Рено", "Фольксваген", естественно, с определенными конструктивными особенностями элементов подвески.

Подвеска с двойными поперечными рычагами была реализована в конструкциях многих автомобилей, в частности, фирма "Даймлер-Бенц" применяла подвеску, аналогичную представленной на рис.8 , практически на всех легковых автомобилях. Передняя подвеска автомобиля "Опель Кадет С" имеет простую конструкцию, направляющее устройство которой крепится к лонжеронам кузова жестко без резиновых втулок. Цилиндрические пружины установлены на нижних рычагах с наклоном к продольной оси автомобиля; внутри пружин расположены эластичные буфера сжатия. Амортизаторы установлены на верхних рычагах, буфера отбоя расположены в амортизаторах. Подобная установка пружин и амортизаторов обеспечивает равномерное нагружение колесных шарниров. Совместно с реечным рулевым механизмом передняя подвеска образует отдельный монтажный узел, который позволяет проводить регулировку развала, схождения и продольного наклона оси поворота еще до крепления к кузову.


Рис. 8. Устройство (а) и типовая схема (6) передней подвески автомобиля ВАЗ-2105: 1 - подшипник ступицы колеса; 2 - колпак; 3 - регулировочная гайка; 4 - ось поворотной цапфы; 5 - ступица; 6 - тормозной диск; 7 - поворотная стойка; 8 - верхний рычаг; 9 - шаровая опора; 10 - буфер; 11 - опорный стакан; 12 - резиновые подушки; 13, 26 - соответственно верхняя и нижняя опорные чашки пружины; 14 - ось верхнего рычага; 15 - регулировочная шайба; 16, 25 - кронштейны крепления штанги соответственно стабилизатора и амортизатора; 17 - резиновая втулка; 18 - штанга стабилизатора; 19 - лонжерон кузова; 20 - ось нижнего рычага; 21 - нижний рычаг; 22 - пружина подвески; 23 - обойма; 24 - амортизатор; 27 - корпус нижней шаровой опоры; 28 - шпилька ступицы колеса

Передняя подвеска автомобиля "Хонда Прелюд" имеет короткие верхние треугольные рычаги, расположенные под углом к оси колес. Нижний рычаг также расположен под углом к оси колеса (этот угол примерно в три раза меньше угла, образуемого верхним рычагом), совместно с нижними поперечными рычагами применяются продольные тяги, крепящиеся к кузову через эластичный шарнир.

Автомобиль "Альфа-90" имеет торсионный упругий элемент, расположенный продольно и связанный с нижним рычагом направляющего устройства.

Автомобили "Ситроен" оборудованы пневмогидравлическими упругими элементами в подвеске (рис. 9) . Как отмечалось ранее, такие упругие элементы обеспечивают "мягкое" подрессоривание и возможность регулирования дорожного просвета.

Упругий элемент (рис. 9, а) состоит из цилиндра, в котором перемещается поршень с длинной направляющей цилиндрической поверхностью. В верхней части цилиндра установлен сферический баллон, разделенный эластичной диафрагмой (мембраной) на две полости: верхняя заполнена сжатым азотом, нижняя - жидкостью. Между цилиндром и баллоном расположен амортизационный клапан, через который пропускается жидкость при ходе отбоя и сжатия. Конструкция упругого элемента позволяет устанавливать его в подвеске в любом положении. В частности, на задней подвеске автомобиля "Ситроен-ВХ" упругие элементы установлены под небольшим углом к горизонтали, передача усилия на которые осуществляется через сферическую опору кронштейнами продольных рычагов направляющего устройства подвески. Применение пневмогидравлических элементов в подвеске легковых автомобилей позволяет иметь собственную частоту колебаний кузова в зависимости от нагрузки в пределах 0,6-0,8 Гц.

На автомобилях "Мерседес 20(Ю/ЗООЕ) применяется подвеска на двойных поперечных пространственных рычагах. Такая подвеска состоит из шарнирно связанных парных рычагов, составляющих на виде сверху треугольник, с точкой пересечения в конструктивном центре оси поворота (на оси симметрии колеса). Такая конструкция подвески, учитывая наличие эластичных элементов в опорных узлах, обеспечивает высокий уровень безопасности при поворотах автомобиля на больших скоростях.

Подвеска на направляющих стойках (подвеска "Макферсона", см. рис.2,д) используется практически на большинстве легковых автомобилей, выпускаемых различными зарубежными фирмами. На отечественных автомобилях наиболее характерной конструкцией подвески на направляющих стойках является передняя подвеска переднеприводных автомобилей ВАЗ (рис.10) и АЗЛК.

Передняя подвеска автомобиля ВАЗ-2109 состоит из телескопической амортизационной стойки, на верхней части корпуса которой установлены цилиндрическая пружина упругого элемента, а на штоке - буфер хода сжатия поперечного рычага, шарнирно соединенного с кузовом поворотным кулаком стойки, растяжки и стабилизатором поперечной устойчивости.

Аналогичную конструктивно-кинематическую схему передней подвески имеют автомобили "Ауди", "Фольксваген", "Опель", "Форд", "ДЭУ Нексия" и многие другие.

Преимуществом подвески с направляющей стойкой является монтажная компактность элементов, выполняющих упругую, направляющую и демпфирующую работу, а также небольшие усилия в узлах крепления подвески к кузову, возможность применения длинноходовых подвесок, обеспечивающих наилучшую плавность хода, возможность создания оптимальной кинематики, удобство создания хорошей вибро- и шумоизоляции кузова, низкая чувствительность к дисбалансу и биению шин и др.

Рис. 10. Передняя подвеска автомобиля ВАЗ-2109: 1 - кузов автомобиля; 2 - верхняя опорная чашка; 3 - буфер хода сжатия; 4 - опора буфера; 5 - пружина подвески; 6 - нижняя опорная чашка пружины; 7 - шаровой шарнир рулевой тяги; 8 - поворотный рычаг; 9 - телескопическая стойка; 10 - эксцентриковая шайба; 11 - регулировочный болт; 12 - кронштейн стойки; 13 - поворотный кулак; 14 - крепежный болт; 15 - кожух; 16 - стопорное кольцо; 17 - колпак ступицы колеса; 18 - шлицевой хвостовик привода; 19 - ступица колеса; 20 - подшипник ступицы колеса; 21 - тормозной диск; 22 - рычаг подвески; 23 - регулировочная шайба; 24 - стойка стабилизатора; 25 - стабилизатор поперечной устойчивости; 26 - подушка стабилизатора; 27 - кронштейн крепления стабилизатора; 28, 31 - кронштейны; 29 - растяжка рычага подвески; 30 - шайбы; 32 - резиновая распорная втулка растяжки; 33 - втулка; 34 - защитный чехол шарового пальца; 35 - подшипник шарового пальца; 37 - корпус шарового пальца; 38 - шток подвески; 39, 40 - корпуса верхней опоры; 41-45 - элементы верхней опоры; 46 - болт; / - верхняя опора; // - шаровой палец рычага подвески; /// - передний шарнир растяжки рычага подвески; а - контролируемый зазор

Рассмотрим некоторые особенности конструкции подвески с направляющей стойкой. Анализируя кинематику подвески можно видеть, что положение центра крена зависит от угла наклона стойки к вертикали и нижних рычагов к горизонту. Подбором установки стойки и рычагов можно обеспечить положение центра крена при различных нагрузках значительно ниже, чем при применении подвески на двойных поперечных рычагах. Угловое положение стойки влияет и на изменения развала и колеи. При расположении стойки близко к вертикали и длинном нижнем поперечном рычаге колея практически изменяться не будет. Следует отметить и значительно меньшее, чем в подвесках на двойных поперечных рычагах, изменение развала под действием боковых сил на повороте.

Для исключения заклинивания поршня амортизатора пружина на стойке устанавливается с наклоном таким образом, чтобы ось установки пружины проходила через несущий шарнир нижнего рычага.

На автомобилях БМВ 5 -1-й серий применяется передняя подвеска со сдвоенными шарнирами. Упругие элементы-пружины нижней частью опираются на чашки, приваренные к корпусу амортизатора, верхней частью пружины упираются в шариковый подшипник, закрепленный на кузове в трех точках. Направляющее устройство состоит из поперечных рычагов, воспринимающих боковые нагрузки, и штанг, направленных вперед под углом к продольной оси автомобиля и обеспечивающих поворот управляемых колес в сторону положительного схождения, т.е. улучшается устойчивость прямолинейного движения. Взаимное положение опорных шарниров рычагов и штанг позволяет увеличить противодействие продольному крену при разгоне и торможении. Подвеска ведомых колес автомобиля "Хонда Прелюд" состоит из поперечных рычагов большой длины и продольных штанг, направленных под небольшим углом к продольной оси. Опоры крепления рычагов в зоне колес расположены примерно в центре колеса, за счет чего достигается оптимальное расположение центра поперечного крена.

Подвеска на продольных рычагах направляющего устройства (см. рис. 2,г) состоит из мощного, как правило, сварного коробчатого или литого рычага 5 (рис. 11) направляющего устройства, расположенного в направлении движения с каждой стороны автомобиля.

Рычаг воспринимает крутящие и изгибающие нагрузки, возникающие при движении автомобиля. Для обеспечения необходимой жесткости подвески при боковых силах рычаг имеет широко разнесенные опоры на кузове. Подвеска на продольных рычагах часто применяется в задней подвеске переднеприводных автомобилей. Горизонтальное положение рычагов обеспечивает при ходах сжатия и отбоя неизменность развала, схождение колес и колеи. Длина рычагов влияет на прогрессивность упругой характеристики подвески, а поскольку точки качания рычагов являются центрами продольного крена автомобиля, то при торможении кузов будет "приседать".

Подвеской с продольными рычагами оборудованы автомобили "Рено", "Ситроен", "Пежо" и др.

В качестве упругих элементов в подвесках применяются пружины, тор-сионы и пневмогидравлические устройства. Пружинные упругие элементы могут располагаться как соосно с амортизатором ("Пежо"), так и параллельно ("Мицубиси Кольт", "Тальбо"). На некоторых моделях автомобилей "Пежо" пружинные стойки расположены под небольшим углом к горизонтали, аналогично установлены и упругие элементы на автомобиле "Ситроен ВХ". Задняя подвеска с торсионными упругими элементами (см. рис. 11 ) отличается компактностью. Торсионы 2 входят в зацепление с направляющими трубами 1 и 7 . Литые продольные рычаги 5 приварены к концам труб 1 и 7 , вставленных одна в другую и разделенных резиновыми втулками 8 и 9 .

Подвеска на косых рычагах (см. рис. 2,е) применяется только в задней подвеске автомобилей. Подвеска автомобилей БМВ 5 -й серии показана на рис.12 , аналогичное направляющее устройство установлено на автомобилях фирм "Фиат", "Даймлер-Бенц", "Форд" с некоторыми конструктивными особенностями.

Наиболее благоприятным, с точки зрения кинематики подвески, является угол стреловидности в пределах 10- 25° (угол между поперечной осью и положением крепления к кузову рычага направляющего устройства в горизонтальной плоскости). Например, этот угол составляет у автомобилей: БМВ 5181/5251 и БМВ 5281/5351 - 20°; "ФордСьерра/Скорпио" -18°, "Опель-Сенатор" - 14° и т.п. При такой конструкции направляющего устройства ведущих колес между колесом и главной передачей (дифференциалом) возникают угловые и линейные перемещения, требующие установки в полуосях, передающих крутящий момент на колеса, по два шарнира равных угловых скоростей для компенсации этих перемещений. В зависимости от соотношения длин косых рычагов и углов их установки можно получить практически любое требуемое положение центров крена и уменьшение изменения колеи. В таких подвесках амортизатор устанавливают со смещением к оси колеса, что может обеспечить передаточное отношение от колеса к амортизатору, равное единице.

Дополнительные упругие элементы подвески, устанавливаемые дополнительно к основным упругим элементам, выполняют две задачи: шумо- и виброизоляцию кузова и ограничение хода подвески при сжатии и отбое с соответствующим обеспечением прогрессивности упругой характеристики подвески. Основным требованием в данном случае к упругим элементам будет создание определенной эластичности в осевом направлении и большой жесткости в радиальном, чтобы исключить влияние на кинематику подвески. Такие дополнительные упругие элементы изготавливаются, как правило, из резины и различных упругих полимеров (например, полиуретановые). В передних подвесках управляемых колес в верхней опоре пружинных стоек устанавливается шарикоподшипник (см. рис.10) - для исключения трения при повороте колес, так как они поворачиваются совместно со стойками. На рис. 4.13 показаны верхние эластичные опоры стоек автомобилей "Вольво-740/760" и "Мерседес-190".

В опоре рис.13,а резиновые опоры выполнены таким образом, что усилия от пружины и амортизатора воспринимаются раздельно. Через упорный шарикоподшипник пружина подвески воздействует на резиновый буфер 5 . Шток амортизатора крепится во втулке 1 , через которую воздействует на среднюю часть резинового буфера 5. Аналогичная конструкция буфера применяется на автомобиле "Пежо", только в несколько упрощенной конструкции самого резинового буфера. На рис.13,б резиновая опора 5 предназначена в основном для шумоизоляции, а упругий элемент 6 размещается на штоке амортизатора и передает при сжатии усилие через внутренний колпак опоры 5 на упор 4 и кузов. Такая конструкция увеличивает направляющую базу амортизатора и предотвращает возможность заклинивания штока.


Лекция 14, 15.

Рулевое управление

Дорога, по которой водитель выбирает маршрут движения, не всегда бывает ровной и гладкой. Очень часто на ней могут присутствовать такое явление, как неровности покрытия — трещины в асфальте и даже кочки и ухабы. Не стоит забывать и про «лежачих полицейских». Этот негатив отрицательно сказывался бы на комфорте движения, если не существовала бы амортизационная система — подвеска автомобиля.

Назначение и устройство

Во время движения неровности дороги в виде колебаний передаются на кузов. Подвеска автомобиля предназначается для гашения или смягчения подобных колебаний. В ее прикладные функции входит обеспечение связи и соединения между кузовом и колесами. Именно детали подвески дают колесам возможность перемещаться независимо от кузова, обеспечивая изменение направления движения автомобиля. Наряду с колесами, она является обязательным элементом ходовой части автомобиля.

Подвеска автомобиля – это технически сложный агрегат, имеющий следующее строение:

  1. упругие элементы — металлические (пружины, рессоры, торсионы) и неметаллические (пневматические, гидропневматические, резиновые) детали, которые, в силу своей упругих характеристик, принимают нагрузку от неровностей дороги и распределяют ее на кузов автомобиля;
  2. гасящие устройства (амортизаторы) – агрегаты, имеющие гидравлическое, пневматическое или гидропневматическое строение и предназначенные для нивелирования колебаний кузова, полученных от упругого элемента;
  3. направляющие элементы – различные детали в виде рычагов (поперечных, продольных), обеспечивающих соединение подвески с кузовом и определяющих перемещение колес и кузова относительно друг друга;
  4. стабилизатор поперечной устойчивости — упругая металлическая штанга, соединяющая подвеску с кузовом и препятствующая увеличению крена автомобиля в процессе движения;
  5. опоры колеса – специальные поворотные кулаки (на передней оси), воспринимающие нагрузки, исходящие от колес, и распределяющие их на всю подвеску;
  6. элементы крепления деталей, узлов и агрегатов подвески – это средства соединения элементов подвески с кузовом и между собой: жесткие болтовые соединения; композитные сайлентблоки; шаровые шарниры (или шаровые опоры).

Принцип работы

Схема работы подвески автомобиля основывается на преобразовании энергии удара, возникающего от наезда колеса на неровность покрытия дороги, в перемещение упругих элементов (к примеру, пружин). В свою очередь, жесткость перемещения упругих элементов контролируется, сопровождается и смягчается действием гасящих устройств (например, амортизаторов). В результате, благодаря подвеске, сила удара, которая передается на кузов автомобиля, уменьшается. Этим и обеспечивается плавность хода. Лучший способ увидеть работу системы – это использовать видео, которое наглядно демонстрирует все элементы подвески автомобиля и их взаимодействие.

Автомобили обладают самыми различными по жесткости подвесками. Чем жестче подвеска, тем информативнее и эффективнее управление автомобилем. Однако при этом серьезно страдает комфорт. И, наоборот, мягкая подвеска устроена так, что обеспечивает удобство в эксплуатации и жертвует управляемостью (чего нельзя допустить). Именно поэтому производители автомобилей стремятся найти их наиболее оптимальный вариант – сочетание безопасности и комфорта.

Многообразие вариантов подвески

Устройство подвески автомобиля – это самостоятельное конструкционное решение производителя. Существует несколько типологий подвески автомобиля: их различает критерий, положенный в основу градации.

В зависимости от устройства направляющих элементов выделяются наиболее распространенные типы подвески: независимая, зависимая и полунезависимая.

Зависимый вариант не может существовать без одной детали — жесткой балки, входящей в состав моста автомобиля. При этом колеса в поперечной плоскости перемещаются параллельно. Простота и эффективность конструкции обеспечивает ее высокую надежность, не допуская развала колес. Именно поэтому зависимая подвеска активно применяется в грузовых автомобилях и на задней оси легковых.

Схема независимой подвески автомобиля предполагает автономное существование колес друг от друга. Это позволяет повысить амортизационные характеристики подвески и обеспечить большую плавность хода. Данный вариант активно применяется для организации как передней, так и задней подвески на легковых автомобилях.

Полунезависимый вариант состоит из жесткой балки, закрепленной на кузове с помощью торсионов. Данная схема обеспечивает относительную независимость подвески от кузова. Характерный ее представитель – переднеприводные модели ВАЗ.

Вторая типология подвесок основывается на конструкции гасящего устройства. Специалисты выделяют гидравлические (масляные), пневматические (газовые), гидропневматические (газо-масляные) устройства.

Определенным особняком стоит так называемая активная подвеска . Ее схема включает в себя вариативные возможности – изменение параметров подвески при помощи специализированной электронной системы управления в зависимости от условий движения автомобиля.

Наиболее распространенными изменяемыми параметрами являются:

  • степень демпфирования гасящего устройства (амортизаторного устройства);
  • степень жесткости упругого элемента (например, пружины);
  • степень жесткости стабилизатора поперечной устойчивости;
  • длина направляющих элементов (рычагов).

Активная подвеска представляет собой электронно-механическую систему, существенного увеличивающую стоимость автомобиля.

Основные виды независимой подвески

В современных легковых автомобилях в качестве амортизационной системы очень часто используется независимый вариант подвески. Это обусловлено хорошей управляемостью автомобиля (из-за небольшой массы) и отсутствием необходимости в тотальном контроле за траекторией его движения (как, например, в варианте с грузовым транспортом).
Специалисты выделяют следующие основные виды независимой подвески. (Кстати, фото позволит более наглядно проанализировать их отличия).

Подвеска на основе двойных поперечных рычагов

Строение данного вида подвески включает в себя два рычага, крепящиеся сайлентблоками к кузову, и соосно расположенные амортизатор и витую пружину.

Подвеска МакФерсон

Это производный (от предыдущего вида) и упрощенный вариант подвески, в которой верхний рычаг заменила амортизационная стойка. На сегодняшний момент МакФерсон – самая распространенная схема передней подвески легковых автомобилей.

Многорычажная подвеска

Еще один производный, усовершенствованный вариант подвески, в котором как бы искусственно два поперечных рычага были «разделены». Кроме того, современный вариант подвески очень часто состоит и из продольных рычагов. Кстати, многорычажная подвеска – это наиболее применяемая сегодня схема задней подвески легковых автомобилей.

Схема данного вида подвески основывается на специальной упругой детали (торсионе), который соединяет рычаг и кузов и работает на скручивание. Данный вид конструкции активно применяется при организации передней подвески некоторых внедорожников.

Регулировка передней подвески

Важным компонентом комфортного движения является правильная регулировка передней подвески. Это так называемые углы установки управляемых колес. В просторечии такое явление именуется «сход-развал».

Дело в том, что передние (управляемые) колеса устанавливаются не строго параллельно продольной оси кузова и не строго перпендикулярно поверхности дороги, а с некоторыми углами, обеспечивающими наклоны в горизонтальной и вертикальной плоскостях.


Правильно выставленный «сход-развал»:

  • во-первых, создает наименьшее сопротивление движению транспортного средства, а, следовательно, упрощает процесс управления автомобилем;
  • во-вторых, существенно уменьшает износ протектора шин; в-третьих, значительно снижает расход топлива.

Выполнение установки углов – это технически сложная процедура, требующая профессионального оборудования и навыков работы. Поэтому выполнять ее следует в специализированном учреждении – автосервисе или СТО. Вряд ли стоит пробовать делать это самому по видео или фото из Интернета, если нет опыта в подобных делах.

Неисправности и обслуживание подвески

Сразу же оговоримся: согласно российским правовым нормам, ни одна неисправность подвески не отнесена к «Перечню…» неисправностей, с которыми запрещается движение. И это спорный момент.

Представим, что амортизатор подвески (передней или задней) не работает. Такое явление означает, что проезд каждой неровности будет сопряжен с перспективой раскачки кузова и потерей управляемости автомобиля. А что можно сказать о вконец разболтавшейся и пришедшей в негодность шаровой опоре передней подвески? Результат неисправности детали — «вылетела шаровая» — грозит серьезным ДТП. Лопнувший упругий элемент подвески (чаще всего пружина) приводит к возникновению крена кузова и подчас абсолютной невозможности продолжать движение.

Описанные выше неисправности – это уже конечные, наиболее одиозные неисправности подвески автомобиля. Но, несмотря на их крайне негативное влияние на безопасность движения, эксплуатация транспортного средства с такими проблемами не запрещается.

Большую роль в обслуживании подвески играет контроль за состоянием автомобиля в процессе движения. Скрипы, шумы и стуки в подвеске должны насторожить и убедить водителя в необходимости сервисного обслуживания. А длительная эксплуатация автомобиля вынудит его применить радикальный метод – «поменять подвеску по кругу», то есть заменить практически все детали и передней, и задней подвески.

Подвески транспортных средств классифицируются по типам направляющих устройств, упругих элементов и гасящих устройств (амортизаторов).

По типу направляющих устройств

По типу направляющих устройств различают подвески:

  • зависимые
  • независимые
  • балансирные

В зависимой подвеске с поперечной связью колеса двух бортов одного моста связаны жесткой балкой (см. рис. а). В этом случае вертикальное перемещение одного колеса относительно несущей системы вызывает изменение наклона плоскости качения другого колеса.

В независимой подвеске каждое колесо (каток) перемещается относительно несущей системы независимо от другого. На рисунке б показана независимая однорычажная подвеска с поперечным расположением рычага. Такое направляющее устройство обеспечивает перемещение колеса в поперечной плоскости с изменением угла его наклона и колеи ТС. В зависимости от конструктивного исполнения независимые подвески могут быть однорычажные с продольным расположением рычага (рисунок а) и двухрычажные с поперечными расположением рычагов (рисунок б).

Однорычажные подвески с продольным рычагом полностью исключают изменение угла наклона колеса и колеи ТС, а двухрычажные обеспечивают минимальные их изменения при правильном выборе соотношения длин рычагов и углов их установки.

В балансирных подвесках (в зависимых подвесках с продольной связью) колеса (катки) одного борта ТС соединены друг с другом качающимися балансирами, роль которых могут выполнять листовые рессоры или жесткие балки (рис. а, б). В таких подвесках даже при отсутствии упругого элемента вертикальное перемещение одного из колес вызывает вдвое меньшие перемещения оси качания балансира, закрепленного на несущей системе ТС, что улучшает плавность хода машины. Балансирные подвески за счет качания балансира обеспечивают перераспределение нагрузки, действующей на колеса, что существенно уменьшает воздействие неровностей дороги на ТС в целом.

Рис. Схемы независимых подвесок:
а - однорычажных с продольным расположением рычага; б - двухрьдчажных с поперечным располржением рычагов

По типу упругих элементов

По типу упругих элементов различают подвески с упругими элементами:

  • металлическими
  • неметаллическими

В качестве металлических упругих элементов используются листовые рессоры, спиральные пружины (цилиндрические или конические) и торсионы. К неметаллическим упругим элементам относятся пневматические и резиновые упругие элементы.

Листовая рессора состоит из нескольких стальных листов (чаще всего 6 - 14), имеющих разную длину и кривизну и, как правило, прямоугольное сечение, Длина листов подбирается из условия приближения формы рессоры к форме балки равного сопротивления изгибу, которая при данном виде нагрузки является наименее жесткой.

Рис. Схемы балансирных подвесок:
а — с упругим балансиром в виде листовой рессоры; б - с жестким балансиром; АВ, DC - соответственно реактивная и толкающая штанги

При изготовлении листовых рессор листам придают различную кривизну, поэтому при сборке их подвергают предварительным деформациям, знак которых противоположен знаку рабочих деформаций. Это обеспечивает некоторую разгрузку листов рессоры. Листы собирают в пакет с помощью хомутиков, некоторые рессоры стягивают центральным болтом и затем устанавливают между мостом и несущей системой машины. Листовые рессоры обычно имеют полуэллиптическиую форму.

Если листовая рессора используется в зависимой подвеске с поперечной связью, ее среднюю часть с помощью стремянок крепят к балке моста, а концы - шарнирно (с помощью специальных кронштейнов) к несущей системе машины. Передний конец рессоры крепится к кронштейну рамы неподвижно с помощью пальца, а задний конец имеет скользящее соединение во вкладышах кронштейна. В ряде случаев концы рессор соединяют с несущей системой при помощи резиновых подушек, закрепленных в кронштейнах, обеспечивая таким образом неподвижное соединение переднего конца и скользящее соединение заднего конца рессоры. В данной конструкции подвески рессора выполняет одновременно роль упругого элемента и направляющего устройства, т.е. через нее от движителя передаются на несущую систему силы, действующие в горизонтальной плоскости, и моменты от них.

Если рессора используется в балансирной подвеске, ее середина прикрепляется стремянками к ступице, установленной на опоре рамы, являющейся осью качания балансира. Концы рессор опираются на кронштейны - опоры мостов. Конструкция кронштейнов обеспечивает скольжение концов рессоры в продольном направлении и жесткую связь с мостом в поперечном направлении.

Связь в продольном направлении, а также передача реактивных моментов осуществляются с помощью толкающих и реактивных штанг, связывающих балки мостов с несущей системой. С целью обеспечения свободного перемещения балок мостов в вертикальном направлении и допущения некоторых перекосов концы штанг соединяют с мостами и рамой шаровыми шарнирами. Для того чтобы усилия, действующие от реактивных моментов вдоль реактивных штанг, не достигали больших значений, точки крепления концов этих штанг к балкам мостов выносят возможно выше от оси вращения колес посредством установки на балках мостов специальных кронштейнов.

При работе листовых рессор возникает относительное перемещение листов в продольном направлении и создается межлистовое трение, которое, с одной стороны, способствует гашению колебаний, а с другой - неблагоприятно сказывается на плавности хода ТС вследствие блокировки подвески при больших силах трения. Для уменьшения трения листы рессоры при сборке смазывают графитной смазкой или используют неметаллические антифрикционные прокладки между листами. Снижение силы трения достигается также уменьшением числа листов в рессоре и применением рессоры, состоящей из одного листа, с переменным сечением по его длине. Применение одно- или малолистовых рессор позволяет снизить расход металла, что, в свою очередь, уменьшает массу подвески.

Спиральные пружины в качестве основных упругих элементов обычно устанавливают на легковых автомобилях в независимых рычажных подвесках. В ТС большой грузоподъемности пружины используют в качестве вспомогательных упругих эле-ментов, например в качестве ограничителей хода торсионных подвесок гусеничных машин. Чаще всего применяются цилиндрические и конические пружины круглого или прямоугольного сечений.

Торсионные упругие элементы , или просто торсионы, представляют собой стержни различного поперечного сечения из высококачественной стали, работающие на кручение. Они используются в независимых подвесках и в отличие от листовых рессор требуют направляющих устройств. На концах торсионов обычно имеются головки со шлицами. Один конец торсиона закреплен в специальном кронштейне на несущей системе машины, а другой связан через рычаг направляющего устройства с колесом (катком). При перемещении колеса в вертикальном направлении торсион закручивается на угол до 30… 45°, тем самым обеспечивая упругость подвески.

По расположению на ТС различают торсионы:

  • продольные
  • поперечные

В пневматических подвесках в качестве упругого элемента используется сжатый воздух или азот, заключенный в жесткую или упругую оболочку. При перемещении колеса относительно несущей системы происходит изменение объема газа. Характер этого изменения определяет упругую характеристику подвески.

Пневматические упругие элементы, в которых газ заключен в упругую оболочку, представляют собой резинокордные оболочки, уплотненные по торцам и заполненные воздухом под давлением. В ТС используются три типа этих элементов: пневмобаллоны, рукавные и диафрагменные упругие элементы.

Пневмобаллоны изготавливают одно-, двух- и трехсекционными. Двухсекционный пневмобаллон (рис. а) состоит из оболочки 1 толщиной 3… 5 мм, усиленной стальными проволочными кольцами 2 для крепления к опорным фланцам 4 с помощью колец 3. В средней части оболочка стянута кольцом 5.

Рис. Пневматические упругие элементы с газом, заключенным в упругую оболочку:
а - двухсекционный пневмобаллон; б - элемент рукавного типа; в - принципиальная схема регулирования положения кузова

Герметизация оболочки рукавного упругого элемента (рис. б) осуществляется с помощью прижимных фланцев 6 или под давлением воздуха.

Диафрагменный упругий элемент отличается от рукавного наличием жесткой боковой оболочки. Нижняя торцевая часть его оболочки представляет собой упругую диафрагму. Кордная ткань оболочки изготавливается из полиамидных нитей (нейлон, капрон).

Пневматические упругие элементы с газом, заключенным в жесткую оболочку, подразделяются на три типа: с одной ступенью давления (рис. а), когда сжатый газ расположен над поршнем 1 в одном объеме (камера А); с противодавлением (рис. б), когда газ находится как в надпоршневом пространстве (камера А), так и под поршнем 1 (камера Б), причем давление газа больше в камере А; с двумя ступенями давления (рис. в), когда две камеры А и В расположены над поршнем 7. В последнем случае давление зарядки газовых камер различно. В камере А газ сжимается в течение всего хода подвески, а в камере В газ начинает сжиматься по достижении давления большего, чем зарядное давление этой камеры.

Передача усилий от поршня к газу осуществляется через жидкость, которой заполнен цилиндр. В ряде случаев жидкость находится в непосредственном контакте с газом (камера Б на рис. б), но чаще всего она отделена от газа гибким разделителем (диафрагмой) 3 или плавающим поршнем 13, изображенным на рисунке.

При непосредственном контакте жидкости с газом в ходе работы подвески происходит ее вспенивание, что отрицательно сказывается на характеристике упругого элемента.

Рис. Схемы пневматических упругих элементов с газом, заключенных в жесткую оболочку, с одой ступенью давления (а), с противодавлением (б) и с двумя ступенями давления (в)

Применение жидкости в таких упругих элементах обеспечивает демпфирование колебаний масс ТС при перетекании ее через калиброванные отверстия и клапаны 2. Таким образом, получается агрегат, в котором размещены и упругий элемент, и, амортизатор.

На рисунке показано устройство пневматического упругого элемента с одной ступенью давления, не обладающего демпфирующими свойствами, но имеющего дополнительные резиновые упругие элементы 7. Заправка газом и жидкостью осуществляется соответственно через клапаны 19 и 27. Упругие элементы работают в начале и конце хода подвески. Газ отделен от жидкости плавающим поршнем 13. Упругий элемент через серьгу 1 и подшипник 2 одним концом крепится к направляющему устройству подвески, а другим - к несущей системе машины.

Применение пневматических упругих элементов позволяет регулировать положение кузова и дорожный просвет, а также изменять упругую характеристику подвески.

Принципиальная схема регулирования высоты кузова ТС по массе газа в упругом элементе показана на рисунке в. При возрастаний нагрузки кузов машины опускается, и расстояние между ним и мостом уменьшается. Рычажный привод, воздействуя на регулятор 8, обеспечивает сообщение упругого элемента 7 с ресивером. Воздух под давлением поступает в упругий элемент до тех пор, пока кузов не поднимется до прежнего уровня. При уменьшении нагрузки расстояние между кузовом и мостом также останется неизменным, так как с помощью регулятора 8 воздух выпускается из упругого элемента 7 в атмосферу. Использование гидравлического замедлителя, встроенного в регулятор, исключает работу регулятора при колебаниях ТС на подвеске.

Регулирование высоты кузова может осуществляться за счет изменения объема жидкости, находящейся между газом и поршнем. В этих системах для поднятия кузова ТС жидкость нагнетается в упругий элемент, а для опускания удаляется.

На ряде ТС имеется система регулирования положения кузова, с помощью которой можно не только изменять дорожный просвет всей машины, но и придавать кузову дифферент на нос или корму либо крен на борт за счет выбора параметров соответствующих подвесок.

Резиновые упругие элементы применяют в подвесках ТС в качестве ограничителей хода подвески и в узлах крепления амортизаторов, снижая динамическую нагруженность деталей подвески и несущей системы.

В качестве гасящих устройств в ТС используют , в которых механическая энергия колебаний ТС преобразуется в тепловую путем жидкостного трения при прохождении вязкой жидкости через отверстия малого сечения. Жидкость нагревается, и теплота рассеивается э окружающем пространстве.

Конструктивно гидравлические амортизаторы исполняют телескопическими и рычажными. Телескопические работают при давлении жидкости до 8 МПа, а рычажные - до 30 МПа. Телескопические амортизаторы подразделяются на двухтрубные и однотрубные. Рычажные могут быть поршневыми и лопастными.

Рис. Пневматический упругий элемент с дополнительными упругими элементами:
1 - серьга; 2 - шарнирный подшипник; 3, 15, 17 - уплотнения; 4, 8 - стаканы; 5 - чехол; 6, 11, 14 - шайбы; 7 - дополнительные упругие элементы; 9 - поршень; 10 - цилиндр; 12 - манжета; 13 - плавающий поршень; 16 - крышка; 18 - втулка; 19, 21 - зарядные клапаны; 20 - перепускной клапан

В качестве рабочих применяют минеральные масла.

При работе амортизатора различают ход сжатия и ход отбоя. При ходе сжатия колесо (каток; приближается к несущей системе ТС, а при ходе отбоя, наоборот, отдаляется от нее.

Устройство и принцип действия гидравлического телескопического двухтрубного амортизатора двустороннего действия

Рассмотрим устройство и принцип действия гидравлического телескопического двухтрубного амортизатора двустороннего действия . Амортизатор проушиной 6 крепится к несущей системе машины, а проушиной 1 - к направляющему устройству. Амортизатор состоит из штока 5, на нижнем конце которого укреплен поршень 8 с клапанами и калиброванными по сечению каналами. Поршень расположен внутри рабочего цилиндра 12, который заключен в наружную трубу 13 и скреплен с ней. Между наружной полостью цилиндра и внутренней поверхностью трубы имеется зазор, образующий компенсационную камеру 3 амортизатора. В верхней части цилиндра расположено уплотнение, через которое про-ходит шток. Нижняя часть цилиндра соединяется с компенсационной камерой клапанами и калиброванными каналами.

В поршне расположены калиброванные отверстия 4 хода отбоя, перепускной клапан 7 сжатия и разгрузочный клапан 9 отбоя.

В нижней части цилиндра находятся перепускной клапан 10 отбоя, калиброванный канал 2 сжатия и разгрузочный клапан 11 сжатия. При ходе сжатия, когда щток вдвигается в цилиндр, давление под поршнем повышается, и жидкость перетекает через отверстие 4 и клапан 7 в пространство над поршнем. Вследствие того что объемы полостей под поршнем и над ним неодинаковы (часть объема над поршнем занимает шток), избыток жидкости перетекает через канал 2 в компенсационную камеру, сжимая имеющийся там воздух. При большой скорости перемещения поршня в цилиндре давление под ним поднимается настолько, что сжимает пружину разгрузочного клапана 11, который открывается, и нарастание давления уменьшается, что ограничивает силу сопротивления амортизатора на ходе сжатия. При ходе отбоя, когда поршень выдвигается из цилиндра, давление над поршнем увеличивается и жидкость через калиброванные отверстия 4 перетекает в пространство над поршнем. Дефицит жидкости под поршнем будет покрываться перетеканием ее из компенсационной камеры в цилиндр через клапаны 10 и канал 2. При большой скорости движения поршня на ходе отбоя давление над поршнем возрастает, что вызывает открытие разгрузочного клапана 9 отбоя в поршне и тем самым ограничивает силу сопротивления амортизатора на ходе отбоя.

Рис. Схема гидравлического телескопического двухтрубного амортизатора двустороннего действия

Нормальным условием работы амортизатора является отсутствие в жидкости воздушных включений. В рассмотренном амортизаторе воздушное включение может возникнуть вследствие взбалтывания жидкости в компенсационной камере, где жидкость контактирует с воздухом.

Такого недостатка не имеет гидравлический телескопический однотрубный амортизатор двустороннего действия, у которого два клапана (отбоя 3 и сжатия 2) расположены в поршне, а роль компенсационной камеры выполняет полость А, отделенная от подпоршневого пространства плавающим поршнем 7. В полости А находится сжатый газ, объем которого при ходе сжатия уменьшается, а при ходе отбоя увеличивается.

В рычажных амортизаторах рычаг одним концом связан с направляющим устройством подвески, а другим - с поршнем или лопастью. При перемещении последних внутри корпуса амортизатора жидкость из одной полости перетекает в другую через клапаны и отверстия, сечения которых определяют характеристики отбоя и сжатия.

Наряду с рассмотренными амортизаторами существуют такие, в конструкции которых имеется возможность регулирования параметров, определяющих их демпфирующие свойства, за счет изменения суммарной площади отверстий, через которые перетекает рабочая жидкость. Регулирование осуществляется при изменении массы машины или интенсивности колебаний. С увеличением значений этих параметров сопротивление амортизаторов увеличивается.

Рис. Схема гидравлического телескопического однотрубного амортизатора двустороннего действия

Избегая технических терминов, можно сказать, что подвеска необходима для того, чтобы снизить влияние неровностей дорог на кузов автомобиля . Для этого в конструкции подвески предусмотрены упругие элементы. К ним относятся пружины, рессоры, и резиновые элементы (отбойники, буфера, сайлент-блоки). Так же существуют пневматические и гидропневматические упругие элементы.

Металлические упругие элементы

Пружины

Пружины, как упругий элемент подвески, на сегодняшний день используются в подавляющем большинстве легковых автомобилей. Выполненные из металлического прутка круглого сечения, они имеют постоянную характеристику жесткости и прекрасно справляются с возложенной на них задачей. Витки равномерно сближаются по мере того, как возрастает нагрузка, и возвращаются в исходное положение при ее снятии.

Если есть необходимость в переменной жесткости, тогда пружины выполняются из прутка различного диаметра (на определенных участках), или в форме бочонка (некоторые витки уже). В этом случае, когда пружина будет получать нагрузку, первыми будут сближаться витки меньшего диаметра (толщины).

Плюсом пружины, как упругого элемента, является простота изготовления, а значит конечная стоимость продукта, и ее малый вес. Но поскольку ей не под силу передавать усилия в поперечной плоскости, она требует от подвески автомобиля наличия сложных направляющих устройств. Что в свою очередь сказывается как на цене, так и на весе всего узла.

Рессоры

Ещё одним упругим элементом подвески автомобиля являются листовые рессоры. По причине большого веса, в сравнении с теми же пружинами, рессоры в основном используются в подвеске грузовых автомобилей. Рессора состоит из металлических листов (в очень редких случаях из армированной пластмассы), различной длины и формы, соединенных между собой болтом по центру, и хомутами ближе к краям. Будучи равными по ширине, каждая пластина, в зависимости от длины, имеет различную степень выгнутости. Это обеспечивает рессоре необходимые характеристики. Самая длинная (коренная) пластина крепится к кузову или раме автомобиля.

Существует несколько основных способов крепления рессоры к кузову:

  • с помощью витых ушек;
  • скользящая опора и накладные ушки;
  • резиновые подушки.

Каждый из способов крепления имеет свои особенности и характеристики. Общее требованию к любому из перечисленных методов крепления — концы пластин должны иметь возможность перемещаться и поворачиваться. В процессе работы рессорной подвески, происходит трение листов друг о друга. Это требует применения дополнительной смазки, или наличия антифрикционных прокладок.

Резиновые упругие элементы подвески автомобиля

Данные элементы играют вспомогательную роль в работе подвески, тем не менее, их так же можно отнести к упругим элементам . Они в первую очередь помогают избегать ударов металлических частей подвески друг о друга, тем самым максимально снижая уровень шума. Так же увеличивают жесткость основных элементов и ограничивают степень их деформации.

Резиновые элементы отлично справляются с работой, как на сжатие, так и на отбой. Так, к примеру, полиуретановые отбойники, установленные в стойке амортизатора, прекрасно работают на отбой.
Различная форма, как и в случае с пружиной, задает рабочие характеристики резинового элемента. Форма конуса позволяет обеспечить плавные характеристики, сначала сжимается тонкая, верхняя часть, чем ближе к толстой части, тем более упругой становится резина.

Сегодня часто встречаются отбойники ступенчатой формы, имеющие чередующиеся тонкие и толстые части. Это позволяет в значительной степени увеличить его рабочий ход.

Пневматика и гидропневматика

Пневмоподвеска используется как в легковом, так и в грузовом и пассажирском транспорте. Пневматический упругий элемент, позволяет изменять жесткость подвески в зависимости от дорожной ситуации, загруженности автомобиля. В современных автомобилях, пневматической подвеской управляет электроника, которая способна самостоятельно следить за ее работой, и изменять ее жесткой в зависимости от ситуации.

Пневматические элементы

Пневматические элементы (пневмобаллоны), изменяют свою жестокость за счет давления воздуха, создаваемого внутри компрессором. Баллоны выполнены из маслостойкой и воздухонепроницаемой резины, содержат корд и металлические нити, что придает им большую жестокость и надежность. Отсюда и название — резинокордные упругие элементы. Толщина стенок такого баллона обычно составляет от 3 до 5 мм.

Гидропневматические элементы

Данный упругий элемент обеспечивает наибольший комфорт для водителя и пассажиров автомобиля, так как отлично справляется с функцией гашения колебаний подвески. Гидропневматический упругий элемент — это камера, имеющая две полости. Одна из них наполнена газом, а другая жидкостью, которые, как известно, имеют различную степень сжатия. Через сложную систему мембран и клапанов, жидкость и газ взаимодействует в различной степени (в зависимости от ситуации), что и обеспечивает необходимый комфорт и упругость подвески автомобиля.

Повсеместное распространение данной подвески ограничено, пожалуй, лишь ее высокой стоимостью.

Прогресс не стоит на месте, а инженеры с каждым годом все ближе и ближе к тому, чтобы создать идеальную по всем характеристикам подвеску, которая будет отвечать всем необходимым требованиям. Возможно не за горами тот день, когда нахождение в салоне автомобиля (при езде по самому жуткому бездорожью), по комфорту можно будет сравнить с сидением на мягком диване.