Роль пластичной смазки в работе подшипника. Пластичные смазки: классификация, назначение, характеристика и применение Смазки для автомобилей назначение

, проявляющие в зависимости от нагрузки свойства жидкости или твёрдого тела. При малых нагрузках они сохраняют свою форму, не стекают с вертикальных поверхностей и удерживаются в негерметизированных узлах трения. П. с. состоят из жидкого масла, твёрдого загустителя, присадок и добавок. Частицы загустителя в составе П. с., имеющие коллоидные размеры, образуют структурный каркас, в ячейках которого удерживается дисперсионная среда (масло). Благодаря этому П. с. начинают деформироваться подобно аномально-вязкой жидкости только при нагрузках, превышающих предел прочности П. с. (обычно 0,1-2 кн/м 2 , или 1-20 гс/см 2 ). Сразу после прекращения деформирования связи структурного каркаса восстанавливаются и смазка вновь приобретает свойства твёрдого тела. Это позволяет упростить конструкцию и снизить вес узлов трения, предотвращает загрязнение окружающей среды. Сроки смены П. с. больше, чем смазочных материалов. В современных механизмах П. с. часто не меняют в течение всего срока их службы. Промышленность СССР в 1974 выпускала около 150 сортов П. с. Их мировое производство составляет около 1 млн. т в год (3,5% выпуска всех смазочных материалов).

П. с. получают, вводя в нефтяные, реже синтетические, масла 5-30 (обычно 10-20) % твёрдого загустителя. Процесс производства периодический. В варочных котлах готовят расплав загустителя в масле. При охлаждении загуститель кристаллизуется в виде сетки мелких волокон. Загустители с температурой плавления выше 200-300 °С диспергируют в масле при помощи гомогенизаторов, например коллоидных мельниц. При изготовлении в состав некоторых П. с. вводят Присадки (антиокислительные, антикоррозионные, противозадирные и др.) или твёрдые добавки (антифрикционные, герметизирующие).

П. с. классифицируют по типу загустителя и по области применения. Наиболее распространены мыльные П. с., загущенные кальциевыми, литиевыми, натриевыми мылами высших жирных кислот. Гидратированные кальциевые П. с. (солидолы) работоспособны до 60-80 °С, натриевые до 110 °С, литиевые и комплексные кальциевые до 120-140 °С. На долю углеводородных П. с., загущаемых парафином и церезином, приходится 10-15% всего выпуска П. с. Они имеют низкую температуру плавления (50-65 °С) и используются в основном для консервации металлоизделий.

В зависимости от назначения и области применения различают следующие типы П. с. Антифрикционные, снижающие трение скольжения и уменьшающие износ. Их применяют в подшипниках качения и скольжения, шарнирах, зубчатых и цепных передачах индустриальных механизмов, приборов, транспортных, с.-х. и др. машин. Консервационные, предотвращающие коррозию металлоизделий. В отличие от др. покрытий (окраска, хромирование) они легко удаляются с трущихся и др. поверхностей при расконсервировании механизма. К уплотнительным П. с. относятся арматурные (для герметизации прямоточных задвижек, пробковых кранов), резьбовые (для предотвращения заедания тяжелонагруженных или высокотемпературных резьбовых пар), вакуумные (для герметизации подвижных вакуумных соединений).

Лит.: Бонер К. Дж., Производство и применение консистентных смазок, пер. с англ., М., 1958; Синицын В. В., Подбор и применение пластичных смазок, 2 изд., М., 1974; Фукс И. Г., Пластичные смазки, М., 1972.

В. В. Синицын.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Пластичные смазки" в других словарях:

    - (консистентные смазки) мазеобразные смазочные материалы, получаемые введением в жидкие нефтяные или синтетические масла твердого загустителя (мыла, парафина, силикагеля, сажи и др.). При нагрузках, меньших предела прочности (обычно 0,1 0,5 кПа),… … Большой Энциклопедический словарь

    - (grease) – это трехкомпонентная коллоидная система, состоящая из базового масла (дисперсионной среды), загустителя (дисперсной фазы) и модификаторов – маслорастворимых присадок, наполнителей и др., например, литол, солидол. EdwART. Словарь… … Автомобильный словарь

    - (консистентные смазки), мазеобразные смазочные материалы, получаемые введением в жидкие нефтяные или синтетические масла твёрдого загустителя (мыла, парафина, силикагеля, сажи и др.). При нагрузках, меньших предела прочности (обычно 0,1 0,5 кПа) … Энциклопедический словарь

    - (консистентные смазки, от лат. consisto состою, застываю, густею), мазе или пастообразные смазочные материалы, получаемые введением твердых загустителей в жидкие нефтяные или синтетич. масла и их смеси. Как правило, П. с. (в литературе их для… … Химическая энциклопедия

    Высоковязкие мази, получаемые путём загущения нефт. или синтетич. масел мылами, твёрдыми углеводородами, органич. пигментами и др. продуктами; применяются гл. обр. для смазывания трущихся соединений механизмов, когда непрерывная подача жидкой… … Большой энциклопедический политехнический словарь

    Смазки консервационные - вещества для антикоррозионной защиты металлических изделии п деталей машии. Смазки различного типа широко используются при хранении военной техники. Наибольшее распространение получили С. к. жидкие и С. к. пластичные. Пластичные смазки, кроме… … Словарь военных терминов - пластичные смазки, предназначенные для герметизации зазоров в механизмах и оборудовании, уменьшения трения и износа деталей, предотвращения задира и схватывания трущихся пов стей. У. с. чаще всего используют в сальниковых уплотнениях насосов,… … Химическая энциклопедия

    Пластичные смазки для уменьшения и предотвращения износа трущихся деталей, снижения трения скольжения. Для приготовления А. с. используют гл. обр. нефтяные масла малой и средней вязкости (v50 от 20 до 50 мм 2/с, где v50 кинематич. вязкость при 50 … Химическая энциклопедия

Пластичные (консистентные) смазки представляют собой густые составы, используемые для уменьшения трения в подшипниках качения, рычажных и шарнирных системах, цепных, зубчатых и винтовых передачах.

В отличие от жидких масел пластичные смазки способны:

  • хорошо удерживаться на вертикальных поверхностях;
  • не выходить из контакта с трущимися поверхностями;
  • герметизировать смазываемый узел.

Материалы отличаются высокими смазывающими свойствами в широком температурном диапазоне и обладают длительным эксплуатационным периодом. Благодаря этому применение пластичных смазок может быть более экономичным в сравнении с жидкими маслами.

Состав

Консистентная смазка представляет собой концентрированную дисперсию твердого загустителя (10–15 %) в жидкой среде (70–90 %), в качестве которой выступают масла на синтетической или минеральной основе. Загустителями служат соли высокомолекулярных кислот (мыла), твердые углеводороды, а также продукты органического и неорганического происхождения. Именно они позволяют материалу вести себя как твердое тело в спокойной фазе и как вязкая жидкость при появлении нагрузки. Состав и количество загустителей регулируют эксплуатационные свойства пластичных смазок. Для придания материалу определенных качеств применяются модифицирующие присадки и добавки (до 5 % от общей массы). С целью снижения окислительных процессов могут использоваться органические антиоксиданты фенольной группы. Ингибиторами коррозии служат производные парафина, а для повышения противоизносных свойств применяются эфиры ортофосфорной кислоты. В качестве антифрикционных и герметизирующих добавок выступают диосульфит молибдена, графит, порошки свинца, меди или цинка.

Функциональное назначение консистентной смазки

В результате нанесения смазочного материала на рабочие элементы достигаются следующие условия:

  • снижается коэффициент трения на поверхности;
  • увеличивается скольжение рабочих элементов;
  • уменьшается износ поверхностей трущихся деталей за счет наличия между ними смазочной пленки;
  • происходит формирование антикоррозионной пленки, предохраняющей элементы механизма от разрушения;
  • обеспечивается защитный барьер при работе в агрессивных средах;
  • происходит охлаждение механизмов и отвод тепла (такого эффекта позволяют достичь пластичные смазки для подшипников).

Классификация продуктов

Основные виды консистентных смазок классифицируют по типу применяемого в них загустителя.

  • Мыльные. Для их приготовления используют соли карбоновых кислот. В эту группу входят кальциевые, натриевые и комплексные (с включением анионов лития, бария, алюминия и др.) смазки. Продукты на основе кальция (солидолы) являются самыми простыми, но имеют низкий температурный предел эксплуатации. Натриевые составы не обладают водостойкостью, поэтому практически вышли из употребления. Комплексные пластичные смазки термостойки и обладают высокими противозадирными свойствами.
  • Углеводородные. Составы изготавливаются на основе высокоплавких углеводородов. Преимущественно это канатные и консервационные материалы.
  • Неорганические. Для их загущения используют бентонит, силикагель, графит, асбест и другие вещества. Данный вид продуктов обладает высокой термостабильностью.
  • Органические. К ним относятся продукты на основе кристаллических полимеров и производных карбамида.

По области использования пластичные смазки делят:

  • на антифрикционные – самая большая группа, применяемая для снижения износа механизмов в процессе трения. В нее входят следующие виды смазочных материалов:
    • общего назначения (например, консистентная смазка для подшипников, материал для редукторов и зубчатых передач различных механизмов);
    • термостойкие (например, высокотемпературная консистентная смазка для скоростных узлов скольжения и качения, работающих в экстремальных температурных режимах);
    • морозостойкие (материалы, имеющие низкий порог загустения, используемые при очень низких температурах);
    • химически стойкие (например, консистентная смазка, используемая в механизмах, работающих в агрессивных средах);
    • приборные и др.
  • консервационные – предназначены для предотвращения коррозии деталей оборудования как в процессе эксплуатации, так и во время хранения;
  • уплотнительные – служат для герметизации соединений и облегчения их монтажа (например, консистентная силиконовая смазка для сальников запорной арматуры и резьбовых соединений);
  • узкоспециализированные – применяются в определенных отраслях с особыми требованиями к смазкам (пищевая, электротехническая и химическая промышленность, ж/д и авиационный транспорт и др.).

Стоит отметить, что данное разделение смазок весьма условно, так как материалы обладают одновременно несколькими свойствами и могут выполнять различные функции.

Основные свойства смазок

  • Прочностные качества. С помощью частиц загустителя в материале образуется структурный каркас, обладающий определенным пределом прочности на сдвиг, благодаря которому вещество способно удерживаться на вертикальных и наклонных поверхностях. На формирование каркаса также влияет химический состав жидкой основы. При увеличении температуры прочность материала уменьшается.
  • Механическая стабильность. Разжижение при деформации и обратное загустевание при снятии нагрузки является отличием смазок от жидких масел.
  • Вязкостные свойства. Эффективная вязкость материала определяется его прокачиваемостью при низких температурах. При большой скорости приложения нагрузки и увеличении температуры вязкость резко уменьшается.
  • Коллоидная стабильность. Эта характеристика пластичных смазок определяет их способность удерживать дисперсионную среду (базовую масляную основу) от выделения в отдельную массу в результате хранения или эксплуатации. На это влияет как вязкость самой жидкой составляющей, так и структурные связи загустителя.
  • Химическая стабильность. Способность смазок противостоять окислению под воздействием кислорода, которое приводит к образованию активных веществ, ухудшающих эксплуатационные свойства продукта.
  • Термическая стабильность. Сохранение пластичного состояния под влиянием кратковременного воздействия высоких температур.
  • Испаряемость масла. Один из важнейших показателей, определяющий стабильность смазки как при длительном хранении, так и при эксплуатации в условиях высокой температуры. Повышение концентрации загустителя за счет уменьшения количества масла приводит к изменению многих других характеристик.

Klüber Lubrication является крупным производителем смазочных материалов и предлагает качественную продукцию для различных областей применения.

Исходные данные…………………………………………..…………..3

Перечень листов графической части……………………...........4

ВВЕДЕНИЕ…………………………………………………………..…….......5

1.ЭКСПЛУАТАЦИОННЫЕ свойства ПЛАСТИЧНЫХ СМАЗОК……9

1.1. Температура каплепадения………………………………….…………..9

1.2. Механические свойства………………………………………….…..…..9

1.3. Эффективная вязкость………………………………………………….10

1.4. Коллоидная стабильность………………………………………………11

1.5. Водостойкость…………………………………………………………..11

2.КЛАССИФИКАЦИЯ И ПРИМЕНЕНИЕ ПЛАСТИЧНЫХ СМАЗОК…..12

2.1.Смазки общего назначения……………………………………………...13

2.2.Универсальные смазки……………………………………………….….13

2.3.Специализированные смазки…………………………………………...14

2.4.Термостойкие смазки……………………………………………….…...14

2.5.Морозостойкие смазки……………………………………………...…...15

3.ХИММОТОЛОГИЧЕСКАЯ КАРТА………………………………………16

3.1.Химмотологическая карта горюче-смазочных материалов и спецжидкостей, применяемых по необходимости и при ремонтных работах………………………………………………………………………...20

4.ТАБЛИЦА ЗАПРАВОЧНЫХ ЕМКОСТЕЙ………………………………22

5.Список использУЕМОЙ литературы…………………....…….23

Исходные данные

Вариант

Марка автобуса

Эксплуатационный материал

Студент группы

ПАЗ - 3205

Пластичная смазка

Тимофеев Владислав Валерьевич

ПЕРЕЧЕНЬ ЛИСТОВ ГРАФИЧЕСКОЙ ЧАСТИ

ВВЕДЕНИЕ

Правильный выбор и рациональное использование эксплуатационных материалов во многом определяют надежность и долговечность техники, затраты на ее обслуживание и ремонт. Ошибка при выборе моторного масла может привести в лучшем случае к сокращению срока службы двигателя, в худшем — к его поломке.

Выбор и правильное применение масла осложняются зачастую тем, что технической документацией на некоторые машины предусматривается большое число марок смазочных материалов. Поэтому унификация их и использование заменителей могут иметь большое значение для упрощения эксплуатации автомобильной техники.

В автомобиле имеется большое число узлов и механизмов, где применяются пластичные смазки, разнообразие которых также предполагает грамотное их использование.

Для смазки ряда механизмов и деталей автомобиля используют густые мазеобразные продукты – пластичные смазки. Согласно одному из терминологических определений, отражающему объемно-механические свойства, пластичной смазкой называют систему, которая при малых нагрузках проявляет свойства твердого тела; при некоторой критической нагрузке смазка начинает пластично деформироваться (течь подобно жидкости) и после снятия нагрузки вновь приобретает свойства твердого тела.

Смазки по своему составу являются сложными веществами. В простейшем случае они состоят из двух компонентов – масляной основы (дисперсионная среда) и твердого загустителя (дисперсная фаза). Сочетая в себе свойства твердого тела и жидкости, пластичные смазки в качестве грубой модели могут быть представлены, как кусок ваты, пропитанной маслом. Волокна ваты соответствуют частицам дисперсной фазы, а масло, удерживаемое в вате, - дисперсионной среде смазки.

Свойства твердого тела придает смазке наличие структурного каркаса. Когда нагрузки малы, например под действием собственного веса, структурный каркас и сама смазка не разрушаются, а упруго деформируются. Это обусловлено природой загустителя – размером, формой, характером сцепления частиц дисперсной фазы.

Структурный каркас смазки не отличается сколько-нибудь значительной прочностью. Даже приложение малых нагрузок разрушает его, и смазка деформируется подобно пластично-вязкой жидкости. Благодаря этому смазку можно использовать в узле трения, свободно наносить на защищаемые от коррозии поверхности.

Процесс разрушения структурного каркаса пластичных смазок обратим. После снятия нагрузки течение смазки прекращается, структурный каркас практически мгновенно восстанавливается, и смазка вновь приобретает свойства твердого тела.

В качестве масляной основы смазок используют различные масла нефтяного и синтетического происхождения. Загустителями, образующими твердые частицы дисперсной фазы, могут быть вещества органического и неорганического происхождений (мыла жирных кислот, парафин, такие термостойкие материалы, как силикагель, бентонит, сажа, органические пигменты и т.п.).

Пластичные смазки предназначены для применения в узлах трения, где масло не удерживается или невозможно обеспечить непрерывное пополнение его запаса.

1.ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА ПЛАСТИЧНЫХ СМАЗОК

1.1.Температура каплепадения

В пластичной смазке при нагревании происходит необратимый процесс разрушения кристаллического каркаса, и смазка становится текучей. Переход из пластичного состояния в жидкое условно выражают температурой каплепадения , т.е. температурой, при которой из стандартного прибора при нагревании падает первая капля смазки. Температура каплепадения смазок зависит от вида загустителя и его концентрации.

По температуре каплепадения смазки делят на тугоплавкие (Т), среднеплавкие (С) и низкоплавкие (Н). Тугоплавкие смазки имеют температуру каплепадения выше 100 °С; низкоплавкие -до 65 ºС. Во избежание вытекания смазки из узла трения температура каплепадения должна превышать температуру рабочего узла на 15-20 ºС.

1.2.Механические свойства

Механические свойства смазок характеризуются пределом прочности смазок при сдвиге и пенетрацией.

Предел прочности — это минимальное удельное напряжение, которое нужно приложить к смазке, чтобы изменить ее форму и сдвинуть один слой смазки относительно другого. При меньших нагрузках пластичные смазки сохраняют свою внутреннюю структуру и упруго деформируются подобно твердым телам, а при больших давлениях структура разрушается, и смазка ведет себя как вязкая жидкость.

Предел прочности зависит от температуры смазки — с повышением температуры он уменьшается. Этот показатель характеризует способность смазки удерживаться в узлах трения, противостоять сбросу под влиянием инерционных сил. Для рабочих температур предел прочности не должен быть ниже 300—500 Па.

Пенетрация - условный показатель механических свойств смазок, численно равный глубине погружения в них конуса стандартного прибора за 5 с. Пенетрация - показатель условный, не имеющий физического смысла, и не определяет поведение смазок в эксплуатации. В то же время, так как этот показатель быстро определяется, им пользуются в производственных условиях для оценки идентичности рецептуры и соблюдения технологии изготовления смазок.

Число пенетрации характеризует густоту смазок и колеблется от 170 до 420.

1.3.Эффективная вязкость

Вязкость смазки при одной и той же температуре может иметь различное значение, которое зависит от скорости перемещения слоев относительно друг друга. С увеличением скорости перемещения вязкость уменьшается, так как частицы загустителя ориентируются по ходу движения и оказывают меньшее сопротивление скольжению. Увеличение концентрации и степени дисперсности загустителя приводят к увеличению вязкости смазки. Вязкость смазки зависит от вязкости дисперсной среды и технологии приготовления смазки.

Вязкость смазки при определенной температуре и скорости перемещения называется эффективной вязкостью и рассчитывается по формуле

где — напряжение сдвига; D — градиент скорости сдвига.

Показатель вязкости имеет большое практическое значение, Он определяет возможность подачи смазок и заправки в узлы трения с помощью различных заправочных устройств. Вязкость смазки определяет также расход энергии на ее перекачку при перемещении смазанных деталей.

1.4.Коллоидная стабильность

Коллоидная стабильность — это способность смазки сопротивляться расслаиванию.

Коллоидная стабильность зависит от структурного каркаса смазки, который характеризуется размерами, формой и прочностью связей структурных элементов. Следовательно, на коллоидную стабильность оказывает влияние вязкость дисперсной среды: чем выше вязкость масла, тем труднее ему вытекать.

Выделение масла из смазки увеличивается с повышением температуры, увеличением давления под действием центробежных сил. Сильное выделение масла не допустимо, так как смазка может ухудшить или потерять полностью свои смазочные свойства. Для оценки коллоидной стабильности используют различные приборы, способные выпрессовывать масло под действием нагрузки.

1.5.Водостойкость

Водостойкость — это способность смазки противостоять размыву водой. Растворимость смазки в воде зависит от природы загустителя. Наилучшей водостойкостью обладают парафиновые, кальциевые и литиевые смазки. Натриевые и калиевые - водорастворимые смазки.

2.КЛАССИФИКАЦИЯ И ПРИМЕНЕНИЕ ПЛАСТИЧНЫХ СМАЗОК

Пластичные смазки подразделяются на четыре группы:

Антифрикционные - для снижения износа и трения скольжения сопрягаемых деталей;

Консервационные - для предотвращения коррозии при хранении, транспортировке и эксплуатации;

- канатные - для предотвращения коррозии и износа стальных канатов;

Уплотнительные - для герметизации зазоров, облегчения сборки и разборки арматуры, манжет, резьбовых, разъемных и любых подвижных соединений.

Антифрикционные смазки являются самой многочисленной группой пластических смазок и делятся на следующие подгруппы:

С - общего назначения;

О - для повышенной температуры;

М - многоцелевые;

Ж - термостойкие (узлы трения с рабочей температурой >150 °С);

Н - низкостойкие (узлы трения с рабочей температурой <40 °С);

И - противозадирные и противоизносные;

X - химически стойкие;

П - приборные;

Т - редукторные (трансмиссионные);

Д - приработочные пасты;

У - узкоспециализированные (отраслевые).

Консервационные смазки обозначаются буквой “3”, канатные — “К”.

Уплотнительные смазки имеют три подгруппы:

А - арматурные (для манжет);

Р - резьбовые;

В - вакуумные (для уплотнений в вакуумных системах).

В зависимости от применения смазки делят па общего назначения, многоцелевые и специализированные.

2. 1 .Смазки общего назначения

Кальциевые смазки имеют общее название — солидолы. Это самые массовые и дешевые антифрикционные смазки, относятся к сред не плавким. Кальциевые смазки выпускаются следующих марок: солидол Ж, прессолидол Ж, солидол С или прессолидол С.

Солидол С работоспособен при температуре от -20 до 65 °С. Прессолидол С - от -30 до 50 °С.

Натриевые и натриево-кальциевые смазки работают в более широком интервале температур (от -30 до 110 °С) и применяются главным образом в подшипниках качения.

Например, смазка автомобильная ЯНЗ-2 почти нерастворима в воде, но при длительном применении во влажной среде эмульгируется. Вытесняется универсальной смазкой Литол-24.

2.2.Универсальные смазки

Универсальные смазки водостойки и работоспособны в широком интервале температур, скоростей и нагрузок. Обладают хорошими консервационными свойствами. Загустителями для них служат литиевые мыла.

Литол-24 - можно использовать в качестве единой автомобильной смазки, она работоспособна при температуре от -40 до 130 °С.

Фиол-1, Фиол-2, Фиол-3 - смазки аналогичны Литол-24, но более мягкие, лучше удерживаются в узлах трения.

2. 3 .Специализированные смазки

К специализированным смазкам относятся около 20 марок смазок разного качества. Они наиболее эффективно используются в качестве несменяемых и непополняемых смазок в процессе эксплуатации.

Графитная - применяется преимущественно в открытых узлах.

AM карданная - для карданных шарниров равных угловых скоростей (Тракта, Рцеппа, Вейса) грузовых автомобилей, склонна к вытеканию из узлов.

Шрус-4 - для шарниров равных угловых скоростей (типа Бирфильд) легковых автомобилей; работоспособна при температуре от -40 до 130 °С, водостойка, имеет высокие противозадирные и противоизносные свойства.

ШРБ-4 - для герметизированных шарниров подвесок и рулевого управления, диапазон рабочих температур от -40 до 130 °С.

ЛСЦ-15 - применяется в шлицевых соединениях, шарнирах и осях приводов педалей, стеклоподъемниках; обладает высокой водостойкостью, адгезией (прилипаемостью) к металлам, хорошими консервационными свойствами.

2.4.Термостойкие смазки

Предел работоспособности термостойких смазок — от 150 до 250 °С.

Униол-ЗМ - водостоек, обладает хорошей коллоидной стабильностью и противозадирными свойствами.

ЦИАТИМ-221 - можно применять при температурах от -60 до 150 °С, химически стабильна к резине и полимерным материалам.

2.5.Морозостойкие смазки

Морозостойкие смазки работоспособны во всех узлах трения в условиях Крайнего Севера и Арктики.

Зимол - морозостойкий аналог смазки Литол-24.

Лита - многоцелевая морозостойкая рабоче-консервационная смазка, водостойкая.

ЦИАТИМ-201 - основная морозостойкая смазка для автомобилей, обладает посредственными противозадирными свойствами, при хранении выделяет масло. Зимол и Лита, уступая ей по морозостойкости, превосходят по противоизносным свойствам, работоспособности при повышенных температурах.

3.ХИММОТОЛОГИЧЕСКАЯ КАРТА

Таблица 1.

№ поз. на схеме смазки

Наименование узла, агрегата

Кол-во смазки (общее на все точки)

Наименование смазки

Кол-во точек

Периодичность

Указания по смазке

ТО-1

ТО-2

СТО

Валик привода педали тормоза

Смазывайте через пресс-маслёнку

Система гидроусилителя руля

2,5 л

МГ-15-В ГОСТ 17479.3-85

Х ХХ

Проверьте уровень масла в бачке и, при необходимости долейте. При использовании заменителей меняйте масло при СТО, оба фильтра насоса промойте в бензине или керосине. Замените фильтрующий элемент

Бачок заливной главного цилиндра тормоза

0,6 л

Жидкость для тормозов "Роса" ТУ 2451-004-10488057-94 Заменители: "Нева", "Томь" ТУ 6.01.1163-78, ТУ 6.01.1276-82, SAE 1703F;
DOT-4

Продолжение таблицы 1.

Картер масляный двигателя

10 л

Проверьте уровень масла при ЕО, долейте до нормы. Замените масло и фильтрующий элемент масляного фильтра

Подшипники водяного насоса

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Маслоотделитель вентиляции картера двигателя

ХХ

Разберите, промойте в керосине, протрите насухо, установите на место

Подшипники натяжного ролика вентилятора

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Х ХХХ

Доложите смазку в полость подшипника. Снемите ролик, промойте в керосине, протрите насухо и заложите свежую смазку

Подшипники валов вентилятора

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Смазывайте через пресс-маслёнку до появления свежей смазки из контрольного отверстия

Продолжение таблицы 1.

Ролики шторки радиатора

3 г

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Смазывайте оси роликов один раз в год - осенью

Распределитель зажигания: - втулка ротора

М-4з/6-В1 ГОСТ-17479.1-85 Дублирующие: SAE 5W-30, SAE 5W-40

4 - 5 капель

Подшипники ступиц колёс передней оси

1 кг

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

ХХ

Закладывайте смазку при снятой ступице между роликами и сепараторами равномерно по всей внутренней полости подшипников

Подшипник муфты выключения сцепления

30 г

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Смазывайте одной полной заправкой колпачковой маслёнки

Картер коробки передач

3 л

ТМ-5-18
ГОСТ 17479.2-85
Заменитель: SAE 85W/90 по API GL-5

ХХ

Проверьте уровень масла, при необходимости долейте. Замените смазку.

Шарниры карданных валов

50 г

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Смазывайте раз в два года

Подшипник опоры промежуточного вала карданной передачи

50 г

Литол-24 ГОСТ 21150-87

Смазывайте через пресс-маслёнку до появления свежей смазки из контрольного отверстия

Шлицы карданного вала

240 г

Литол-24 ГОСТ 21150-87 или ЯНЗ-2 ГОСТ 19537-74

Смазывайте через пресс-маслёнку (10 качков шприцем)

Продолжение таблицы 1.

Клеммы и перемычки аккумуляторной батареи

Литол-24 ГОСТ 21150-87 или ЦИАТИМ-201 ГОСТ 6267-74

Смазывайте тонким слоем

Картер заднего моста

8,2 л

ТМ-5-18
ГОСТ 17479.2-85 или
Top75W-85
SKG-F

ХХ

Замените масло

Фильтры воздушных усилителей тормозов

Масло M-8В ГОСТ 10541-78

ХХХ

Промойте фильтрующие элементы в керосине и обмакните в чистое масло

Предохранитель против замерзания

200 г

Спирт этиловый технический ГОСТ 17228-78

Применяйте при температурах окружающего воздуха ниже 5˚С

Шарниры рулевых тяг

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Смазывать до появления свежей смазки

Шкворни поворотных кулаков

0,09 кг

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Смазывать через пресс-маслёнку по четыре кучка на каждую точку

Шарниры силового цилиндра ГУР опора цилиндра

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Смазывайте до появления свежей смазки из отверстия. Разберите, смажьте

Продолжение таблицы 1.

Заливной бачок привода выключения сцепления

0,45 л

Томь
ТУ 2451-004-
10488057
или SAE 1703F;
DOT-4

Проверьте уровень жидкости и, при необходимости, долейте (то же проделать после прокачки и ремонтных работ). Заменяйте жидкость раз в год осенью

3.1.Химмотологическая карта горюче-смазочных материалов и спецжидкостей, применяемых по необходимости и при ремонтных работах

Таблица 2.

№ поз. на схеме смазки

Наименование узла

Кол-во смазки

Наименование смазки

Указания по смазке

Кронштейн сферы рычага переключения передач

0,05 кг

Литол-24
ГОСТ 21150-87,
Литиевая смазка по NLGJ №3

Смазывайте по необходимости

Амортизаторы

1,9 л

ГТЖ-12
ГОСТ-23008-88

Замените при ремонтных работах

Механизм запасного колеса

0,015 кг

Литол-24
ГОСТ 21150-87,
Литиевая смазка по NLGJ №3

Смазывайте при ремонте ось барабана

Шток и толкатель пневмоусилителей

0,015 кг

Литол-24
ГОСТ 21150-87,
Литиевая смазка по NLGJ №3

Смазывайте по необходимости

Замок двери водителя

0,005 кг

Смазывайте по необходимости при ремонте или разборке

Привод стояночного тормоза

0,010 кг

Литол - 24 ГОСТ 21150-87

Смазывать по необходимости

Петли двери водителя

35 г

Литол - 24 ГОСТ 21150-87 ЦИАТИМ - 201 ГОСТ 6267-74

Смазывайте по необходимости

Подшипник рулевой колонки

0,05 кг

Литол - 24 ГОСТ 21150-87

Продолжение таблицы 2.

Карданный шарнир рулевой колонки

0,015 кг

Литол-24
ГОСТ 21150-87,
Литиевая смазка по NLGJ №3

Смазывайте по необходимости и при ремонте

4.ТАБЛИЦА ЗАПРАВОЧНЫХ ЕМКОСТЕЙ

Таблица 3.

Система, механизм, агрегат

Объём, л

Эксплуатационные материалы

Топливный бак

АИ-91 , АИ-92

Система охлаждения

Тосол А-65М

Система смазки (исключая масляный радиатор)

М-4з/6-В1

Картер коробки передач

ТМ-5-18

Картер заднего моста

ТМ-5-18

Амортизаторы (каждый)

0,475

ГТЖ-12

Система гидравлического привода рабочих тормозов

0,75

"Роса", "Нева", "Томь"

Гидроусилитель руля

МГ-15-В

Ступица передних колёс (каждая)

Литол-24

Омыватель ветровых стёкол

Спирт этиловый технический

Бачок заливной главного цилиндра привода выключения сцепления

0,45

"Роса", "Нева", "Томь"

5.СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Стуканов В.А. Автомобильные эксплуатационные материалы. М.; ФОРУМ: ИНФРА-М, 2003 - 208 с.

2. Васильева Л. С. Автомобильные эксплуатационные материалы. – М.: Транспорт, 1986 – 280 с.

3. Автобусы семейства ПАЗ-3205: особенности конструкции, руководство по эксплуатации и техническому обслуживанию, г.Павлово-на Оке. 2006 – 113 с.

План лекции

1. Классификация и обозначение пластичных смазок.

2. Общие требования к пластичным смазкам для узлов автомобилей.

3. Свойства смазок и методы их оценки.

4. Производство пластичных смазок.

5. Ассортимент смазок, их применение и взаимозаменяемость.

1. Классификация и обозначение пластичных смазок

Для смазки ряда механизмов и деталей автомобиля используют густые мазеобразные продукты – пластичные смазки. Пластичной смазкой называют систему, которая при малых нагрузках проявляет свойства твердого тела; при некоторой критической нагрузке смазка начинает пластично деформироваться (течь подобно жидкости) и после снятия нагрузки вновь приобретать свойства твердого тела.

Смазки по своему составу является сложными веществами. В простейшем случае они состоят из двух компонентов – масляной основы (дисперсионная среда) и твердого загустителя (дисперсная фаза).

В качестве масляной основы смазок используют различные масла нефтяного и синтетического происхождения. Загустителями, образующими твердые частицы дисперсной фазы, могут быть вещества органического и неорганического происхождения (мыла жирных кислот, парафин, силикагель, бетонит, сажа, органические пигменты и т.п.). Размеры частиц дисперсной фазы очень малы – 0,1-10 мкм. Наиболее характерная форма частиц загустителя – мелкие шарики, ленты, пластинки, иголки, сростки кристаллов и др.

Добавки необходимы для улучшения эксплуатационных свойств смазок. К ним относятся:

- присадки – малорастворимые ПАВ (тоже, что и в моторных маслах). Не более 5 %;

    наполнители , улучшающие антифрикционные и герметизирующие свойства (дисульфид молибдена, графит, слюда и др.). Наполнители составляют 1-20 % массы смазки;

    модификаторы структуры , способствующие формированию более прочной и эластичной структуры смазки. Это ПАВ (кислоты, спирты и др.) и составляют 0,1 –1 % массы смазки.

Для большинства смазок на долю дисперсионной среды – жидкого масла приходится от 70 до 90 % массы смазок. От вязкости дисперсионной среды во многом зависят вязкостные характеристики смазок, например, прокачиваемость смазки при низких температурах. От вязкости дисперсионной среды смазок зависит в основном сопротивление вращению в таком важном узле трения, как подшипник качения.

Для производства смазок применяют мало - и средневязкие нефтяные масла и редко – синтетические. В РФ до 80% смазок готовят на маслах вязкостью не более 50 мм 2 /с при 50 °С. Смазки, приготовленные на маловязких маслах, можно применять при –60 °С. Вязкие масла применяют в основном для производства консервационных, а также некоторых сортов; термостойких смазок.

В смазки специального назначения (уплотнительные, резьбовые, для рессор и т.п.) применяют наполнители – графит, дисульфид молибдена. Наполнители увеличивают прочность смазки, препятствуют выдавливанию её из узлов трения.

В процессе эксплуатации автомобилей наибольшее применение получили мыльные и углеводородные смазки.

Загустителями в мыльных смазках являются мыла. Известны смазки загущенные мылами лития, натрия, кальция, цинка, стронция, бария, алюминия, применяют широко только кальциевое, литиевые, натриевые, бариевые и алюминиевые смазки.

Углеводородные смазки получают сплавлением нефтяных масел с твердыми углеводородами – парафином, церезином. Эти смазки занимают исключительное место среди консервационных (защитных) смазок благодаря их невысокой температуре плавления и обратимости структуры. Они абсолютно нерастворимы в воде и не проводят через себя водяные пары. Их можно наносить на металлические детали и поверхности, окуная в расплавленную смазку при 60-120 °С, распыливанием, при помощи кисти и т.д. Тонкий слой смазки (около 0,5 мм) надежно защищает поверхность от проникновения воды и пара.

В соответствии с классификацией (ГОСТ 23258-78) смазки разделены на четыре группы: антифрикционные, консервационные, уплотнительные и канатные.

Антифрикционные смазки делятся на подгруппы, обозначаемые индексами: С – общего назначения для обычной температуры (до 70 °С); О – для повышенной температуры (до 110 °С); М – многоцелевые, работоспособны от -30 до +130 °С в условиях повышенной влажности; Ж – термостойкие (150 °С и выше); Н – морозостойкие (ниже –40 °С); И – противозадирные и противоизносные; П – приборные; Д – приработочные (содержат дисульфид молибдена); Х – химически стойкие.

Консервационные (защитные) смазки, предназначенные для предотвращения коррозии металлических поверхностей при хранении и эксплуатации механизмов, обозначаются индексом 3.

Канатные – индексом К.

Уплотнительные смазки делятся на три группы: арматурные – А, резьбовые – Р, вакуумные – В.

В обозначении еще указывают :

    тип загустителя (обозначают первыми двумя буквами входящего в; состав мыла металла: Ка – кальциевое. На – натриевое. Ли – литиевое, Ли-Ка – смешанное);

В табл. 1 представлены виды загустителей для различных смазок.

Таблица 1

Марки смазок и виды загустителей

Вид загустителя

12-гидроксистеарат лития

Фиол-1, Фиол-3

12-гидроксистеарат лития

12-гидроксистеарат лития

Комплексное бариевое мыло

Стеараты лития и калия, фталоцианин меди

Стеарат лития, церезин-80

ЦИАТИМ-201

Стеарат лития

ЦИАТИМ-203

Стеарат лития

Натриево-кальциевые мыла касторового масла

Солидол-С

Кальциевые мыла СЖК

Комплексное кальциевое мыло

ВНИИ НП-242

Стеарат лития, дисульфид молибдена

    рекомендуемый температурный диапазон применения (указывают дробью – в числителе уменьшенная в 10 раз без знака минус минимальная температура, в знаменателе - уменьшенная в 10 раз максимальная температура применения);

    дисперсионную среду (обозначают строчными буквами: у – синтетические углеводороды, к – кремнийорганические жидкости, г – добавка графита, д – добавка дисульфида молибдена.

    консистенцию (густоту), которую обозначают условным числом от 0 до 7.

Классификация смазок по консистенции (густоте) разработана Национальным институтом смазочных материалов США (NLGI). Согласно этой классификации смазки делятся на классы в зависимости от уровня пенетрации – чем выше численное значение пенетрации , тем мягче смазка. Класс 000, 00 – очень мягкая, аналогична очень вязкому маслу; класс 0, 1 – мягкая; класс 2 – вазелинообразная; класс 3 – почти твердая; класс 4,5 – твердая; класс 6 – очень твердая, мылообразная.

При выборе смазки лучше руководствоваться рекомендациями завода-изготовителя автомобиля.

Автомобильный транспорт является одним из основных потребителей пластичных смазок – около 25 % от общего производства.

В качестве примера можно привести классификационное обозначение по ГОСТ 23858-79 товарной литиевой смазки литол-24:

М Ли 4/13-3 – смазка многоцелевая антифрикционная, работоспособна в условиях повышенной влажности (М), загущена литиевым маслом (Ли). Рабочий диапазон температур составляет –40...+130°С (4/13). Отсутствие индекса дисперсионной среды означает, что смазка приготовлена на нефтяном масле. Цифра 3 характеризует консистенцию смазки.

Пластичные автомобильные смазки


От узлов шасси автомобиля требуется длительная работа без обслуживания, в том числе без пополнения их смазочными материалами. Увеличение средних скоростей автомобилей, внедрение перспективных конструкторских разработок, направленных на повышение надежности, безопасности, снижение металлоемкости, ведет, как правило, к уменьшению габаритов узлов шасси и ужесточению режимов работы смазочных материалов.

В автомобильной технике используется 15- 20 марок пластичных смазок. Большая часть их рассчитана на весь срок службы автомобиля и применяется только при сборке автомобилей, а б эксплуатации используют не более 3-5 типов смазок. Число механизмов, узлов и деталей автомобиля, смазываемых пластичными смазками (ступицы колес, подшипники электрооборудования, сцепление, точки смазки шасси, рулевого управления, кузова и др.), значительно больше, чем смазываемых маслами (двигатель, коробка передач, задний мост, картер руля). В новых моделях автомобилей смазки вытеснили масло из рулевого механизма, исчезают подшипники ступиц колес с закладной смазкой (вместо них применяют закрытые подшипники) и др.

Пластичные смазки по свойствам занимают промежуточное положение между маслами и твердыми смазками. Они сочетают свойства твердого тела и жидкости, что связано с их строением. Грубой моделью смазки может служить кусок ваты, пропитанный маслом. Волокна ваты соответствуют частицам дисперсной фазы, а масло, удерживаемое в вате, дисперсионной среде смазки. Наличие структурного каркаса придает смазке свойства твердого тела. Под действием собственного веса оп не разрушается, однако достаточно приложить нагрузку, как каркас разрушается и смазка деформируется как пластичное тело. После снятия нагрузки течение смазки прекращается, и каркас практически мгновенно восстанавливается.

В качестве загустителей (веществ, из которых образованы твердые частицы дисперсной фазы) используют вещества органического или неорганического происхождения: мыла, парафин, пигменты и др. Содержание загустителя в пластичных смазках составляет от 5 до 30 %. В небольших количествах в смазках присутствуют другие компоненты: присадки, твердые добавки, свободные щелочи или кислоты, диспергаторы и др. Однако основные эксплуатационные свойства определяются именно загустителем, поэтому смазки обычно называют по типу загустителя.

Наибольшее распространение получили мыльные смазки, загущенные солями жирных кислот. При производстве смазок мыла получают нейтрализацией высших жирных кислот гидроксидами металлов (щелочами) .

За рубежом для этой цели применяют индивидуальные жирные кислоты и природные жиры (животные), в СССР - синтетические жирные кислоты, природные жиры. Известны смазки, загущенные мылами лития, натрия, калия, магния, кальция, цинка, стронция, бария, алюминия, свинца. Однако наиболее широко распространены только кальциевые, литиевые, натриевые, бариевые и алюминиевые смазки, загущенные мылами соответствующих металлов.

Длительное время в нашей стране основными смазками для старых моделей автомобильной техники являлись кальциево-натриевые смазки типа Солидол, 1-13, ЯНЗ -2 и др. Эти смазки недостаточно водостойки, работоспособны в узком интервале температур,.обладают низкой механической стабильностью, быстро выбрасываются, вытекают из подшипников и других узлов трения. Указанными недостатками и обусловливается ограниченная работоспособность данных смазок, а следовательно, частая их смена в автомобильных узлах при эксплуатации.

С 1970 г. в СССР начато производство комплексных кальциевых, бариевых и других смазок. Для автомобильного транспорта особенно перспективной явилась разработка высококачественных многоцелевых пластичных смазок на оксистеарате лития типа Литол-24. В настоящее время «Ли-тол-24» получил наиболее широкое распространение для смазки узлов легковых автомобилей. Для этого вида техники используются и некоторые другие литиевые смазки, ЛСЦ -15, Фиол-1, Фиол-2, Фиол-2у, ШРУС -4. Среди новых смазок есть бариевая смазка (ШРБ -4), натриевая (КСБ ). Выпускаются также немыльные смазки: углеводородная, ВТВ -1, силикаге-левые Лимол и Силикол.

При сборке автомобилей на Волжском автозаводе смазками смазывают около 130 различных точек. Подавляющее большинство точек смазывают четырьмя смазками: ЛСЦ -15, Литол-24, ВТВ -1 и Фиол-1. Остальные смазки являются более узкоспециализированными. Например, при сборке автомобилей на ВАЗ е используют 12 смазок:

Создание новых моделей автомобилей и узлов к ним, а также необходимость повышения ресурса отдельных узлов потребовали внедрения перспективных смазок. Так, при сборке шаровых шарниров с тефлоном на ВАЗ е была применена дисульфидмолибденовая смазка «Лимол», так как другие смазки не выдерживали нагрева, предусмотренного технологией сборки шарнира.

Недостаточная долговечность игольчатых подшипников карданного вала автомобиля ВАЗ послужила причиной замены в них «Литола-24» на «Фиол-2у». Появление на автомобиле вакуумного усилителя потребовало применения новой смазки «Силикол» и т. д. При подборе смазок для конкретного узла трения решающее значение имеют их эксплуатационные характеристики. Для оценки этих характеристик в СССР имеется около 20 стандартизованных методов испытаний.

Смазки в первую очередь характеризуются консистенцией. Консистенцию смазок определяют показателем пенетрации по ГОСТ 5346-78 при 25 °С. В сосуд со смазкой погружается металлический конус под действием собственного веса (1 Н). Чем больше глубина погружения, тем «мягче» смазка и тем больше величина (число) пенетрации.

Кроме консистенции смазки характеризуются температурами каплепа-дения и сползания, пределом прочности на сдвиг, вязкостью при различных температурах, механической стабильностью, испаряемостью, коллоидной стабильностью, окисляемостью, антикоррозионными и защитными

свойствами, водостойкостью, содержанием кислот, щелочей и механических примесей (абразивы).

Для того чтобы облегчить подбор смазок и их заменителей, в табл. 1.18 приведены основные марки смазок, применяемые при изготовлении и эксплуатации автомобилей, с оценкой их свойств по пятибалльной системе: 1 балл - характеристики смазки по данному показателю неудовлетворительные; 2 балла - недостаточно удовлетворительные; 3 балла - удовлетворительные; 4 балла - хорошие; 5 баллов - отличные.

Наибольшим их достоинством является широкий температурный интервал, работоспособность при температуре до 120-130 °С и высокая механическая стабильность. Последнее свойство особенно важно для герметизированных узлов, в частности для подшипников скольжения и шарнирных соединений, т. е. для таких узлов, в которых вся смазка подвергается деформации. Из-за низкой механической стабильности смазка «Солидол С» в процессе эксплуатации разупрочняется и вытекает из узлов, в то время как «Литол-24» сохраняет свои свойства, удерживается в узле и обеспечивает длительную работу подшипников качения и скольжения без смены и пополнения. Поэтому периодичность смены смазки при применении «Литола-24» по сравнению со смазкой «Солидол С» в шарнирах рулевых и реактивных тяг увеличена в 3 раза, а в шлицевых соединениях карданного вала - в 5-6 раз. Срок службы смазки до замены в подшипниках ступиц колес при переходе со смазки 1-13 на «Литол-24» увеличивается в 2-3 раза. Одним из основных видов повреждения подшипников в процессе эксплуатации является пит-тинг поверхностей трения. Появление питтинга зависит от антипиттинго-вых свойств пластичных смазок. Из этих данных следует, что наихудшими антипиттинговыми свойствами обладают смазки «Солидол С», смазки же ЦИАТИМ -201, ЯНЗ -2 и 1-13 близки между собой, а «Литол-24» и особенно смазка № 158 значительно превосходят их по этому показателю.