Разъем обд 2 распиновка. Диагностический разъем OBD. Самостоятельное изготовление соединительного кабеля

Идея не новая, но вопросов много. С одной стороны, можно снять практически любые данные, а с другой стороны, OBDII похож на лоскутное одеяло, т.к. общее количество физических интерфейсов и протоколов напугает любого. А объясняется всё тем, что к моменту появления первых версий спецификаций OBD большинство автопроизводителей уже успели разработать что-то своё. Появление стандарта хоть и навело некоторый порядок, но потребовало включения в спецификацию всех интерфейсов и протоколов, которые на тот момент существовали, ну, или почти всех.

В OBDII разъёме по стандарту J1962M присутствуют три стандартных интерфейса: MS_CAN, K/L-Line, 1850, там же плюс аккумулятора и две земли (сигнальная и просто масса). Это по стандарту, остальные 7 из 16 выводов – ОЕМ, то есть каждый производитель эти выводы использует как ему заблагорассудится. Но и стандартизованные выводы зачастую имеют расширенные, продвинутые функции. Например, MS_CAN может быть HS_CAN, HS_CAN может быть на других пинах (неоговоренных стандартом) наряду со стандартным MS_CAN., Пин №1 может быть: у форда – SW_CAN, у WAGов – IGN_ON, у КИА – check_engene. И т.д. Все интерфейсы также не были стационарны в своём развитии: тот же интерфейс K –Line изначально был однонаправленным, сейчас он двунаправленный., Бодрейт CAN интерфейса также растёт. Вообще, подавляющее большинство европейских автомобилей 90-х и начала нулевых вполне себе можно было продиагностировать имея только K –Line, а большинство американских – только SAE1850. В настоящее время общий вектор развития – это всё более широкое применение CAN, повышение скорости обмена., всё чаще видим и однопроводный SW_CAN.

Существует мнение, что англоязычный программист сидя на профильных(англоязычных же) форумах, закопавшись в тексты стандартов, может за “максимум 4-5 месяцев” построить универсальный движок, который со всем этим разнообразием справится. На практике это не так. Всё равно возникает потребность сниферить каждую новую машину., иногда даже одну и ту же машину, но в разных комплектациях. И получается, что заявляют о 800-900 типах поддерживаемых автомобилей, а на практике 10-20 реально оттестированных. И это система, –в РФ автору известны, по-крайней мере, 3 команды разработчиков, пошедших по этому тернистому пути и все с одинаково плачевным результатом: нужно сниферить/кастомизировать каждую модель автомобиля, а ресурсов/средств на это нет. И причина этого вот в чем: стандарт-стандартом, а каждый производитель когда вынужденно, а когда и преднамеренно вносит в свою реализацию что-то своё, стандартом не описанное. Кроме того, не все данные по-умолчанию присутствуют на разъёме. Есть данные, появление которых нужно инициировать (дать тому или иному блоку автомобиля команду передать нужные данные).

И вот тут на сцену выходят интерпретаторы шины OBDII. Это микроконтроллер, с набором интерфейсов, соответствующих стандарту J1962M, переводящий всё многообразие данных на разных интерфейсах диагностических разъёмов в язык, более удобный для приложений, например для приложений диагностики. Иными словами, всё многообразие протоколов расшифровывается теперь приложением, не важно, на чём работающим – на компьютере с Windows или на планшете/смартфоне. Первым массовым интерпретатором OBDII с открытым протоколом стал ELM327. Это 8-ми битный микроконтроллер MicroChip PIC18F2580. Пусть читателя не удивляет тот факт, что этот микроконтроллер является массовым прибором общего применения. Прошивка как раз проприентарная и реальная стоимость “PIC18F2580+FirmWare” составляет внушительные 19-24$. То есть сканер, выполненный на “честном” чипе ELM327 не может стоить меньше, чем 50 вечнозелёных президентов. Откуда же на рынке такое разнообразие сканеров/адаптеров с ценами “от 1000рублей”, спросите Вы? А это наши китайские друзья постарались! Уж как они клонировали этот чип, травили кристалл послойно или сниферили денно и ночно – оставим за кадром. Но факт остаётся: на рынке появились клоны (для справки: 8-ми битный контроллер MicroChip в оптовых закупках ныне стоит меньше доллара). Другое дело, насколько правильно эти клоны работают. Есть мнение, что “пока народ покупает дешёвые адаптеры, автоэлектрики без работы не останутся”. То есть покупает человек адаптер с мыслью “чего-нибудь там перезалить или настроить”., а результат получает иной, ну, то есть, не тот, на который рассчитывал. Ну например, вдруг начинает всеми своими огоньками мультимедиа-система моргать, или выскакивает ошибка, или вообще коробка в аварийный режим переходит. И хорошо, если без серьезных последствий – в большинстве случаев специалист с профессиональным оборудованием вылечит железного коня. Но случается и иначе. Здесь могут смешаться сразу несколько факторов: неправильный адаптер(клон), неправильный софт, неправильная связка адаптер+софт, ну и “кривые” руки тоже свою роль сыграть могут. Замечу, что адаптер на честном чипе от производителя с правильным софтом к плачевным результатам не приведёт, по крайней мере, автору о таких случаях не известно.
А что можно сделать с помощью такого адаптера? Ну наверное, самый частый случай, положить в бардачок “на всякий случай”. Посмотреть и сбросить ошибку, коль скоро та появится. Одометр сбросить перед продажей авто, или наоборот, “накрутить” если ты наёмный водитель. Включить какую-либо опцию в автомобиле, которая по-умолчанию выключена, а у официального дилера эта услуга платная. Обновление прошивок и переконфигурирование электронных блоков, всё-таки оставим специалистам, но большинство адаптеров позволяют и это. Кому-то понравится просто иметь больше информации о параметрах работы двигателя и других систем в виде красивой графики на планшете или смартфоне. Часто встречаются на дороге, почему-то таксисты, у которых андроид-планшет установлен перед приборной панелью и полностью её перекрывает, так вот: планшет этот скорее всего подключен к такому адаптеру по блютузу или по Wi-Fi. Есть и ещё целый ряд применений, это использование такого адаптера совместно с телематическим прибором (трекером) или сигнализацией. Подключение к диагностическому разъёму посредством такого адаптера позволяет малой кровью снимать данные, необходимые для мониторинга. В большинстве случаев такой метод обходится разработчику дешевле, да и сама установка проще, ведь исчезает необходимость в установке различных датчиков, всё (ну или почти всё) можно снять с OBDII.
Другое дело, что возможности чипа в настоящее время уже недостаточны и для использования в современных автомобилях. Где-то в середине нулевых годов пошли вверх скорости обмена по шине CAN, появился SW_CAN. Но самое главное: возросла длина (количество символов) в кодовых словах. И если аппаратно можно, через реле или банальный тумблер, приляпать к ELM327 костыли, которые позволят работать и с MS и с HS да и с SW релизами CAN, то на длинные кодовые слова вычислительной мощности PIC18F2580 с его 4 MIPS явно недостаточно. К слову, последняя версия ELM327 (V1.4) датируется 2009 годом. И использовать этот чип без “костылей” можно только для автомобилей выпуска до середины нулевых. Так что же делать. Выход, как ни странно есть, причём не один.
CAN-LOG, тоже интерпретатор, но не полного набора интерфейсов OBDII, а двух CAN шин. Оказывается, этого достаточно, чтобы в большинстве случаев снять всю необходимую информацию. Правда, далеко не у всех автомобилей обе CAN шины выведены на диагностический разъём. Значит, придётся подключаться под панелью приборов. А это не всегда приемлемо из соображений сохранения гарантии, правда есть вариант беспроводного съёма информации с шины, но это ещё дороже, да и достоверность снятых данных не 100%. Можно использовать как готовый прибор, подключив его посредством УАРТа или RS232, так и просто чип, интегрировав его на плату устройства с небольшим количеством дискретных компонентов. Стоимость прибора – конечно выше, чем стоимость аутентичного ELM327, но это компенсируется огромным списком поддерживаемых автомобилей и функций. Причём в список поддерживаемых автомобилей включены не только легковые автомобили, но и также грузовики, строительная, дорожная и сельскохозяйственная техника. CAN-LOG работает несколько иначе, чем ELM327 и его клоны. При подключении к шинам автомобиля необходимо выбрать и установить номер программы, соответствующей автомобилю. И это удобно, т.к. разработчику не нужно вникать во всё многообразие протоколов. (В ELM327 выбор автомобиля и тонкая настройка чипа отданы на откуп приложению).
Существуют и иные решения, позволяющие легко и изящно снимать данные с диагностического разъёма. Ну а вопрос о том, можно ли приручить штатный диагностический разъём, и как, каждый разработчик решит сам. Для парка автомобилей одной марки, можно попытаться написать свой софт, если конечно производитель не закрывает протоколы. А если телематическое устройство будет устанавливаться на разные модели, то разумнее использовать какой-либо из OBDII интерпретаторов.

Диагностический разъём представляет собой стандартизированную SAE J1962 колодку в форме трапеции с шестнадцатью контактами расположенными в два ряда).

Согласно стандарту, разъём OBD2 должен находиться в салоне автомобиля (чаще всего располагается в районе рулевой колонки). Расположение разъёма OBD-1 строго не регламентировано и он может находиться даже в моторном отсеке.

По разъёму можно определить какие именно OBD2 протоколы поддерживаются в вашем автомобиле. Каждый протокол использует определённые контакты разъёма. Эта информация пригодится вам при выборе адаптера.

Распиновка (назначение выводов) OBD2 разъёма

1 OEM (протокол производителя).
2 Шина + (Bus positive Line). SAE-J1850 PWM, SAE-1850 VPW.
3 -
4 Заземление кузова (Chassis Ground).
5 Сигнальное заземление (Signal Ground).
6 Линия CAN-High высокоскоростной шины CAN Highspeed (ISO 15765-4, SAE-J2284).
7 K-Line (ISO 9141-2 и ISO 14230).
8 -
9 Линия CAN-Low, низкоскоростной шины CAN Lowspeed.
10 Шина - (Bus negative Line). SAE-J1850 PWM, SAE-1850 VPW.
11 -
12 -
13 -
14 Линия CAN-Low высокоскоростной шины CAN Highspeed (ISO 15765-4, SAE-J2284).
15 L-Line (ISO 9141-2 и ISO 14230).
16 Питание +12в от АКБ (Battery Power).

Контакты 3, 8, 11, 12, 13 не определены стандартом.

Определяем OBD2 протокол используемый в автомобиле

В стандарте регламентировано 5 протоколов, однако чаще всего используется лишь какой-то один. Таблица поможет определить протокол по задействованным в разъёме контактам.

Протокол кон. 2 кон. 6 кон. 7 кон. 10 кон. 14 кон. 15
ISO 9141-2 + +
ISO 14230 Keyword Protocol 2000 + +
ISO 15765-4 CAN (Controller Area Network) + +
SAE J1850 PWM + +
SAE J1850 VPW +

В протоколах PWM, VPW отсутствует 7 (K-Line) контакт, в ISO отсутствует 2 и/или 10 контакт.

Так же Вы можете ознакомиться с распиновкой диагностических разъемов

диагностический разъем Рено

диагностический разъем Опель

диагностический разъем KIA

В настоящее время подавляющее число иномарок, а так же автомобилей отечественного производства имеют OBD2 диагностический разъем. Через данный разъем Вы можете подключать диагностическое оборудование для диагностики Вашего автомобиля, а так же подключать бортовые компьютеры и прочие устройства, работающие через диагностическую колодку. Иногда у пользователей возникает вопрос по распиновке диагностических колодок тех или иных марок автомобилей. Для Вашего удобства мы предлагаем готовые переходники для работы с различными диагностическими колодками автомобилей. Однако если Вы забыли приобрести переходник для Вашего автомобиля либо Вам понадобилось в экстренных условиях его изготовить, либо подключить адаптер напрямую, то в данной статье Вы найдете информацию о распиновке колодок стандарта OBD 2, а так же автомобилей Российского и импортного производства.

Распиновка колодки OBD 2 (наиболее распостраненный вариант в иномарках с 2002 года, а так же устанавливается во все автомобили ВАЗ после 2002 г.в.):

Обозначения контактов:

7-K-линия диагностики

4/5 - GND выступающие контакты

16 - питание адаптера +12В

Распиновка колодки ВАЗ до 2004 года:

Обозначения контактов:

M - k-линия диагностики

H или G - питание адаптера +12В

При подключении адаптера без колодки напрямую к проводам, питание лучше брать от прикуривателя, так как изображенный на рисунке H контакт в зависимости от модели, может быть не разведен, а при использовании G контакта бензонасос дает очень большие импульсы которые могут повредить адаптер.

(В 99% случаях Вы можете использовать и указанные контакты т.к. повреждение адаптеров от бензонасоса практически не встречается.)

Разъем ГАЗ (Газель) УАЗ

Обозначения контактов:

2 - Питание адаптера +12В

12 - масса

10 - L-линия диагностики (может быть не разведена, как правило не используется)

11 - K-линия диагностики

Распиновка колодки Daewoo Nexia n100, Matiz, Chevrolet Lanos, ZAZ Chans :

Разъем M - К - линия для диагностики

Разъем А - масса

Разъем H - +12В (напряжение в данном разъеме может отсутствовать на некоторых моделях автомобилей)

Разъем G - +12В от замка зажигания (возможно отсутствие напряжения при включенном зажигании и незаведенном двигателе на некоторых моделях автомобилей

Если Вас интересует расположение диагностической колодки в Вашем автомобиле, а так же распиновка диагностических колодок автомобилей других марок. То Вы можете ознакомиться с ними через систематизированный каталог диагностических адаптеров. Скачать распиновку колодок автомобилей.

Распиновка OBD 2 разъема позволит автовладельцу правильно выполнить подсоединение контактов колодки для диагностики транспортного средства. К этому штекеру для проверки авто подключаются сканер или персональный компьютер (ПК).

[ Скрыть ]

Описание и особенности OBD 2

Система для диагностики автомобиля ОБД 2 по стандарту включает в себя структуру кода Х1234.

Каждый символ здесь имеет собственное значение:

  1. Х - элемент является единственным буквенным и позволяет узнать тип неисправности авто. Некорректно работать могут силовой агрегат, трансмиссия, датчики, контроллеры, электронные модули и т. д.
  2. 1 - общий код класса OBD. В зависимости от авто, он иногда является дополнительным кодом производителя.
  3. 2 - с помощью символа автовладелец сможет уточнить место неполадки. К примеру, это могут быть система зажигания, питания АКБ (аккумуляторной батареи), дополнительные электролинии и т. д.
  4. 3 и 4 - определяют порядковый номер неисправности.

Основная особенность колодки состоит в наличии выхода питания от электросети автомобиля, благодаря чему допускается применение сканеров, не имеющих встроенных электролиний. Изначально диагностические протоколы использовались для получения данных о появлении неполадок в работе систем. Колодки в современных авто позволяют потребителям получать больше информации об ошибках. Это обеспечивается благодаря наличию связи диагностических сканеров и приспособлений с электронными модулями в машине.

В зависимости от производителя адаптера устройство может относиться, например, к таким международным классам:

  • SAE J1850;
  • SAE J1962;
  • ISO 9141-2.

Подробно о назначении диагностических колодок и их использовании рассказал канал «Мир Матизов».

Где находится OBD 2?

Расположение колодки OBD 2 всегда указывается в сервисном руководстве, поэтому данный момент лучше уточнить в документации.

Различное положение диагностического штекера в авто обусловлено тем, что единого стандарта касательно установки колодок производители транспортных средств не используют. Если устройство относится к классу J1962, то оно должно быть установлено в радиусе 18 см от рулевой колонки. Производители фактически этому правилу не следуют.

Расположение устройства может быть следующим:

  1. В специальной прорези ни нижнем кожухе приборной комбинации. Его можно увидеть в центральной консоли в области левого колена водителя.
  2. Под пепельницей, которая обычно располагается в центральной части консоли и приборной комбинации. В этом месте разъем часто устанавливается французскими производителями авто - Пежо, Ситроен, Рено.
  3. Под пластмассовыми заглушками, расположенными на нижней части приборной комбинации. В этом месте колодки обычно устанавливаются производителем VAG - автомобили Ауди, Фольксваген и т. д.
  4. На задней части центральной консоли, в области установки корпуса «бардачка». Это место расположения характерно для некоторых автомобилей ВАЗ.
  5. В зоне ручки ручного тормоза, под пластиком центральной консоли. Такое положение характерно для автомобилей Опель.
  6. В нижней части ниши подлокотника.
  7. В моторном отсеке, рядом со щитом двигателя. В этом месте разъем устанавливается корейскими и японскими производителями.

Если у автомобиля солидный пробег, то место монтажа может быть другим. Иногда при электрических неисправностях или повреждении цепей автовладельцы переносят разъем.

Пользователь Иван Матиешин на примере автомобиля Лада Гранта показал, где устанавливается диагностический выход OBD 2.

Виды разъемов

В современных транспортных средствах могут использоваться два типа диагностических колодок - классов А или В. Оба разъема оснащаются 16-пиновыми выходами, по восемь контактов в каждом ряду. Нумерация контактных элементов ведется слева направо, соответственно, вверху расположены компоненты под номерами 1–8, а внизу - 9–16. Внешняя часть корпуса диагностической колодки выполнена в виде трапеции и характеризуется округленными формами, что делает возможным подключение переходника.

Основное отличие между разными типами разъемов заключается в направляющих пазах, расположенных по центру.

Фотогалерея

Фото потенциальных мест расположения диагностических разъемов:

Расположение разъема в «бардачке» автомобиля Диагностический выход под центральной консолью авто Расположение колодки под пепельницей в салоне

Распиновка OBD 2

Схема подключения контактных элементов к диагностической колодке:

  1. Резервный контакт. В зависимости от производителя, на него может выводить любой сигнал. Он назначается разработчиком авто.
  2. Пин К. Используется для отправки разных параметров на блок управления. Во многих авто обозначается как шина J1850.
  3. Резервный контакт, который назначается производителем автомобиля.
  4. «Масса» диагностической колодки, подключенная к кузову транспортного средства.
  5. «Масса» сигнала диагностического адаптера.
  6. Контактный элемент для обеспечения прямого подключения цифрового CAN-интерфейса J2284.
  7. Контакт для подключения канала К в соответствии с международным стандартом ISO 9141-2.
  8. Резервный контактный элемент, назначается производителем автомобиля.
  9. Запасной контакт.
  10. Пин, необходимый для соединения с шиной класса J1850.
  11. Назначение данного контакта определяется производителем машины.
  12. Назначается разработчиком авто.
  13. Резервный пин, назначает производитель.
  14. Дополнительный контактный элемент для подключения цифрового CAN-интерфейса J2284.
  15. Пин для канала L, предназначенный для соединения в соответствии со стандартом ISO 9141-2.
  16. Плюсовой контакт для подключения напряжения электросети автомобиля, рассчитанный на 12 вольт.

В качестве примера заводской распиновки колодки можно использовать автомобиль Хендай Соната. В этих моделях первый контакт разъема предназначен для получения сигналов от управляющего модуля антиблокировочной системы. Пин под номером 13 используется для считывания импульсов от ЭБУ (электронного блока управления), а также контроллеров подушек безопасности.

Типы распиновок могут быть разными в зависимости от класса протокола:

  1. Если в автомобиле применяется стандарт ISO9141-2, то активация данного протокола производится посредством использования контакта 7. Пины под вторым и десятым номером не задействованы и являются неактивными. Для отправки информации используются контактные элементы 4, 5, 7 и 16. В зависимости от авто, для этой задачи может быть применен контакт 15.
  2. Если в автомобиле реализован протокол SAE J1850 типа VPW, то в разъеме задействованы второй, четвертый, пятый и шестнадцатый контакты. Такими колодками обычно оснащаются транспортные средства от General Motors европейского и американского производства.
  3. Возможно использование протокола J1850 в режиме PWM. Такое применение предусматривает дополнительное задействование десятого пина. Подобный тип разъемов устанавливается на автомобили Форд. Независимо от вида выхода, седьмой контакт не используется.

Канал «MotorState» подробно рассказал о распиновке OBD 2 диагностических разъемов для авто.

Диагностика через OBD 2

Процедура проверки производится так:

  1. В зависимости от автомобиля, процесс диагностики может осуществляться при отключенном или включенном зажигании. Данный момент надо уточнить в сервисном руководстве. Перед началом процедура зажигания в машине отключается или включается.
  2. Запускается программа на компьютере для проверки.
  3. Выполняется подключение диагностического оборудования к разъему. Если это сканер, то колодку с проводом от него нужно вставить в штекер. При использовании ПК один конец адаптера устанавливается в USB-выход компьютера, а другой соединяется с разъемом.
  4. Нужно дождаться, пока программа не определит колодку после синхронизации. Если это не происходит, следует зайти вручную в меню управления и выбрать опцию поиска новых устройств.
  5. Запускается процедура диагностики на компьютере. В зависимости от программного обеспечения, у пользователя может быть возможность выбора нужного инструмента проверки. Некоторые программы поддерживают раздельную диагностику двигателя, трансмиссионного агрегата, электросети и других узлов.
  6. После завершения процедуры проверки на экране ПК появятся коды неисправностей. Эти ошибки надо расшифровать, чтобы точно определить тип поломки. В соответствии с полученными данными производится ремонт транспортного средства.

Видео «Как произвести диагностику авто через ОБД 2?»

Канал «SUPER АЛИ» показал процесс тестирования систем транспортного средства с использованием специального сканера, подключенного к разъему OBD 2.

Технология OBD (On-Board Diagnostic - самодиагностика бортового оборудования) зарождалась еще в 50-х гг. прошлого века. Инициатором выступало правительство США. Для улучшения экологии были созданы различные комитеты, но положительных результатов не было достигнуто. И только в 1977 г. ситуация начала меняться. Наступил энергетический кризис и спад производства, и это потребовало от производителей решительных действий по спасению самих себя. Департамент по контролю за воздушной средой (Air Resources Board, ARB) и Агентство по защите окружающей среды (Environment Protection Agency, EPA) пришлось воспринимать всерьёз. На этом фоне и развивалась концепция диагностики OBD.

У многих сложилось мнение: OBD 2 – это разъем 16-pin. Если автомобиль из Америки, вопросов нет. А вот с Европой чуть сложнее. Ряд европейских производителей (Ford, VAG, Opel) применяют такой разъем, начиная с 1995 года (напомним, что тогда в Европе не было протокола EOBD). Диагностика этих автомобилей осуществляется исключительно по заводским протоколам обмена. Но были и такие «европейцы», которые вполне реально поддерживали протокол OBD 2 уже начиная с 1996 года, например многие модели Volvo , SAAB , Jaguar , Porsche . А вот об унификации протокола связи, или, языка, на котором «разговаривают» блок управления и сканер, можно говорить только на прикладном уровне. Коммуникационный стандарт единым делать не стали. Разрешено использовать любой из четырех распространенных протоколов – SAE J1850 PWM, SAE J 1850 VPW , ISO 9141-2, ISO 14230-4. В последнее время к этим протоколам добавился еще один – это ISO 15765-4, обеспечивающий обмен данными с использованием CAN-шины.

Следует отметить, что наличие аналогичного разъема не является 100% признаком совместимости с OBD 2. Автомобили, оборудованные этой системой обязательно должны иметь отметку на одной из табличек в подкапотном пространстве или в сопроводительной документации. Чаще всего используемый протокол можно идентифицировать по наличию определенных контактов на диагностическом разъеме. Если на этом разъеме присутствуют все контакты, следует обратиться к технической документации на конкретный автомобиль.

С применением стандартов EOBD и OBD 2 процесс диагностики электронных систем автомобиля унифицируется, теперь можно один и тот же сканер без специальных адаптеров использовать для тестирования автомобилей всех марок.

Требования стандарта OBD 2 предусматривают:

Стандартный диагностический разъем

- стандартное размещение диагностического разъема ;

Стандартный протокол обмена данными между сканером и автомобильной бортовой системой диагностики;

Сохранение в памяти ЭБУ кадра значений параметров при появлении кода ошибки («замороженный» кадр);

Мониторинг бортовыми диагностическими средствами компонентов, отказ которых может привести к увеличению токсичных выбросов в окружающую среду;

Доступ как специализированных, так и универсальных сканеров к кодам ошибок, параметрам, «замороженным» кадрам, тестирующим процедурам и т. д.;

Единый перечень терминов, сокращений, определений, используемых для элементов электронных систем автомобиля и кодов ошибок.



В соответствии с требованиями OBD 2, бортовая диагностическая система должна обнаруживать ухудшение работы средств доочистки токсичных выбросов. Например, индикатор неисправности Check Engine включается при увеличении содержания СО или СН в токсичных выбросах на выходе каталитического нейтрализатора более чем в 1,5 раза по сравнению с допустимыми значениями. Такие же процедуры применяются и к другому оборудованию, неисправность которого может привести к увеличении токсичных выбросов.

Программное обеспечение ЭБУ двигателя современного автомобиля многоуровневое. Первый уровень - программное обеспечение функций управления, например реализация впрыска топлива. Второй уровень - программное обеспечение функции электронного резервирования основных сигналов управления при отказе управляющих систем. Третий уровень - бортовая самодиагностика и регистрация неисправностей в основных электрических и электронных узлах и блоках автомобиля. Четвертый уровень - диагностика и самотестирование в тех системах управления двигателем, неисправность в работе которых может привести к увеличению выбросов вредных веществ в окружающую среду. Диагностика и самотестирование в системах OBD 2 осуществляется подпрограммой четвертого уровня, которая называется Diagnostic Executive (Diagnostic Executive - исполнитель диагностики, далее по тексту - подпрограмма DE). Подпрограмма DE с помощью специальных мониторов (emission monitor EMM) контролирует до семи различных систем автомобиля, неисправность в работе которых может привести к увеличению токсичности выбросов. Остальные датчики и исполнительные механизмы, не вошедшие в эти семь систем, контролируются восьмым монитором (comprehensive component monitor - ССМ). Подпрограмма DE выполняется в фоновом режиме, т. е. в то время, когда бортовой компьютер не занят выполнением основных функций, - функций управления. Все восемь упомянутых мини-программ - мониторов осуществляет постоянный контроль оборудования без вмешательства человека.

Каждый монитор может осуществлять тестирование во время поездки только один раз, то есть во время цикла «ключ зажигания включен - двигатель работает - ключ выключен» при выполнении определенных условий. Критерием на начало тестирования могут быть: время после запуска двигателя, обороты двигателя, скорость автомобиля, положение дроссельной заслонки и т.д.

Многие тесты выполняются на прогретом двигателе. Производители по-разному устанавливают это условие, например, для автомобилей Ford это означает, что температура двигателя превышает 70 "С (158 °F) и в течение поездки она повысилась не менее, чем на 20 °С (36 °F).

Подпрограмма DE устанавливает порядок и очередность проведения тестов:

Отмененные тесты - подпрограмма DE выполняет некоторые вторичные тесты (тесты по программному обеспечению второго уровня) только, если прошли первичные (тесты первого уровня), в противном случае тест не выполняется, т. е. происходит отмена теста.

Конфликтующие тесты - иногда одни и те же датчики и компоненты должны быть использованы разными тестами. Подпрограмма DE не допускает проведения двух тестов одновременно, задерживая очередной тест до конца выполнения предыдущего.

Задержанные тесты - тесты и мониторы имеют различный приоритет, подпрограмма DE задержит выполнение теста с более низким приоритетом, пока не выполнит тест с более высоким приоритетом.