Бесконтактная система зажигания (БСЗ). Устройство бесконтактного зажигания и чем оно лучше обычно? Как определить бесконтактное зажигание от контактного отличия

Задача системы зажигания - обеспечение в нужный момент искры зажигания достаточной энергии для воспламенения топливной смеси. Чем точнее выполняется этот процесс, тем выше мощность и эффективность двигателя. Правильно выставленное зажигание позволяет повысить мощность двигателя, снизить расход топлива и выбросы вредных веществ.

В последние годы и десятилетия эти цели приобретали все большую актуальность. Контактная система зажигания не смогла справиться с требованиями, которые к ней предъявлялись. Максимально передаваемую энергию, необходимую для зажигания рабочей смеси, увеличить не удалось, хотя это было необходимо для двигателей с высокой компрессией и мощностью, частота вращения которых становились все больше.

Кроме того, из-за постоянного износа контактов не возможно обеспечить точное соблюдение заданного момента воспламенения. Это вызывало перебои в работе двигателя, повышение расхода топлива и выбросам вредных веществ атмосферу.

Благодаря развитию электроники удалось инициировать процесс воспламенение бесконтактно, в результате чего решились проблемы износа и технического обслуживания. При этом заданный момент зажигания точно соблюдается практически в течение всего срока службы.

В первую очередь, это достигается благодаря индуктивному формированию сигнала (бесконтактная транзисторная система зажигания с накоплением энергии в индуктивности) и формированию сигнала датчиком Холла (TSZ-h).

Поскольку обе эти системы экономичны и относительно недорогие, они используются и сегодня на некоторых двигатетелях малого объема.

Основные преимущества бесконтактной системы зажигания:

  • отсутствие износа и технического обслуживания,
  • постоянный момент воспламенения,
  • отсутствие дребезга контактов и, как следствие, возможность увеличения частоты вращения,
  • регулирование накопления энергии и ограничение первичного тока,
  • более высокое вторичное напряжение системы зажигания
  • отключение постоянного тока.

Структура и функции БСЗ

На основании рисунка кратко поясняется принцип работы системы:

Рисунок. Компоненты транзисторной системы зажигания

  1. Аккумуляторная батарея
  2. Выключатель зажигания и стартера
  3. Катушка зажигания
  4. Коммутатор
  5. Датчик зажигания
  6. Датчик-распределитель
  7. Свеча зажигания

При включении зажигания (2) подается напряжение питания на первичную обмотку катушки зажигания (3). Через первичную обмотку проходит ток, как только коммутатор (4) получит сигнал с датчика зажигания (5), ток первичной обмотки прерывается. Клемма 1 катушки зажигания по средством коммутатора соединяется с массой. Во вторичной обмотке индуцируется высокое напряжение более 20 кВ.

Вторичное напряжение системы зажигания через клемму 4 катушки зажигания передается на датчик-распределитель на соответствующий цилиндр и свечу зажигания.

Блок управления определяет частоту вращения коленчатого вала (сигналы датчика) и на ее основании управляет временем накопления тока первичной обмотки катушки зажигания (длительностью открытого состояния выходного транзистора или тиристора системы зажигания) и его величиной. В соответствии с частотой вращения и напряжением аккумуляторной батареи, незадолго до появления искры зажигания устанавливается заданное значение первичного тока, то есть при увеличении частоты вращения длительность протекания тока увеличивается так же, как при уменьшении напряжения аккумуляторной батареи.

При включенном зажигании и неработающем двигателе (отсутствие сигнала датчика) через некоторое время (как правило, через одну секунду) отключается ток первичной обмотки катушки зажигания. Как только блок управления получит сигнал датчика (например, при запуске), он снова переходит в рабочее состояние.

Для адаптации момента зажигания к разным состояниям нагрузки регулировка осуществляется так же, как и в контактных системах зажигания, механическим способом посредством мембранного механизма вакуумного регулятора, а также центробежного регулятора. В результате сигнал датчика (и вместе с ним момент зажигания) изменяется в зависимости от оборотов и нагрузке двигателя.

Рисунок. Схема взаимодействия вакуумной и центробежной регулировки при управлении зажиганием посредством индуктивного датчика

  1. Центробежный регулятор
  2. Вакуумный регулятор опережения зажигания с мембранным механизмом
  3. Вал распределителя зажигания 4 - Полый вал
  4. Статор индуктивного датчика распределителя зажигания
  5. Ротор распределителя зажигания

Индуктивное формирование сигнала в бесконтактной транзисторной системе зажигания накоплением энергии в индуктивности

В результате вращения ротора датчика управляющих импульсов изменяется магнитное поле и в индукционной обмотке (статоре) создается представленное на рисунке а, б переменное напряжение. При этом напряжение увеличивается по мере приближения зубцов ротора к зубцам статора. Положительный полупериод напряжения достигает своего максимального значения, когда расстояние между зубцами статора и ротора минимальное. При увеличении расстояния магнитный поток резко меняет свое направление и напряжение становится отрицательным.

Рисунок. Датчик управляющих импульсов по принципу индукции
а) Технологическая схема

  1. Постоянный магнит
  2. Индукционная обмотка с сердечником
  3. Изменяющийся воздушный зазор
  4. Ротор датчика управляющих импульсов

б) временная характеристика переменного напряжения, индуктируемого датчиком управляющих импульсов tz = момент зажигания

В этот момент времени (tz) в результате прерывания первинного тока коммутатором инициируется процесс зажигания.

Количество зубцов ротора и статора в большинстве случаев соответствует количеству цилиндров. В этом случае ротор вращается с уменьшенной вдове частотой вращения коленчатого вала. Пиковое напряжение (± U) при низкой частоте вращения составляет прибл. 0,5 В, при высокой - прибл. до 100 В.

Момент зажигания можно проконтролировать только при работающем двигателе, поскольку без вращения ротора изменение магнитного поля не происходит и в результате не создается сигнал.

Формирование сигнала датчиком Холла

Вторую возможность бесконтактного управления искрообразованием, возможно осуществить с помощью датчик Холла.

Датчик Холла часто используется при переоборудование системы зажигания с контактной на бесконтактную, поскольку его удается установить вместо прерывателя на подвижную пластину.

В бесконтактном датчике используется эффект Холла (названный в честь его открывателя), заключающийся в возникновение поперечной разности потенциалов в проводнике с постоянным током под действием магнитного поля. Эффект Холла особенно эффективен в специальных полупроводника. Микросхема, интегрированная в датчик Холла еще больше усиливает сигнал.

Рисунок. Эффект Холла

  • Av А2 - соединения, полупроводниковый слой
  • UH - напряжение Холла
  • В - магнитное поле (плотное)
  • Iv - постоянный ток питания

При вращении экрана с прорезями (обтюратора) магнитное поле периодически воздействуют на датчик Холла. Если между магнитными направляющими обтюратор открыт (так называемые прорези), индуктируется напряжение Холла. Если в воздушном зазоре между магнитными направляющими обтюратор закрыт, то линии магнитного поля не могут воздействовать на датчик Холла и напряжение близко к нулю (Небольшие поля рассеяния полностью подавить нельзя). Благодаря характеристике напряжения Холла снова присутствует сигнал для искрообразования.

Рисунок. Принцип

  1. Обтюратор с шириной b
  2. Постоянный магнит
  3. Микросхема Холла
  4. Воздушный зазор

Количество прорезей соответствует в большинстве случаев количеству цилиндров, а обтюратор вращается вместе с ротором распределителя зажигания с уменьшенной вдвое частотой вращения коленчатого вала. Для регулирования опережения зажигания пластина, на которой закреплен датчик Холла, механически передвигается по уже знакомому принципу. Искрообразование происходит при включении датчика Холла (t2), то есть как только прорезь позволит линиям магнитного поля воздействовать на датчик Холла. В данном случае настройку зажигания можно выполнять при неработающем двигателе (соблюдайте информацию производителя!).

Рисунок. Характеристика напряжения Холла

Поиск неисправностей в бесконтактной системе зажигания

При выполнении поиска неисправностей в бесконтактной системе зажигания помните:

Современные системы зажигания работают с очень высокими напряжениями, вследствие чего при соприкосновении стоковедущими частями системы может возникнуть опасность для жизни как на стороне первичного, так и вторичного тока. Поэтому при проведении работ с системой зажигания отключите зажигание и питающее напряжение!

Прежде чем начать поиск неисправностей, еще раз следует вспомнить функции зажигания (искра зажигания - достаточная мощность - правильный момент зажигания).

Во-первых, следует убедиться, что искра зажигания присутствует. Самый простой способ проверки: подключить новую свечу зажигания к проводу высокого напряжения (свеча зажигания должна быть соединена с массой двигателя) и кратковременно произвести запуск. Визуально проверить наличие искры. При отсутствии искры зажигания необходимо провести визуальный контроль всей системы, а также контроль разъемных соединений на предмет коррозии или наличия влаги и на точность посадки проводов.

Если явных повреждений не обнаружено, следует проследить процесс искрообразования в обратном порядке, от свечи зажигания через свечной наконечник и провод высокого напряжения к контакту на распределителе, от распределителя провод высокого напряжения к катушке зажигания и от катушки зажигания к блоку управления. Точно так же проверяются и входы блока управления.

Важно знать, отсутствует ли искра на одной свече зажигания или на всех. Если только на одной, неисправность может возникнуть на участке между свечой зажигания соответствующего цилиндра и распределителем. Если искра отсутствует на всех свечах, вероятнее всего искрообразования вообще не происходит, а неисправность находится на участке между распределителем и блоком управления или на входах блока управления.

В первом случае проверяют провод высокого напряжения от распределителя до свечи зажигания. Простая проверка сопротивления показывает исправность провода. Сопротивления свечного наконечника и провода распределителя суммируются. Для провода высокого напряжения с предварительным искровым промежутком такой способ проверки не подходит. В этом случае только при помощи индуктивных клещей, зажимаемых через провод высокого напряжения, можно проверить, передается ли вторичное напряжение системы зажигания по проводу. В противном случае функция проверяется опытным путем, заменой соответствующего провода высокого напряжения.

Если провод в порядке, тогда проверяют распределитель и крышку распределителя. При этом путем визуального контроля убедитесь, что контакты не сожжены, а на крышке распределителя отсутствуют трещины или другие повреждения.

Если искрообразования вообще не происходит, проверяют ротор распределителя зажигания (визуальный контроль, измерение сопротивления); точно так же поступают с кабелем высокого напряжения, ведущего от распределителя к катушке зажигания.

Следующее измерение сопротивления касается катушки зажигания. При этом сопротивление измеряют между клеммой 1 и клеммой 15 для первичного контура. Вторичный контур катушки зажигания измеряется между клеммами 4 и 1. При проведедении измерений учитывайте заданные значения производителей. Может быть, что перебои в первичной и вторичной обмотках катушки зажигания появляются только при повышенных температурах.

Для измерения сопротивления на катушке зажигания необходимо отсоединить все контакты.

Кроме того, на катушке зажигания проверяют напряжение питания на клемме 15. Оно должно составлять значение напряжения аккумуляторной батареи (минус падение напряжения на дополнительном резисторе). Далее на клемме 1 можно проверить угол поворота ротора датчика и скважность импульсов.

При частоте вращения холостого хода величина угла поворота ротора датчика составляет от 5 до 15, при повышении числа оборота увеличивается. В более старых моделях автомобилей без регулирования угла поворота ротора, но с безконтактной тиристорной системой зажигания параметр имеет постоянное значение.

Если катушка зажигания в порядке, но на клемме 15 отсутствует напряжение, необходимо проверить провод до замка зажиния в обратном порядке и устранить причину неисправности.

Если при пусковой частоте вращения регулирования угла поворота ротора датчика не происходит и скважность импульсов не измеряется, хотя питание через клемму 15 подается, следует проверить соответствующий выходной сигнал на блоке управления.

Если причина не в нем, необходимо проверить все входы на блоке управления. При этом в первую очередь следует убедиться, что на блок управления поступает напряжение питания, то есть опять входной сигнал клеммы 15. На клемме 3 должно присутствовать хорошее соединение с массой. Если в обоих случаях все в порядке, проверяют вход искрообразования. При этом, как уже упоминалось выше, различают индуктивное образование и образование датчиком Холла.

При индуктивном искрообразовании на клемме 7 при помощи осциллоскопа можно проверить выходное переменное напряжение. Если осциллоскопа под рукой не окажется, можно измерить также переменное напряжение. При этом помните, что измеряемое переменное напряжение может оставлять от 0,5 В до 100 В - в зависимости от частоты вращения двигателя.

При искрообразовании посредством датчика Холла на соответствующей клемме проверяют сигнал датчика Холла путем измерения скважности импульсов. В зависимости от производителя значение скважности импульса при пусковой частоте вращения может составлять от 10% до 30%. Если сигнал датчика Холла отсутствует, проверяется питание датчика. Кроме того, проверьте сопротивление провода в отсоединенном состоянии.

Существует опасность повреждения датчика Холла при измерении сопротивления!

После проверки электрических цепей следующим этапом является проверка момента зажигания.

Проверка момента зажигания может быть как статичная, то есть в неработающем состоянии, так и динамичная при работающем двигателе. До этого необходимо проверить механические устройства регулирования, поскольку их износ может нарушить правильную работу. Центробежное регулирование, зависящее от частоты вращения двигателя, проверяется лампой-стробоскопом, а также тестером, при медленном повышении частоты вращения двигателя. Перед этим отсоедините вакуумную трубку. В установленном производителем диапазоне частоты вращения момент зажигания должен плавно переместиться в сторону опережения,

Регулирование момента зажигания, зависящее от разряжения в сторону раннего или позднего, можно проверить просто, путем съема и установки вакуумной трубки привода вакуумного регулятора и одновременного наблюдения за смещением момента зажигания при помощи лампы-стробоскопа или тестера для двигателя. Регулирование в сторону позднего момента зажигания эффективно при холостом ходе, в сторону раннего момента при 2000-3000 мин^-1. Но и в данном случае точные значения зависят от инструкций производителя.

Причинами неудовлетворительной работы регулирующих устройств, зависящих от частоты вращения, могут быть коррозия датчиков или ослабление пружин. Функция механическо-пневматически регулирующих устройств, зависящих от нагрузки, может быть нарушена в результате повреждения мембранного механизма вакуумного регулятора (тугой ход, разгерметизация), механических повреждений, не герметичности вакуум-шлангов, а также неправильной настройки дроссельной заслонки.

Лекция 7 . Измерение температуры. Контактный и бесконтактный способы. Измерение тепловых потоков.

7.1. Измерение температуры.

Температура - это параметр теплового состояния, представляющий собой физическую величину, которая характеризует степень нагретости тела. Степень нагретости тела обусловлена его внутренней энергией. Непосредственно измерить температуру тела невозможно. Температура измеряется косвенным путем с использованием температурной зависимости какого-либо физического свойства термометрического тела. В качестве термометрического тела используются тела, у которых удобные для непосредственного измерения физические свойства однозначно зависят от температуры. Такими физическими свойствами являются, в частности, объемное расширение ртути, изменение давления газов и т.д.

При измерении температуры какого-либо тела термометрическое тело должно быть с ним в тепловом контакте. В этом случае с течением времени наступает тепловое равновесие между ними, т.е. температура этих тел выравнивается. Такой способ измерения температуры, при котором измеряемая температура тела определяется по совпадающей с ней температуре термометрического тела, называется контактным способом измерения температуры. Возможные расхождения между этими значениями температуры составляют методическую погрешность контактного способа измерения температуры.

В природе нет идеально подходящих рабочих тел, термометрические свойства которых удовлетворяли бы предъявляемым требованиям во всем диапазоне измерения температуры. Поэтому температуру, измеряемую термометром, шкала которого построена на допущении линейной температурной зависимости термометрических свойств какого-либо тела, называют условной температурой, а шкалу - условной температурной шкалой. Примером условной температурной шкалы является известная стоградусная шкала Цельсия. В ней принят линейный закон температурного расширения ртути, а в качестве основных точек шкалы используются точка таяния льда (0°С) и точка кипения воды (100°С) при нормальном давлении. Термодинамическая температурная шкала, предложенная Кельвином, основана на втором законе термодинамики и не зависит от термометрических свойств тела. Построение шкалы опирается на следующие положения термодинамики: если в прямом обратимом цикле Карно к рабочему телу подводится теплота Q 1 от источника с высокой температурой T 1 и отводится теплота Q 2 к источнику с низкой температурой Т 2 , то отношение T 1 / Т 2 равно отношению Q 1 /Q 2 независимо от природы рабочего тела. Эта зависимость позволяет построить шкалу, опираясь только на одну постоянную или реперную точку с температурой Т 0 . Пусть температура источников теплоты Т 2 =Т 0 , a T 1 =T, причем Т неизвестна. Если между этими источниками осуществить прямой обратимый цикл Карно и измерить количество подводимой Q 1 и отводимой Q 2 теплоты, то неизвестную температуру можно определить по формуле

Таким способом можно произвести градуирование всей температурной шкалы.

В качестве единственной реперной точки для Международной термодинамической температурной шкалы принята тройная точка воды, и ей присвоено значение температуры 273,16 К. Выбор этой точки объясняется тем, что она может быть воспроизведена с высокой точностью - погрешность не превысит 0,0001 К, что значительно меньше погрешности воспроизведения точек таяния льда и кипения воды. Кельвином называется единица термодинамической температурной шкалы, определяемая как 1/273,16 часть температурного интервала между тройной точкой воды и абсолютным нулем. Такой выбор единицы обеспечивает равенство единиц в термодинамической и стоградусной шкалах: температурный интервал в 1К равен интервалу в 1°С.

Ввиду того, что определение температуры путем осуществления прямого обратимого цикла Карно с измерением подводимой и отводимой теплоты сложно и затруднительно, для практических целей на основе термодинамической температурной шкалы установлена Международная практическая температурная шкала МПТШ-68 (1968 - год принятия шкалы). Эта шкала устанавливает температуру в диапазоне от 13,81 К до 6300 К и максимально приближена к Международной термодинамической температурной шкале. Методика ее реализации базируется на основных реперных точках и на эталонных приборах, градуированных по этим точкам. МПТШ- 68 опирается на 11 основных реперных точек, представляющих собой оп-ределенное состояние фазового равновесия некоторых веществ, которым присвоено точное значение температуры.

7.1.1. Контактное измерение температуры.

По принципу действия контактные термометры делятся на:

1.Термометры, основанные на тепловом расширении вещества. Используются с термометрическим телом в жидком состоянии (например, ртутные жидко-стеклянные термометры) и в твердом состоянии - биметаллические, действие которых основано на различии коэффициентов линейного теплового расширения двух материалов (например, инвар -латунь, инвар - сталь).

2. Термометры, основанные на измерении давления вещества.

Это манометрические термометры, которые представляют собой замкнутую герметичную термосистему, состоящую из термобаллона, манометрической пружины и соединяющего их капилляра.

Действие термометра основано на температурной зависимости давления газа (например, азота) или паров жидкости, заполняющих герметичную термосистему. Изменение температуры термобаллона вызывает перемещение пружины, соответствующее измеряемой температуре. Манометрические термометры выпускаются как технические приборы для измерения температуры от -150°С до +600°С в зависимости от природы термометрического вещества.

3. Термометры, основанные на температурной зависимости термо-ЭДС. К ним относятся термоэлектрические термометры или термопары.

4.Термометры, основанные на температурной зависимости электрического сопротивления вещества. К ним относятся электрические термометры сопротивления.

Жидкостный стеклянный термометр представляет собой тонкостенный стеклянный резервуар, соединенный с капилляром, с которым жестко связана температурная писала. В резервуар с капилляром заливается термометрическая жидкость, на температурной зависимости теплового расширения которой основано действие термометра. В качестве термометрической жидкости используется ртуть и некоторые органические жидкости - толуол, этиловый спирт, керосин.

Достоинствами жидкостных стеклянных термометров являются простота конструкции и обращения; низкая стоимость, достаточно высокая точность измерения. Эти термометры применяются для измерения температуры от минус 200°С до плюс 750°С.

Недостатками жидкостных стеклянных термометров являются большая тепловая инерция, невозможность наблюдения и измерения температуры на расстоянии, хрупкость стеклянного резервуара.

Термоэлектрический термометр основан на температурной зависимости контактных термо-ЭДС в цепи из двух разнородных термоэлектродов. При этом происходит преобразование неэлектрической величины-температуры в электрический сигнал - ЭДС. Термоэлектрические термометры часто называют просто термопарами. Термоэлектрические термометры широко применяют в диапазоне температуры от -200°С до +2500°С, но в области низких температур (менее -50°С) они получили меньшее распространение, чем электрические термометры сопротивления. При температуре выше 1300°С термоэлектрические термометры применяют в основном для кратковременных измерений. Достоинствами термоэлектрических термометров являются возможность измерения температуры с достаточной точностью в отдельных точках тела, малая тепловая инерция, достаточная простота изготовления в лабораторных условиях, выходной сигнал является электрическим.

В настоящее время для измерения температур используются следующие термопары:

Вольфрам-вольфрамрениевые (ВР5/20) до 2400...2500К;

Платино-платинородиевые (Pt/PtRh) до 1800... 1900 К;

Хромель-алюмелевые (ХА) до 1600.. .1700 К;

Хромель-копелевые (ХК) до 1100 К.

При подключении измерительного прибора к термопарной цепи возможны 2 схемы:

1) с разрывом одного из термоэлектродных проводов;

2) с разрывом холодного спая термопары.

Для измерения малой разности температуры часто используется термобатарея, состоящая из нескольких последовательно соединенных термопар. Такая термобатарея позволяет повысить точность измерения в результате увеличения выходного сигнала во столько раз, сколько термопар в термобатарее.

Термо-ЭДС в термопарной цепи можно измерить милливольтметром по методу непосредственной оценки и потенциометром по методу сравнения.

Электрические термометры сопротивления основаны на температурной зависимости электрического сопротивления термометрического вещества и широко применяются для измерения температуры от -260°С до +750°С, а в отдельных случаях до +1000°С. Чувствительным элементом термометра является терморезисторный преобразователь, который позволяет преобразовать изменение температуры (неэлектрической величины) в изменение сопротивления (электрической величины). Терморезистором может служить любой проводник с известной температурной зависимостью сопротивления. В качестве материала для терморезистора используют такие металлы как, платина, медь, никель, железо, вольфрам, молибден. Кроме них, в термометрах сопротивления могут быть использованы некоторые полупроводниковые материалы.

Достоинствами металлических термометров сопротивления являются высокая степень точности измерения температуры, возможность применения стандартной градуировочной шкалы во всем диапазоне измерения, электрическая форма выходного сигнала.

Чистая платина, для которой отношение сопротивления при 100°С к сопротивлению при 0°С составляет 1,3925, в наибольшей степени удовлетворяет основным требованиям по химической стойкости, стабильности и воспроизводимости физических свойств и занимает особое место в терморезисторах для измерения температуры. Платиновые термометры сопротивления используются для интерполяции Международной температурной шкалы в диапазоне от -259,34°С до +630,74°С. В этом диапазоне температур платиновый термометр сопротивления превосходит по точности измерения термоэлектрический термометр.

Недостатками термометров сопротивления являются невозможность измерения температуры в отдельной точке тела из-за значительных размеров его чувствительного элемента, необходимость постороннего источника электропитания для измерения электрического сопротивления, малое значение температурного коэффициента электрического сопротивления для металлических термометров сопротивления, которое требует для измерения небольших изменений сопротивления высокочувствительные и точные приборы.

7.1.2. Бесконтактное измерение температур с помощью пирометров излучения.

Пирометрами излучения или просто пирометрами называют приборы для измерения температуры тел по тепловому излучению. Измерение температуры тел пирометрами основано на использовании законов и свойств теплового излучения. Особенностью методов пирометрии является то, что информация об измеряемой температуре передается неконтактным способом. Ввиду этого удается избежать искажений температурного поля объекта измерений, так как не требуется непосредственного соприкосновения термоприемника с телом.

По принципу действия пирометры для локального измерения температуры делят на яркостные пирометры, цветовые пирометры, радиационные пирометры.

Основной величиной, воспринимаемой глазом исследователя или приемниками теплового излучения пирометров, является интенсивность или яркость излучения тела. Действие яркостных пирометров основано на использовании зависимости спектральной интенсивности излучения тела от температуры тела. Яркостные пирометры, используемые в видимой части спектра излучения, с регистрацией сигнала при помощи глаз исследователя, называются оптическими пирометрами. Оптические пирометры являются наиболее простыми в обслуживании и широко применяются для измерения температуры от 700°С до 6000°С.

Для измерения яркостной температуры в видимой части спектра широко используются оптические пирометры с исчезающей нитью переменного и постоянного накала. Яркостная температура тела измеряется путем сравнения спектральной интенсивности излучения измеряемого тела с интенсивностью излучения нити пирометрической лампы при одной и той же эффективной длине волны (эффективная длина волны находится внутри узкого конечного интервала длин волн, в котором происходит излучение тела). При этом яркостная температура нити лампы устанавливается градуировкой по абсолютно черному телу или по специальной температурной лампе.

Оптическая система пирометра позволяет создать изображение объекта измерения в плоскости нити пирометрической лампы. В момент достижения равенства спектральных интенсивностей излучения объекта измерения и нити лампы вершина нити исчезает на фоне свечения тела.

Принцип действия цветовых пирометров основан на использовании зависимости отношения интенсивностей излучения, измеренных в двух достаточно узких спектральных интервалах, от температуры излучающего тела. Название «цветовые пирометры» происходит из-за того, что в видимой части спектра изменение длины волны при фиксированной температуре тела сопровождается изменением его цвета. Цветовые пирометры применяются для автоматического измерения температур в диапазоне 700°С - 2880°С. Цветовые пирометры имеют более низкую чувствительность, чем яркостные, в особенности при высокой температуре, но при использовании цветовых пирометров поправки на температуру, связанные с отличием свойств реальных тел от свойств абсолютно черного тела, получаются меньшими, чем при использовании других пирометров.

Радиационные пирометры - это приборы для измерения температуры по интегральной интенсивности (яркости) излучения тела. Они используются для измерения температуры от 20°С до 3500°С. Эти приборы имеют меньшую чувствительность, чем яркостные и цветовые, но измерения радиационными методами технически более простые.

Радиационные пирометры состоят из телескопа, приемника интегрального излучения, вторичного прибора и вспомогательных устройств. Оптическая система телескопа концентрирует энергию излучения тела на приемник интегрального излучения, степень нагрева которого, т.е. температура, а, следовательно, и выходной сигнал пропорциональны падающей энергии излучения и определяют радиационную температуру тела. В качестве приемника излучения (чувствительного элемента) чаще всего используют термобатареи из нескольких последовательно соединенных термопар. Наряду с термобатареями в качестве приемников интегрального излучения могут быть использованы и другие теплочувствигельные элементы, например болометры, в которых излучение от объекта измерения нагревает чувствительный к температуре резистор. Изменение температуры резистора служит мерой радиационной температуры.

В качестве вторичных приборов, регистрирующих сигнал приемника излучения, используют показывающие самопишущие и регистрирующие приборы. Шкала вторичных приборов обычно градуируется в градусах радиационной температуры. Для исключения погрешностей, обусловленных нагревом корпуса пирометра (телескопа) из-за теплообмена его с окружающей средой и в результате поглощения излучения от объекта измерения. Телескопы радиационных пирометров могут быть снабжены различными системами температурной компенсации.

7.2. Измерение тепловых потоков.

Измерение тепловых потоков необходимо при исследовании рабочих процессов машин и аппаратов, при определении тепловых потерь и исследовании условий теплообмена поверхностей с потоками газа или жидкости.

Методы измерения тепловых потоков и реализующие их устройства чрезвычайно разнообразны. По принципу измерения теплового потока все методы можно разделить на 2 группы.

1. Энтальпийные методы.

С помощью энтальпийных методов плотность теплового потока определяется по изменению энтальпии воспринимающего тепло тела. В зависимости от способа фиксирования этого изменения энтальпийные методы подразделяются на калориметрический метод, электрометрический метод, метод, использующий энергию изменения агрегатного состояния вещества.

2. Методы, основанные на решении прямой задачи теплопроводности.

Прямая задача теплопроводности заключается в отыскании температуры тела, удовлетворяющей дифференциальному уравнению теплопроводности и условиям однозначности. В этих методах плотность теплового потока определяется по градиенту температуры на поверхности тела. Среди методов этой группы различают метод вспомогательной стенки, теплометрический метод с использованием поперечной составляющей потока, градиентный метод.

Методы, основанные на решении прямой задачи теплопроводности основаны на определении плотности теплового потока, пронизывающего исследуемый объект. Этот метод реализован на практике использованием батарейных термоэлектрических преобразователей теплового потока в электрический сигнал постоянного тока. Действие основано на использовании физической закономерности установления разности температур на стенке при пронизывании ее тепловым потоком. Оригинальность батарейного преобразователя теплового потока состоит в том, что стенка, на которой создается разность температур, и измеритель этой разности объединены в одном элементе. Это достигается за счет того, что преобразователь выполнен в виде так называемой вспомогательной стенки, состоящий из батареи дифференциальных термопар, которые включены параллельно по измеряемому тепловому потоку и последовательно по генерируемому электрическому сигналу.

Батарея термоэлементов изготовляется по гальванической технологии. Единичный гальванический термоэлемент представляет собой комбинацию восходящей и нисходящей ветвей термопар, причем, восходящая ветвь – основной проводник, а нисходящая – гальванически покрытый парным термоэлектродным материалом участок этого же проводника. Пространство между ними заполнено электроизоляционным компаундом. Конструктивно преобразователь состоит из корпуса, внутри которого при помощи компаунда крепится батарея термоэлементов и отводящие проводники, выведенные из корпуса через два отверстия.

Рис. 7.1. Схема батареи гальванических термоэлементов:

    основная термоэлектрическая проволока, 2 - гальваническое покрытие, 3 - заливочный компаунд; 4 - каркасная лента.

Измеряемый тепловой поток определяется по формуле

где Q – тепловой поток от объекта Вт,

k – градуировочный коэффициент Вт/мВ,

e – термоэдс, генерируемая преобразователем мВ.

Такие батарейные преобразователи могут быть использованы в качестве высокочувствительных теплометрических элементов (тепломеров) при различных тепловых измерениях.

Литература.

    Гортышев Ю.Ф. Теория и техника теплофизического эксперимента. – М., «Энергоатомиздат», 1985.

    Тепло- и массообмен. Теплотехнический эксперимент. Справочник под ред. Григорьева В.А. – М., «Энергоатомиздат», 1982.

    Иванова Г.М. Теплотехнические измерения и приборы.- М., «Энергоатомиздат», 1984.

    Приборы для теплофизических измерений. Каталог. Институт проблем энергосбережения АН УССР. Составители Геращенко О.А., Грищенко Т.Г. – Киев, «Час», 1991.

    http://www.kobold.com/

    В состав автомобиля входит четыре системы: охлаждения, смазки, топливная и зажигания. Выход из строя каждой из них в отдельности приводит к полному выходу из строя всего автомобиля. Если поломка найдена, ее нужно устранить, и чем раньше, тем лучше, поскольку ни одна из систем не выходит из строя сразу. Этому, как правило, предшествует множество «симптомов».

    В этой статье мы более подробно остановимся на системе зажигания. Существует два типа: контактное и бесконтактное зажигание. Они отличаются наличием и отсутствием размыкающихся контактов в распределителе. В момент, когда размыкаются эти контакты, в катушке образуется который подается посредством высоковольтных проводов на свечи.

    Бесконтактное зажигание лишено этих контактов. Они заменены коммутатором, который, в принципе, выполняет эту же функцию. Изначально на автомобили отечественного производства устанавливалась лишь контактная система. Бесконтактное зажигание ВАЗ стал устанавливать в начале 2000-х. Это было хорошим для него прорывом. Прежде всего, бесконтактное зажигание обладает большей надежностью, поскольку фактически из системы был удален один довольно уязвимый элемент.

    Со временем автовладельцы стали сами устанавливать бесконтактное зажигание на классику, поскольку это серьезно облегчало обслуживание. Теперь исключалась возможность подгорания контактов. Кроме того, теперь в них не надо было регулировать зазор в момент размыкания. Помимо всего прочего, бесконтактное зажигание обладает и лучшими характеристиками тока, а именно, большей частотой и напряжением, что серьезно снижает износ электродов свечей. На лицо - плюсы во всех сферах эксплуатации.

    Но не все так гладко, как хотелось бы. Например, бывают случаи, когда выходит из строя коммутатор. Если замена контактного блока обойдется в 150-200 рублей при хорошем качестве, то здесь цены в 3-4 раза больше. Помимо прочего, замена контактного зажигания на бесконтактное влечет за собой и замену на силиконовые, если они не были установлены ранее. Конечно, можно оставить и стандартные, но тогда возможны пробои, а значит - перебои в зажигании и во всей работе двигателя.

    Теперь немного о самой системе. Питание постоянно подается на контакты через которые оно идет к первичной (малой) обмотке катушки. В момент размыкания контактов ток в первичной обмотке прекращается, изменяется вследствие чего возникает индукционный ток высокой частоты и напряжения. Он-то и подается на

    Сама замена контактного зажигания на бесконтактное не должна вызвать каких-либо трудностей, поскольку все сводится к откручиванию и прикручиванию деталей. Конечно же, после замены самого распределителя нужно будет выставить момент зажигания, но, во-первых, это не слишком сложно, а во-вторых - можно изначально выставить бегунок в удобное положение и запомнить, чтобы потом аналогично установить коммутатор. А еще стоит отключить аккумулятор от цепи, чтобы не получить ожогов или прочих травм.

    В состав автомобиля входит четыре системы: охлаждения, смазки, топливная и зажигания. Выход из строя каждой из них в отдельности приводит к полному выходу из строя всего автомобиля. Если поломка найдена, ее нужно устранить, и чем раньше, тем лучше, поскольку ни одна из систем не выходит из строя сразу. Этому, как правило, предшествует множество «симптомов».

    В этой статье мы более подробно остановимся на системе зажигания. Существует два типа: контактное и бесконтактное зажигание. Они отличаются наличием и отсутствием размыкающихся контактов в распределителе. В момент, когда размыкаются эти контакты, в катушке образуется индукционный ток, который подается посредством высоковольтных проводов на свечи.

    Бесконтактное зажигание лишено этих контактов. Они заменены коммутатором, который, в принципе, выполняет эту же функцию. Изначально на автомобили отечественного производства устанавливалась лишь контактная система. Бесконтактное зажигание ВАЗ стал устанавливать в начале 2000-х. Это было хорошим для него прорывом. Прежде всего, бесконтактное зажигание обладает большей надежностью, поскольку фактически из системы был удален один довольно уязвимый элемент.

    Со временем автовладельцы стали сами устанавливать бесконтактное зажигание на классику, поскольку это серьезно облегчало обслуживание. Теперь исключалась возможность подгорания контактов. Кроме того, теперь в них не надо было регулировать зазор в момент размыкания. Помимо всего прочего, бесконтактное зажигание обладает и лучшими характеристиками тока, а именно, большей частотой и напряжением, что серьезно снижает износ электродов свечей. На лицо - плюсы во всех сферах эксплуатации.

    Но не все так гладко, как хотелось бы. Например, бывают случаи, когда выходит из строя коммутатор. Если замена контактного блока обойдется в 150-200 рублей при хорошем качестве, то здесь цены в 3-4 раза больше. Помимо прочего, замена контактного зажигания на бесконтактное влечет за собой и замену высоковольтных проводов на силиконовые, если они не были установлены ранее. Конечно, можно оставить и стандартные, но тогда возможны пробои, а значит - перебои в зажигании и во всей работе двигателя.

    Теперь немного о самой системе. Питание постоянно подается на контакты распределителя зажигания, через которые оно идет к первичной (малой) обмотке катушки. В момент размыкания контактов ток в первичной обмотке прекращается, изменяется магнитное поле, вследствие чего возникает индукционный ток высокой частоты и напряжения. Он-то и подается на свечи зажигания.

    Сама замена контактного зажигания на бесконтактное не должна вызвать каких-либо трудностей, поскольку все сводится к откручиванию и прикручиванию деталей. Конечно же, после замены самого распределителя нужно будет выставить момент зажигания, но, во-первых, это не слишком сложно, а во-вторых - можно изначально выставить бегунок в удобное положение и запомнить, чтобы потом аналогично установить коммутатор. А еще стоит отключить аккумулятор от цепи, чтобы не получить ожогов или прочих травм.