Демпфер рыскания. Панель органов управления воздушным судном и запасной гидравлики. Управление по тангажу


СРЕДСТВА УВЕЛИЧЕНИЯ ПОДЪЕМНОЙ СИЛЫ

Как уже отмечалось, проектируемое для скоростного полета крыло с малым сопротивлением не обладает в полетной кон­фигурации хорошими несущими свойствами на малых скоростях полета и имеет поэтому очень высокие скорости сваливания. Вы­сокую скорость сваливания в полетной конфигурации можно было бы допустить при обязательном условии тщательного анализа всех запасов по скорости и правил эксплуатации самолета, но такая скорость неприемлема, потому что при этом увеличиваются взлет­ная и посадочная дистанции самолета. Поэтому для снижения ско­рости сваливания и связанных с нею скоростей при взлете и по­садке применяются устройства, способствующие увеличению подъ­емной силы. Использование этих устройств, естественно, помогает сокращению взлетной и посадочной дистанции самолета.

Обратимся еще раз к формуле подъемной силы c ff S-V 2 pl/ 2 и вспомним, что S - эффективная площадь крыла и с у - коэффи­циент подъемной силы.

Принцип действия закрылков, расположенных вдоль задней кромки крыла, ясен. Такие закрылки, за исключением простых щитков и разрезных закрылков, обеспечивают увеличение подъем­ной силы благодаря:

А) увеличению хорды крыла и вызванному этим весьма суще­
ственному увеличению площади крыла (т. е. благодаря увеличе­
нию множителя S в формуле подъемной силы);

Б) увеличению общей кривизны профиля крыла (т. е. благодаря
увеличению множителя с у ). Профиль увеличенной кривизны от­
клоняет поток более интенсивно и увеличивает таким образом
подъемную силу.

Закрылок может быть весьма сложным и выполнен как в виде двухщелевой, так и трехщелевой конструкции. Щели предназна­чены для того, чтобы обеспечить устойчивость потока над верх­ней поверхностью профиля и таким образом задержать отрыв по­тока до возможно больших углов атаки.

По мере развития реактивного авиационного транспорта по­требность в создании хорошего скоростного крыла стала еще более настоятельной, поскольку возникла необходимость сочетать эко­номичную эксплуатацию при очень высоких скоростях крейсер­ского полета с хорошими взлетно-посадочными характеристиками. Однако, несмотря на дальнейшее совершенствование конструкции закрылков, скорости сваливания оставались высокими,и надо было предпринять нечто новое. Совершенно естественно, что внимание конструкторов привлекла передняя кромка крыла, и устройства для улучшения несущих свойств крыла стали размещаться и на ней.

Сначала это были простые отклоняемые вниз носки, но позднее появились выдвижные щелевые передние кромки или предкрылки. Они работают так же, как и закрылки, т. е. они: а) в большинстве

8 Д. ДЭБИС ИЗ


Посадочная конфигурация


крейсерская конфигурация

Рис. 4.8. Изменение подъемной силы в зависимости от кон­фигурации самолета

Случаев несколько увеличивают площадь крыла, б) еще больше увеличивают общую кривизну профиля и в) увеличивают эффек­тивность основного профиля крыла. Предкрылки обеспечивают хорошее обтекание крыла воздушным потоком до больших углов атаки, предотвращают отрыв потока и, следовательно, позволяют получать более высокие значения максимальных коэффициентов подъемной силы.

На рис. 4.8 можно видеть различия между сечениями крыла в крейсерской и посадочной конфигурациях.

Описанные устройства дают возможность превратить скорост­ное крыло малого сопротивления в крыло с очень высокими не­сущими свойствами при взлете и посадке.

Большая часть из того, что можно сказать о последствиях вве­дения механизации крыла, весьма элементарна. Однако следую­щие четыре обстоятельства следует выделить особо.

Избыток подъемной силы

В начальный момент захода на посадку, когда самолет пере­ходит из крейсерской конфигурации в посадочную, создается зна­чительный избыток подъемной силы. Если угловое положение самолета при этом не изменится, то этот избыток подъемной силы приведет к увеличению высоты полета. Влияние скорости при этом в известной мере носит академический характер, поскольку избы­ток лобового сопротивления вскоре после завершения процесса изменения конфигурации приведет к уменьшению скорости по­лета. Общее изменение балансировки может быть весьма значи­тельным, и следует проявлять большую осторожность, чтобы из­бежать увеличения высоты полета в интересах точности выдер­живания траектории полета.

Преждевременная уборка механизации

Если после взлета механизация убирается на слишком малой скорости полета, самолет может оказаться в весьма опасной зоне скоростей, близких к скорости сваливания для полетной конфи-

гурации, и при этом еще могут возникнуть дополнительные ослож­нения из-за высокого прироста лобового сопротивления, связан­ного с полетом на скоростях ниже V IMD . Для преодоления этих осложнений требуется большая тяга двигателей. Если максималь­ная тяга уже используется, то потеря высоты при возвращении к нормальным условиям полета практически неизбежна. Те, кто знаком с расчетными летными характеристиками сверхзвукового транспортного самолета, очевидно, сочтет этот режим эквивалент­ным полету на скорости, меньшей скорости при нулевой скоро­подъемности, при котором возвращение к нормальному полету возможно лишь с потерей высоты. Последствия преждевременной уборки механизации будут еще более опасными при полете с раз­воротом из-за присущих этому режиму повышенных скоростей сваливания.

Поэтому после взлета, прежде чем убирать механизацию, убе­дитесь, что скорость уже достаточна для полетной конфигурации. Если уборка закрылков происходит медленно, что бывает очень часто, сочетайте известную вам скорость их уборки с ожидаемым темпом разгона самолета, чтобы к моменту окончания уборки за­крылков достичь нужной скорости полета.

Случай частичного отказа механизации

Целевое назначение и надежность конструкции предкрылков и закрылков определяют частоту того или иного отказа. Для по­давляющего большинства самолетов, с которыми знаком автор, любая механизация крыла лучше, чем ее отсутствие; поэтому обычно используются все работоспособные средства механизации крыла для увеличения подъемной силы, но, естественно, при усло­вии симметричного их выпуска. Этим необычным конфигурациям очевидно соответствуют большие скорости захода на посадку и худшие, но тем не менее вполне безопасные срывные характери­стики самолета. Пилотажные характеристики остаются прак­тически нормальными, за исключением того, что в случае отказа системы выпуска закрылков самолет при полете по глиссаде будет иметь увеличенный угол тангажа. Следует отметить, что на некоторых реактивных самолетах не допускается выпуск закрылков без выпуска предкрылков или наоборот. Поэтому отказ любого из этих устройств приводит к необходимости посадки в полетной кон­фигурации. Проверьте себя, чтобы убедиться, что вам известны все особенности пилотирования самолета в этих условиях.

Случай полного отказа механизации

В редких случаях полного отказа всех средств механизации крыла пилот должен будет осуществлять заход самолета на по­садку в полетной конфигурации. Пилотирование самолета при этом особых затруднений не вызывает. Конечно, скорость захода

На посадку будет достаточно высока, но только в самой по себе скорости нет ничего угрожающего (подробнее об этом см.ниже), и заход на посадку выполняется точно так же, как на обычном са­молете с ПД без закрылков.

Здесь уместно отметить следующее:


  1. Вес самолета следует уменьшить, насколько это возможно,
    чтобы снизить потребную скорость захода на посадку и не превы­
    сить максимально допустимую скорость движения пневматиков
    самолета по земле.

  2. Следует избегать сложных матеорологических условий. Это
    одна из тех областей, где сама по себе скорость полета становится
    очень важной, поскольку для любой заданной высоты время, не­
    обходимое для устранения пилотом боковой ошибки самолета-
    момента установления визуального контакта с землей и до при­
    земления - уменьшается с увеличением скорости.

  3. Потребная посадочная дистанция самолета может быть очень
    большой. Она зависит от типа самолета и изменяется в широких
    пределах. Для тех типов самолетов, для которых в подобных си­
    туациях разрешается применение полной реверсивной тяги не­
    посредственно перед касанием, потребная посадочная дистанция
    будет ненамного больше нормальной. На самолетах, имеющих
    предкрылки и использующих реверс тяги только после касания,
    дистанция с момента пересечения самолетом входной кромки ВПП
    на скорости V AT до полной остановки самолета может составить
    при безветрии около 2700 м (без какого-либо запаса).

  4. Выполняйте пологий заход на посадку практически по гори­
    зонтали. На четырехдвигательном самолете управление скоростью
    полета облегчается выводом внешних двигателей на режим малого
    газа и при использовании для захода на посадку одних только
    внутренних двигателей (для трехдвигательного самолета на режим
    малого газа выводится центральный двигатель). Поскольку ре­
    активный самолет имеет малое лобовое сопротивление, располагае­
    мой тяги будет вполне достаточно, и большие перемещения рыча­
    гов управления двигателями будут возможны без больших из­
    менений скорости.

  5. Не задирайте слишком самолет при посадке, иначе вы мо­
    жете удариться о землю хвостовой частью фюзеляжа. Вблизи
    земли, после того как вы уже уменьшили вертикальную скорость
    снижения небольшим отклонением руля высоты вверх, просто
    продолжайте сближаться с землей.

  6. После касания сосредоточьте все свое внимание на торможе­
    нии самолета. Немедленно выпустите интерцепторы и полностью
    включите реверс тяги на всех двигателях. Держите двигатели в ре­
    жиме реверсирования тяги до тех пор, пока не станет ясно, что
    самолет не выкатится за пределы ВПП. Позвольте реверсу тяги
    в первые несколько секунд сделать свое дело. Убедитесь, что са­
    молет твердо стоит на трех точках, и затем плавно доведите
    усилия торможения до максимальных и удерживайте их некоторое
116

Время. Современные тормоза очень эффективны, а количество энергии, поглощаемой ими в этом случае, меньше, чем при прерван­ном взлете самолета с максимальным взлетным весом на ско­рости Vi до останова.

В заключение следует сказать, что, если в случае посадки са­молета в полетной конфигурации есть возможность уйти на запас­ной аэродром с длинной ВПП, хорошими подходами и с хорошими погодными условиями, эту возможность надо использовать.

СТРЕЛОВИДНОСТЬ КРЫЛА

Подъемная сила создается крылом путем ускорения потока воздуха над верхней поверхностью крыла до скорости,более высокой, чем скорость потока под нижней поверхностью. Чем больше разность этих скоростей, тем больше перепад давления и соответственно больше вектор подъемной силы.

Поскольку местная скорость потока над верхней поверхностью превышает скорость невозмущенного потока при наличии суще­ственной кривизны профиля на довольно значительную величину, то очевидно, что над верхней поверхностью поток достигнет ско­рости звука раньше, чем это произойдет в невозмущенном потоке. При этой скорости на крыле формируются местные скачки уплот­нения и начинает проявляться влияние сжимаемости, растет ло­бовое сопротивление, может ощущаться бафтинг, изменяется подъемная сила и положение центра давления, что при фиксиро­ванном угле стабилизатора приводит к изменению продольного момента. Число М, при котором начинает проявляться влияние сжимаемости, называется критическим; для прямого крыла оно может быть весьма небольшим, около 0,7.

Вспомним, что при значительной стреловидности крыла вектор скорости, нормальный к передней кромке, будет меньше вектора скорости невозмущенного потока. На рис. 4.5 вектор АС меньше, чем АВ. Поскольку крыло реагирует только на вектор скорости, нормальный к передней кромке, то на стреловидном крыле при любом числе М набегающего потока происходит уменьшение эффек­тивной составляющей скорости, нормальной к передней кромке крыла. Это означает, что воздушная скорость может увеличиваться до тех пор, пока эта составляющая скорости не достигнет скорости звука, благодаря чему возрастает критическое число М. Вот по­чему скоростные самолеты и имеют стреловидные крылья. По­скольку относительная толщина крыла определяет степень уско­рения воздушного потока над верхней поверхностью крыла, то, чем тоньше крыло, тем меньше ускорение потока. Поэтому при тонком крыле можно достичь более высокой воздушной скорости, прежде чем воздушный поток над верхней поверхностью станет звуковым. Вот почему скоростные самолеты имеют тонкие стрело­видные крылья.

Использование стреловидного крыла приводит к весьма сущест­венным последствиям. С первого взгляда на таблицу различий ста-

Увеличенная Уменьшенная Рис. 4.9. Зависимость эффективного удли-
проекция проекции нения крыла от угла рыскания

размаха размаха

Новится видно, как много у самолета свойств, зависящих от стреловидно­сти. Все они достаточно важны и за­служивают того, чтобы им были по­священы специальные подразделы, и только два из них следует обсу­дить в этом подразделе.

Поскольку стреловидность при­водит к уменьшению эффективной скорости потока, то при прочих рав­ных условиях на стреловидном кры­ле при любой скорости полета будет создаваться меньшая по величине подъемная сила, чем на прямом крыле. Эта потеря подъемной силы может быть восполнена путем увеличения

Угла атаки, что, в частности, объясняет наличие довольно боль­ших углов тангажа у реактивных самолетов при заходе на посадку. Это вовсе не означает, что самолет со стреловидным крылом летает на углах атаки, более близких к срывным, чем самолет с прямым крылом; оба эти самолета эксплуатируются на соответствующих скоростях (около l,3Vs)> но самолет со стреловидным крылом реа­лизует максимальные значения с у на больших углах атаки, чем самолет с прямым крылом. Это объясняется тем, что поток над верхней поверхностью стреловидного крыла менее «энергичен», чем у прямого крыла, и, следовательно, приближение к будет происходить на больших углах атаки.

При рыскании самолета с прямым крылом происходит также его кренение. Это происходит потому, что внутренняя к развороту консоль крыла замедляется и опускается, а наружная ускоряется и поднимается, поскольку при неодинаковых скоростях консолей крыла получаются разные значения подъемной силы на каждой консоли. На самолете со стреловидным крылом этот эффект усу­губляется еще и тем, что стреловидность каждой консоли крыла существенно влияет на угол скольжения. Более быстрая наружная консоль крыла становится менее стреловидной по отношению к по­току и создает при том же угле атаки увеличенную подъемную силу, так как при этом увеличивается эффективное относительное удлинение крыла. Более медленная внутренняя консоль крыла ста­новится еще более стреловидной и при том же угле атаки по той же самой причине теряет подъемную силу. Этим в еще большей сте­пени нарушается равенство составляющих подъемной силы на консолях крыла и в значительной мере увеличивается тенденция к кренению. Рис. 4.9 показывает, что наружная консоль крыла имеет намного большее эффективное относительное удлинение,

чем внутренняя консоль, и, кроме того, движется с большей ско­ростью. Таким образом, применяя для каждой консоли крыла отдельно формулу c y S ^ UpV 2 , видим, что наружная консоль крыла имеет более высокие значения V 2 и с у , в то время как внутренняя-консоль - меньшие. Это приводит к весьма значительному кре­нению самолета. Этот большой кренящий момент при рыскании самолета очень важен для анализа пилотажных характеристик самолета, и его различные проявления будут подробно отражены в соответствующих подразделах книги.

КОЛЕБАНИЯ ТИПА «ГОЛЛАНДСКИЙ ШАГ»

Если вы пилотируете тщательно сбалансированный и стриммированный по усилиям (включая использование триммеров руля направления и элеронов) самолет с ПД на крейсерском ре­жиме и затем бросите управление сразу по всем трем каналам, то самолет будет сохранять режим установившегося полета благодаря наличию устойчивости самолета по всем трем осям. Если теперь возьметесь за штурвальную колонку и плавно введете самолет в крен, сначала, скажем, на 15° влево, а затем на 15° вправо и повторите все это несколько раз, то произойдет примерно то, что ощущается пилотами реактивных самолетов как колебания, часто называемые «голландским шагом». Затем позвольте самолету ус­покоиться и после этого отклоните руль направления сначала влево, а затем вправо. Как и при даче только элеронов, будет развиваться аналогичное движение: рыскание в одном направле­нии вызовет кренение самолета в определенном направлении (как это было объяснено выше), затем рыскание в другом направлении вызовет противоположное кренение самолета. Вот теперь мы весь­ма близки к тому, чтобы представить, что в действительности пред­ставляет собой «голландский шаг» реактивного самолета.

«Голландский шаг» - это комбинированное движение рыска­ния и крена, причем рыскание не столь значительно, как крене­ние, и создается впечатление, что самолет осуществляет длитель­ное знакопеременное движение по крену. Пока движение «голланд­ского шага» не чрезмерно интенсивное, возмущений по тангажу не наблюдается.

Иначе «голландский шаг» можно определить как боковое коле­бательное движение самолета. Наряду с колебательным движе­нием существует спиральное движение - явление, которое будет объяснено ниже, хотя сам термин почти объясняет его сущность.

Характеристики путевого и поперечного движения самолета зависят от нескольких взаимосвязанных факторов. С одной сто­роны - это влияние угла поперечного V и угла стреловидности, от которых в основном зависят характеристики поперечного дви­жения самолета; с другой стороны - это влияние вертикального оперения и руля направления, от которых в основном зависят характеристики путевого движения. Из взаимосвязи указанных двух групп факторов проистекают свойства спирального и коле-


бательного движений самолета, которые всегда находятся в про­тиворечии. Если доминируют факторы, действующие в попереч­ной плоскости,то самолет обладает тенденцией к спиральной устой­чивости и к колебательной неустойчивости; если доминируют фак­торы, действующие в плоскости рыскания, то самолет имеет тен­денцию к спиральной неустойчивости и к колебательной устой­чивости. На поведение самолета, конечно, оказывают влияние и другие факторы, но, как всегда, определяющим в конечном счете является удачный компромисс между двумя указанными харак­теристиками устойчивости.

Колебательная устойчивость, т. е. затухающий «голландский шаг», может быть теперь определена как тенденция самолета при возмущениях как в путевом, так и в поперечном канале гасить возникающие в результате этого колебания рыскания и крена и возвращаться к условиям установившегося полета.

Прежде чем перейти к рассмотрению причин, обусловливаю­щих такое поведение самолета, вспомним, что стреловидное крыло обладает значительной тенденцией к кренению при рыскании само­лета (об этом подробнее говорилось выше).

Когда самолет рыскает, он кренится. Вертикальное оперение и руль направления препятствуют рысканию, замедляют и пре­кращают его, и самолет возвращается к прямолинейному полету. Если вертикальное оперение и руль направления имеют доста­точно большие площади, то амплитуда каждого последующего колебания рыскания и кренения будет меньше амплитуды каждого предыдущего колебания; амплитуда будет постепенно уменьшаться до полного прекращения колебаний. Однако, если вертикальное оперение и руль направления слишком малы (заметьте, что «слиш­ком малы» только в смысле обеспечения необходимых характери­стик колебательной устойчивости), амплитуда каждого последую­щего колебания рыскания и крена будет больше амплитуды пре­дыдущего и колебательное движение самолета, называемое «гол­ландским шагом», становится расходящимся, т. е. неустойчивым. И хотя именно начальное возмущение по рысканию является той первопричиной, которая вызывает это неблагоприятное поведение самолета, все же на большинстве самолетов наиболее заметным для пилота будет движение в плоскости крена. Вот почему движе­ние самолета в этой плоскости используется как основа для оценки характеристик «голландского шага».

Подобно другим видам устойчивости, колебательная устой­чивость может быть положительной, отрицательной или может иметь место нулевой запас колебательной устойчивости; этим ви­дам колебательной устойчивости соответствуют затухающий, рас­ходящийся и незатухающий «голландский шаг» (колебания по­стоянной амплитуды). Характеристики «голландского шага» опре­деляются по осциллограммам изменения угла крена в зависи­мости от времени. Осциллограмма затухающего движения пока­зана на рис. 4.10.

Рис. 4.10. Затухающий «голланд­ский шаг»

Затухающее колебатель­ное движение безопасно, так как самолет, предоставлен­ный самому себе, будет в конце концов быстро или медленно возвращаться к ре­жиму установившегося полета. Рис. 4.11 иллюстрирует харак­тер незатухающего «голландского шага» постоянной амплитудьь Это движение, характеризующее нулевой запас колебательной устойчивости, достаточно безопасно, поскольку само по себе оно не ухудшает положения дел, но тем не менее отсутствие запаса колебательной устойчивости нежелательно, так как, если амплитуда колебаний велика или частота колебаний мала, пилотирование самолета становится неприятным и утоми­тельным.

На рис. 4.12 представлена осциллограмма расходящегося.«гол­ландского шага» (отрицательная колебательная устойчивость). Такое движение потенциально опасно, потому что рано или поздно в зависимости от степени неустойчивости самолет может полностью выйти из повиновения или потребует постоянного внимания и очень высокого мастерства пилота для сохранения надлежащего уровня управляемости.

Расходящиеся колебания следует оценивать следующим обра­зом: при большой расходимости колебаний по амплитуде самолет не может быть сертифицирован для эксплуатации, но если эти колебания расходятся очень медленно, то ввод самолета в эксплуа­тацию может быть разрешен. Пилоты обычно не находят суще­ственных различий между медленно расходящимися колебаниями типа «голландский шаг» и колебаниями с постоянной амплитудой, так как для этого нужен весьма большой промежуток времени. По этой причине на протяжении короткого промежутка времени слабо расходящиеся колебания типа «голландский шаг» воспри­нимаются пилотами как колебания с постоянной амплитудой. Поэтому наиболее удобным параметром для оценки степени коле­бательной устойчивости самолета является время, в течение ко­торого амплитуда колебаний увеличивается вдвое (колебательная



неустойчивость) или, наобо-

». рот, уменьшается в два ра-

За (колебательная устойчи­вость).

Рис. 4.11. Незатухающий «голлан­дский шаг» с постоянной ампли­тудой


Рис. 4.12. Незатухающий «гол­ландский шаг» с расходящейся амплитудой

5 10

Время, с


Требования в этой обла­сти окончательно еще не ус­тановлены, хотя за последнее время и был проведен боль­шой объем исследований при­менительно к сверхзвуковому транспортному самолету, и, по-видимому, результаты этих исследований можно распространить и на дозвуковые самолеты. Исследованиями установлено, что если увеличение амплитуды колебаний вдвое происходит за 50 секунд и более, то можно считать, что самолет имеет нулевой запас колебательной устойчивости, в то время как увеличение амплитуды в два раза за 15 секунд и менее свидетельствует о зна­чительной колебательной неустойчивости самолета. Очевидно, границей колебательной неустойчивости может быть принято время увеличения амплитуды вдвое, равное 35-40 секундам. Однако для оценки степени колебательной неустойчивости одного этого критерия еще недостаточно. Очень важный параметр - частота колебаний. Если период колебаний уменьшается до трех секунд, то изменение направления кренения будет происходить столь быстро, что парирование пилотом такого движения с помощью элеронов станет затруднительным, причем возникнет опасность еще большего осложнения пилотом возникшей ситуации.

Характеристики движения типа «голландский шаг» изменяются в зависимости от конфигурации самолета, высоты полета и коэф­фициента подъемной силы. Эти характеристики ухудшаются с уве­личением высоты и с уменьшением скорости (но не всегда) при постоянном весе самолета или с увеличением веса самолета при постоянной скорости.

Контролирование расходящегося «голландского шага» не вызы­вает затруднений при условии правильного пилотирования. Пред­положим, что самолет совершает расходящееся движение типа «голландский шаг». Первое, что нужно делать,-■ не делать ничего, повторяю - ничего. Слишком много пилотов, поспешно хватаясь за управление, только усложняли ситуацию и ставили себя в еще более тяжелое положение. Подождите несколько секунд - поло­жение дел за это время намного не ухудшится. Просто понаблю­дайте за характером движения крена самолета и запомните его. Затем, когда вы хорошо уясните картину и внутренне подготовите себя, сделайте одно уверенное, но плавное корректирующее дви­жение элеронами, чтобы остановить крен. Не удерживайте эле­роны отклоненными слишком долго - только поверните штурвал и возвратите его в исходное положение, иначе вы только ухудшите ситуацию. Осуществив лишь одно плавное управляющее воздей­ствие элеронами, вы погасите большую часть крена самолета.

У вас сохранится остаточное возмущенное движение, которое в свое время можно устранить использованием одних лишь элеронов.

Не пытайтесь корректировать маневр рулем направления; как уже отмечалось, движение рыскания часто очень слабо выражено, и бывает весьма трудно определить, в какую сторону необходимо отклонить руль направления в данный момент. Поэтому исполь­зование руля направления приводит к тому, что вероятность оши­бочных действий пилота, усугубляющих ситуацию, становится очень большой.

Далее, никогда не пытайтесь погасить «голландский шаг» одним корректирующим действием, но старайтесь за один раз по­гасить только большую часть возмущения, а затем, в дальнейшем, уже «расправиться» с остальной частью. При парировании «гол­ландского шага» в процессе разворота старайтесь погасить коле­бания на угле крена, соответствующем установившемуся разво­роту. Не пытайтесь одновременно бороться с «голландским шагом» и выводить самолет на режим горизонтального полета; сначала избавьтесь от «голландского шага», а затем, если необходимо, выводите самолет из разворота.

Драматические суждения относительно «голландского шага» самолетов, существовавшие в прошлом, проистекали не столько из-за самих характеристик самолетов, сколько из-за недостатка знаний в этой области, а возможно, и обилия противоречивых сведений, поступавших от пилотов. С удовлетворением можно кон­статировать, что сейчас в эксплуатации нет ни одного пассажир­ского самолета, пилотирование которого было бы связано с ка­кими-либо трудностями из-за характеристик колебательной устой­чивости. Большинство самолетов обладает очень слабо выражен­ной неустойчивостью, характеризующейся расходящимся «гол­ландским шагом» (если таковой может возникнуть), другие само­леты надежно защищаются от этого явления автоматическими устройствами, устанавливаемыми на самолете (о них будет рас­сказано в следующем подразделе о демпферах рыскания и крена).

Рекомендованные выше приемы пилотирования для устране­ния «голландского шага» с помощью одних лишь элеронов вполне пригодны для всех дозвуковых реактивных самолетов. Интересно отметить, что, как стало известно, такие приемы пилотирования вряд ли можно рекомендовать для парирования «голландского шага» сверхзвуковых реактивных самолетов из-за большого мо­мента рыскания, возникающего при отклонении элеронов, но эта проблема будет решена в свое время, так что пусть она вас пока не беспокоит.

ДЕМПФЕРЫ РЫСКАНИЯ И КРЕНА

Пилотирование самолета, обладающего значительной тенденцией к возникновению «голландского шага», т. е. когда колебания самолета затухают недостаточно быстро, очень утом­ляет пилота, поскольку оно требует от него повышенного внимания.

В таких условиях пилоту необходима помощь от автоматиче­ских устройств.

Выше уже говорилось, что основной причиной, вызываю­щей тенденцию к «голландскому шагу» (естественно, кроме стре­ловидности), является недостаточно эффективная площадь верти­кального оперения и руля направления; упоминалось кроме того, что слишком большая площадь вертикального оперения ухудшает спиральную устойчивость самолета. Поэтому окон­чательный выбор площади вертикального оперения, как всегда, есть компромисс. И если для этих целей площадь оперения не может быть увеличена, то это должно быть сделано как-то по-другому.

На некоторых ранних реактивных самолетах с ручным управ­лением руль направления при скольжении стремился встать по потоку, по крайней мере, на малых углах скольжения, что уменьшало эффективность вертикального оперения и ухудшало колебательную устойчивость самолета. Введение необратимого бустерного управления в канале руля направления привело к тому, что руль при скольжении оставался в нулевом поло­жении и это заметно улучшило характеристики «голландского шага».

Естественным дальнейшим шагом на самолетах с бустерным управлением (а сейчас такое управление имеется на большинстве самолетов) явилось отклонение руля направления в сторону, противоположную рысканию самолета, чтобы воспрепятствовать возникновению и развитию скольжения. Именно это и делает демпфер рыскания.

Демпфер рыскания представляет собой устройство, работаю­щее от гидросистемы, чувствительной к изменению угловой ско­рости рыскания. Эта система выдает сигнал на исполнительное устройство демпфера, которое отклоняет руль направления так, чтобы препятствовать рысканию самолета. При наличии такого устройства колебания типа «голландский шаг» не развиваются, поскольку угол рыскания - первопричина появления этих коле­баний - при этом не развивается. Если при выключенном демп­фере рыскания колебания типа «голландский шаг» возникли, то включение демпфера позволяет самолету быстро вернуться к нор­мальному управляемому полету. При нормальной;"работе-демп­фер не делает ошибок: он отклоняет руль направления в нужном направлении и на нужную величину, уменьшая тем^самым угол скольжения до нуля и прекращая всякую тенденцию самолета к кренению.

Необходимая кратность резервирования демпфера рыскания зависит от характеристик «голландского шага» исходного само­лета и от особенностей бустерной системы управления. Если коле­бания по крену исходного самолета (без демпфера) только утом­ляют пилота, то установка нерезервированного демпфера будет необходима и достаточна, так как считается, что в случае отказа

Демпфера в полете продолжить полет по заданному маршруту будет для пилота не слишком трудной задачей. Если же «голланд­ский шаг» заметно расходится, необходимо устанавливать дуб­лированный демпфер, сохраняющий работоспособность после первого отказа. В случае существенно расходящегося «голланд­ского шага» необходимо устанавливать резервированный демпфер рыскания, сохраняющий работоспособность после второго отказа, с тем чтобы полный отказ такого демпфера, приводящий к необ­ходимости пилотировать исходный самолет, был событием крайне маловероятным.

Было бы правильно сказать, что необходимая кратность резер­вирования демпфера рыскания отражает степень расходимости «голландского шага», но это не всегда так - некоторые конструк­торы устанавливают демпфер рыскания с большей степенью резервирования, чем этого требуют характеристики «голланд­ского шага», т. е. делают это из других соображений. Например, если на самолете устанавлен секционированный руль направления, отклоняемый с помощью бустеров, то, естественно, каждая сек­ция руля должна иметь свой демпфер.

В принципе существуют два типа демпферов рыскания. Пер­вые конструкции демпферов рыскания вводились в проводку управления рулем направления таким образом, что их действие сопровождалось перемещением педалей. Такое действие демпферов было удобно тем, что информировало пилотов об их работоспособ­ности, но при их работе увеличивались усилия на педалях. Для того чтобы предотвратить возможные осложнения в управлении при отказе двигателей при взлете или при посадке с боковым вет­ром,такие демпферы при взлетно-посадочных режимах отключались. Поскольку эти демпферы работали параллельно с пилотами, их стали называть демпферами с параллельным включением.

Демпферы более поздних конструкций относятся к типу демп­феров с последовательным включением в проводку управления. Они включены в проводку управления так, что действуют только на руль направления и не вызывают отклонений педалей. А так как усилия на педалях при работе демпферов с последовательным включением не увеличиваются, они могут использоваться и на взлетно-посадочных режимах.

На некоторых самолетах дополнительно устанавливается демп­фер крена; этот демпфер выполняет примерно ту же самую работу, что и демпфер рыскания, но только с помощью элеронов. На некоторых самолетах эти демпферы установлены не обязательно для улучшения характеристик «голландского шага», а просто для того, чтобы задемпфировать колебания самолета по крену при полете в турбулентной атмосфере, и это делается, например, на самолетах с большими моментами инерции в плоскости крена. Конечно, эти демпферы улучшают с помощью элеронов и характе­ристики «голландского шага» и поэтому могут считаться эквива­лентными демпферу рыскания.

На этом мы заканчиваем рассмотрение вопроса о введении демпферов рыскания и крена. Проблема рассматривалась доста­точно подробно для того, чтобы показать, что при соответствую­щих знаниях, практических навыках и определенной степени доверия к этим устройствам они не вызывают каких-либо ослож­нений в пилотировании. Вопрос о доверии необходимо подчерк­нуть особо; при постоянном увеличении угла стреловидности и длины фюзеляжа характеристики «голландского шага» стано­вятся все хуже и хуже, в связи с чем приходится возлагать все больше надежд на работу автоматических систем повышения устойчивости.

Поскольку тренировочные полеты, безусловно, предназначены для того, чтобы получить правильное представление об основных летных характеристиках данного типа самолета, инструктор и тре­нирующийся пилот могут быть поставлены в такие условия, когда самолет имеет существенную колебательную неустойчивость. Для обеспечения надлежащего уровня безопасности при таких полетах возбуждение «голландского шага» следует совершать плавно и осторожно и, кроме того, необходимо, чтобы возможности каждого демпфера, в случае если на самолете установлено более одного демпфера, были достаточно хорошо известны. Для одного из ле­тающих в настоящее время самолетов в руководстве по летной эк­сплуатации содержатся совершенно точно определенные проце­дуры, включающие выпуск тормозных щитков и немедленное уменьшение высоты полета в случае, если парирование расходя­щихся колебаний типа «голландский шаг» покажется слишком затянутым или же будет сопровождаться большими углами крена и скольжения.

Постарайтесь доскональнее изучить свой самолет и получить практический навык по парированию «голландского шага», если ваш самолет имеет значительную тенденцию к «голландскому шагу»; в полете темной ненастной ночью, когда у вас за спиной огромное количество пассажиров, вам уже поздно узнавать, кто хозяин положения - вы или самолет.

Профиль на середине размаха крыла

  • Относительная толщина (отношение максимального расстояния между верхней и нижней дужкой профиля к длине хорды крыла) 0.1537
  • Относительный радиус передней кромки (отношение радиуса к длине хорды) 0.0392
  • Относительная кривизна (отношение максимального расстояния между средней линией профиля и хордой к длине хорды) 0.0028
  • Угол задней кромки 14.2211 градусов

Профиль на середине размаха крыла

Профиль крыла ближе к концевой части

  • Относительная толщина 0.1256
  • Относительный радиус передней кромки 0.0212
  • Относительная кривизна 0.0075
  • Угол задней кромки 13.2757 градусов

Профиль крыла ближе к концевой части

Профиль крыла концевой части

  • Относительная толщина 0.1000
  • Оотносительный радиус передней кромки 0.0100
  • Относительная кривизна 0.0145
  • Угол задней кромки 11.2016 градусов

Профиль крыла концевой части

  • Относительная толщина 0.1080
  • Относительный радиус передней кромки 0.0117
  • Относительная кривизна 0.0158
  • Угол задней кромки 11.6657 градусов

Параметры крыла

  • Площадь крыла 1135 ft² или 105.44м².
  • Размах крыла 94’9’’ или 28.88 м (102’5’’ или 31.22 м с winglets)
  • Относительное удлинение крыла 9.16
  • Корневая хорда 7.32 %
  • Концевая хорда 1.62 %
  • Сужение крыла 0.24
  • Угол стреловидности 25 градусов

К вспомогательному управлению относится механизация крыла и переставной стабилизатор.

Рулевые поверхности основного управления отклоняются гидроприводами , работу которых обеспечивают две независимые гидросистемы А и В. Любая из них обеспечивает нормальную работу основного управления. Рулевые приводы (гидроприводы) включены в проводку управления по необратимой схеме, т. е. аэродинамические нагрузки от рулевых поверхностей не передаются на органы управления. Усилия на штурвале и педалях создают загрузочные механизмы.

При отказе обеих гидросистем руль высоты и элероны управляются пилотами вручную, а руль направления управляется с помощью резервной гидросистемы (standby hydraulic system).

Поперечное управление

Поперечное управление

Поперечное управление осуществляется элеронами и отклоняемыми в полете интерцепторами (flight spoilers).

При наличии гидропитания на рулевых приводах элеронов поперечное управление работает следующим образом:

  • перемещение штурвальных колес штурвалов по тросовой проводке передается на рулевые приводы элеронов и далее на элероны;
  • кроме элеронов, рулевые приводы элеронов перемещают пружинную тягу (aileron spring cartridge), связанную с системой управления интерцепторами и таким образом приводят её в движение;
  • движение пружинной тяги передается на устройство изменения передаточного коэффициента (spoiler ratio changer). Здесь управляющее воздействие уменьшается в зависимости от величины отклонения рукоятки управления интерцепторами (speed brake lever). Чем больше отклонены интерцепторы в режиме воздушных тормозов, тем меньше коэффициент передачи перемещения штурвалов по крену;
  • далее перемещение передается на механизм управления интерцепторами (spoiler mixer), где оно суммируется с перемещением рукоятки управления интерцепторами. На крыле с поднятым элероном интерцепторы приподнимаются, а на другом крыле – приспускаются. Таким образом, одновременно выполняются функции воздушного тормоза и поперечного управления. Интерцепторы включаются в работу при повороте штурвального колеса более 10 градусов;
  • также, вместе со всей системой, движется тросовая проводка от устройства изменения передаточного коэффициента до устройства зацепления (lost motion device) механизма связи штурвалов.

Устройство зацепления соединяет правый штурвал с тросовой проводкой управления интерцепторами при рассогласовании более 12 градусов (поворота штурвального колеса).

При отсутствии гидропитания на рулевых приводах элеронов, они будут отклоняться пилотами вручную, а при повороте штурвала на угол более 12 градусов будет приводиться в движение тросовая проводка системы управления интерцепторами. Если при этом рулевые машины интерцепторов будут работать, то интерцепторы будут работать в помощь элеронам.

Эта же схема позволяет второму пилоту управлять интерцепторами по крену при заклинении штурвала командира или тросовой проводки элеронов. При этом ему необходимо приложить усилие порядка 80-120 фунтов (36-54 кг), чтобы преодолеть усилие предварительной затяжки пружины в механизме связи штурвалов (aileron transfer mechanism), отклонить штурвал более 12 градусов и тогда вступят в работу интерцепторы.

При заклинении правого штурвала или тросовой проводки интерцепторов командир имеет возможность управлять элеронами, преодолевая усилие пружины в механизме связи штурвалов.

Рулевой привод элеронов соединен тросовой проводкой с левой штурвальной колонкой через загрузочный механизм (aileron feel and centering unit). Данное устройство имитирует аэродинамическую нагрузку на элеронах, при работающем рулевом приводе, а также смещает положение нулевых усилий (механизм триммерного эффекта). Пользоваться механизмом триммерного эффекта элеронов можно только при отключенном автопилоте, поскольку автопилот управляет рулевым приводом напрямую, и будет пересиливать любые перемещения загрузочного механизма. Зато в момент отключения автопилота эти усилия сразу же передадутся на проводку управления, что приведет к неожидаемому кренению самолета. Для уменьшения вероятности непреднамеренного триммирования элеронов, установлено два переключателя. При этом триммирование произойдет только при нажатии на оба переключателя одновременно.

Для уменьшения усилий при ручном управлении (manual reversion) элероны имеют кинематические сервокомпенсаторы (tabs) и балансировочные панели (balance panel).

Сервокомпенсаторы кинематически связаны с элеронами и отклоняются в противоположную отклонению элерона сторону. Это уменьшает шарнирный момент элерона и усилия на штурвале.

Балансировочная панель

Балансировочные панели представляют собой панели соединяющие переднюю кромку элерона с задним лонжероном крыла с помощью шарнирных соединений. При отклонении элерона, например, вниз - на нижней поверхности крыла в зоне элерона возникает зона повышенного давления, а на верхней – разрежения. Этот перепад давления распространяется в зону между передней кромкой элерона и крылом и, воздействуя на балансировочную панель, уменьшает шарнирный момент элерона.

При отсутствии гидропитания рулевой привод работает как жесткая тяга. Механизм триммерного эффекта реального уменьшения усилий не обеспечивает. Триммировать усилия на рулевой колонке можно с помощью руля направления или, в крайнем случае, разнотягом двигателей.

Управление по тангажу

Управляющими поверхностями продольного управления являются: руль высоты, обеспеченный гидравлическим рулевым приводом, и стабилизатор, обеспеченный электрическим приводом. Штурвалы пилотов связаны с гидравлическими приводами руля высоты с помощью тросовой проводки. Кроме этого, на вход гидроприводов воздействует автопилот и система триммирования по числу М.

Нормальное управление стабилизатором осуществляется от переключателей на штурвалах или автопилотом.Резервное управление стабилизатором - механическое с помощью колеса управления на центральном пульте управления.

Две половины руля высоты механически соединены между собой с помощью трубы. Гидроприводы руля высоты питаются от гидросистем А и В. Подачей гидрожидкости к приводам управляют переключатели в кабине пилотов (Flight Control Switches).

Одной работающей гидросистемы достаточно для нормальной работы руля высоты. В случае отказа обоих гидросистем (manual reversion) руль высоты отклоняется вручную от любого из штурвалов. Для уменьшения шарнирного момента руль высоты оснащен двумя аэродинамическими сервокомпенсаторами и шестью балансировочными панелями.

Наличие балансировочных панелей приводит к необходимости установки стабилизатора полностью на пикирование (0 units) перед обливом против обледенения. Такая установка предотвращает попадание слякоти и противообледенительной жидкости в вентиляционные отверстия балансировочных панелей (см. балансировочные панели элеронов).

Шарнирный момент руля высоты,при работающем гидроприводе, на штурвал не передается, а усилия на штурвале создаются с помощью пружины механизма триммерного эффекта (feel and centering unit) на который, в свою очередь, передаются усилия от гидравлического имитатора аэродинамической нагрузки (elevator feel computer).

Механизм триммерного эффекта

При отклонении штурвала поворачивается центрирующий кулачок и подпружиненный ролик выходит из своей «ямки» на боковую поверхность кулачка. Стремясь под действием пружины вернуться обратно, он создает усилие в поводке управления, препятствующее отклонению штурвала. Кроме пружины на ролик воздействует исполнительный механизм имитатора аэродинамической нагрузки (elevator feel computer). Чем больше скорость, тем сильнее ролик будет прижиматься к кулачку, что будет имитировать возрастание скоростного напора.

Особенностью двухпоршневого цилиндра является то, что он воздействует на feel and centering unit максимальным из двух командных давлений. Это легко понять по рисунку, поскольку между поршнями давления нет, и цилиндр будет находиться в нарисованном состоянии только при одинаковых командных давлениях. Если же одно из давлений станет больше, то цилиндр сместится в сторону большего давления, пока один из поршней не упрется в механическую преграду, исключив, таким образом, цилиндр с меньшим давлением из работы.

Имитатор аэродинамической нагрузки

На вход elevator feel computer поступает скорость полета (от приемников воздушного давления, установленных на киле) и положение стабилизатора.

Под действием разности полного и статического давлений мембрана прогибается вниз, смещая золотник командного давления. Чем больше скорость, тем больше командное давление.

Изменение положения стабилизатора передается на кулачок стабилизатора, который через пружину воздействует на золотник командного давления. Чем больше стабилизатор отклонен на кабрирование, тем меньше командное давление.

Предохранительный клапан срабатывает при избыточном командном давлении.

Таким образом гидравлическое давление из гидросистем А и В (210 атм.) преобразуется в соответствующее командное давление (от 14 до 150 атм.), воздействующее на feel and centering unit.

Если разница в командных давлениях становится более допустимой, пилотам выдается сигнал FEEL DIFF PRESS, при убранных закрылках. Эта ситуация возможна при отказе одной из гидросистем или одной из веток приемников воздушного давления. Никаких действий от экипажа не требуется поскольку система продолжает нормально функционировать.

Система улучшения устойчивости по скорости (Mach Trim System)

Данная система является встроенной функцией цифровой системы управления самолетом (DFCS). Система MACH TRIM обеспечивает устойчивость по скорости при числе М более 0,615. При увеличении числа М электромеханизм MACH TRIM ACTUATOR смещает нейтраль механизма триммерного эффекта (feel and centering unit) и руль высоты автоматически отклоняется на кабрирование, компенсируя пикирующий момент от смещения аэродинамического фокуса вперед. При этом на штурвал никакие перемещения не передаются. Подключение и отключение системы происходит автоматически в функции числа М.

Система получает число М от Air Data Computer. Система двухканальная. При отказе одного канала индицируется MACH TRIM FAIL при нажатии Master Caution и гаснет после Reset. При двойном отказе система не работает и сигнал не гасится, необходимо выдерживать число М не более 0.74.

Стабилизатор управляется электродвигателями триммирования: ручного и автопилота, а также механически, с помощью колеса управления. На случай заклинивания электродвигателя предусмотрена муфта, разъединяющая трансмиссию от электродвигателей при приложении усилий к колесу управления.

Управление стабилизатором

Управление электродвигателем ручного триммирования выполняется от нажимных переключателей на штурвалах пилотов, при этом при выпущенных закрылках стабилизатор перекладывается с большей скоростью, чем при убранных. Нажатие этих переключателей приводит к отключению автопилота.

Система улучшения устойчивости по скорости (Speed Trim System)

Данная система является встроенной функцией цифровой системы управления самолетом (DFCS). Система управляет стабилизатором с помощью сервопривода автопилота для обеспечения устойчивости по скорости. Её срабатывание возможно вскоре после взлета или при уходе на второй круг. Условиями, способствующими срабатыванию, являются малый вес, задняя центровка и высокий режим работы двигателей.

Система улучшения устойчивости по скорости работает на скоростях 90 – 250 узлов. Если компьютер улавливает изменение скорости, то система автоматически включается при отключенном автопилоте, выпущенных закрылках (на 400/500 независимо от закрылков), оборотах двигателей N1 более 60%. При этом должно пройти более 5 секунд после предыдущего ручного триммирования и не менее 10 секунд после отрыва от ВПП.

Принцип работы заключается в перекладывании стабилизатора в зависимости от изменения скорости самолета, таким образом, чтобы при разгоне самолет имел тенденцию к задиранию носа и наоборот. (При разгоне 90 – 250 узлов стабилизатор автоматически перекладывается на 8 градусов на кабрирование). Кроме изменений скорости компьютер учитывает обороты двигателей, вертикальную скорость и приближение к сваливанию.

Чем выше режим двигателей, тем быстрее начнет срабатывать система. Чем больше вертикальная скорость набора высоты, тем больше стабилизатор отрабатывает на пикирование. При приближении к углам сваливания система автоматически отключается.

Система двухканальная. При отказе одного канала полет разрешается. При двойном отказе вылетать нельзя. Если двойной отказ произошел в полете, QRH не требует никаких действий, но логично было бы повысить контроль за скоростью на этапах захода на посадку и ухода на второй круг.

Путевое управление

Путевое управление самолетом обеспечивается рулем направления. На руле отсутствует сервокомпенсатор. Отклонение руля обеспечивается с помощью одного главного рулевого привода и резервного рулевого привода. Главный рулевой привод работает от гидросистем А и В, а резервный от третьей (standby) гидросистемы. Работа любой из трех гидросистем полностью обеспечивает путевое управление.

Триммирование руля направления с помощью ручки на центральном пульте осуществляется смещением нейтрали механизма триммерного эффекта.

На самолетах серии 300-500 производилась модификация схемы управления рулем направления (RSEP modification). RSEP –Rudder System Enhancement Program.

Внешний признак выполнения данной модификации – дополнительное табло «STBY RUD ON» в левом верхнем углу панели FLIGHT CONTROL.

Путевое управление осуществляется педалями. Их перемещение передается тросовой проводкой на трубу, которая, вращаясь, перемещает тяги управления главного и резервного рулевых приводов. К этой же трубе прикреплен механизм триммерного эффекта.

Механизация крыла

Механизация крыла и рулевые поверхности

Переходный процесс двигателя

На рисунке показан характер переходных процессов двигателя с выключенным и работающим РМС.

Таким образом, при работающем РМС положение РУД определяет заданный N1. Поэтому в процессе взлета и набора высоты тяга двигателя будет оставаться постоянной, при неизменном положении РУД.

Особенности управления двигателями при выключенном РМС

При выключенном РМС, МЕС выдерживает заданные обороты N2, и в процессе роста скорости на взлете обороты N1 будут возрастать. В зависимости от условий рост N1 может составить до 7 %. От пилотов не требуется уменьшать режим в процессе взлета, если не будут превышаться ограничения по двигателю.

При выборе режима двигателям на взлете, при выключенном РМС, нельзя использовать технологию имитации температуры наружного воздуха (assumed temperature).

В наборе высоты после взлета необходимо следить за оборотами N1 и своевременно корректировать их рост приборкой РУД.

Автомат тяги

Автомат тяги - это управляемая компьютером электромеханическая система, которая управляет тягой двигателей. Автомат перемещает РУДы так, чтобы поддерживать заданные обороты N1 или заданную скорость полета в течение всего полета от взлета до касания ВПП. Он рассчитан для работы совместно с автопилотом и навигационным компьютером (FMS, Flight Management System).

Автомат тяги имеет следующие режимы работы: взлет (TAKEOFF); набор высоты (CLIMB); занятие заданной высоты (ALT ACQ); крейсерский полет (CRUISE); снижение (DESCENT); заход на посадку (APPROACH); уход на второй круг (GO-AROUND).

FMC передает на автомат тяги информацию о требуемом режиме работы, заданных оборотах N1, оборотах максимально продолжительного режима работы двигателя, максимальных оборотов для набора высоты, крейсерского полета и ухода на второй круг, а также другую информацию.

Особенности работы автомата тяги при отказе FMC

В случае отказа FMC компьютер автомата тяги рассчитывает собственные предельные обороты N1 и индицирует пилотам сигнал «A/T LIM». Если автомат тяги в этот момент будет работать в режиме взлета, то произойдет его автоматическое отключение с индикацией отказа «A/T».

Рассчитанные автоматом обороты N1 могут быть в пределах (+0 % −1 %) от рассчитанных FMC оборотов набора высоты (FMC climb N1 limits).

В режиме ухода на второй круг, рассчитанные автоматом обороты N1, обеспечивают более плавный переход от захода на посадку к набору высоты и рассчитываются из условий обеспечения положительного градиента набора высоты.

Особенности работы автомата тяги при неработающем РМС

При неработающем РМС положение РУД уже не соответствует заданным оборотам N1 и, чтобы не допустить заброса оборотов, автомат тяги уменьшает передний предел отклонения РУД с 60 до 55 градусов.

Скорость полета

Номенклатура скоростей, используемых в руководствах Боинг:

  • Приборная скорость (Indicated или IAS) - показание указателя воздушной скорости без учёта поправок.
  • Индикаторная земная скорость (Calibrated или CAS). Индикаторная земная скорость равна приборной скорости, в которую внесены аэродинамическая и инструментальная поправки.
  • Индикаторная скорость (Equivalent или EAS). Индикаторная скорость равна индикаторной земной скорости, в которую внесена поправка на сжимаемость воздуха.
  • Истинная скорость (True или TAS). Истинная скорость равна индикаторной скорости, в которую внесена поправка на плотность воздуха.

Пояснения к скоростям начнем в обратном порядке. Истинная скорость самолета – это его скорость относительно воздуха. Измерение воздушной скорости на самолете осуществляется с помощью приемников воздушного давления (ПВД). В них замеряется полное давление заторможенного потока p * (pitot) и статическое давление p (static). Предположим, что ПВД на самолете – идеальное и не вносит никаких погрешностей и, что воздух несжимаем. Тогда прибор, измеряющий разность полученных давлений, измерит скоростной напор воздуха p * − p = ρ * V 2 / 2 . Скоростной напор зависит как от истинной скорости V , так и от плотности воздуха ρ . Поскольку градуировка шкалы прибора производится в земных условиях при стандартной плотности, то в этих условиях прибор будет показывать истинную скорость. Во всех остальных случаях прибор будет показывать отвлечённую величину, называемую индикаторной скоростью .

Индикаторная скорость V i играет важную роль не только как величина, необходимая для определения воздушной скорости. В горизонтальном установившемся полете при заданной массе самолета она однозначно определяет его угол атаки и коэффициент подъемной силы.

Учитывая, что при скоростях полета более 100 км/час начинает проявляться сжимаемость воздуха, реальная разница давлений, замеренная прибором, будет несколько больше. Данная величина будет называться земной индикаторной скоростью V i 3 (calibrated). Разность V i V i 3 называется поправкой на сжимаемость и увеличивается по мере роста высоты и скорости полета.

Летящий самолет искажает статическое давление вокруг себя. В зависимости от точки установки приемника давления прибор будет замерять несколько разные статические давления. Полное давление практически не искажается. Поправка на расположение точки замера статического давления называется аэродинамической (correction for static source position). Также возможна инструментальная поправка на отличие данного прибора от стандарта (у Боинга принята равной нулю). Таким образом, величина, показанная реальным прибором, подключенным к реальному ПВД, называется приборной скоростью (indicated).

На совмещенных указателях скорости и числа М индицируется земная индикаторная (calibrated) скорость от компьютера высотно-скоростных параметров (Air data computer). На комбинированном указателе скорости и высоты индицируется приборная (indicated) скорость, полученная по давлениям, взятым непосредственно из ПВД.

Рассмотрим типичные неисправности, связанные с ПВД. Обычно экипаж распознает проблемы в процессе взлета или вскоре после отрыва от земли. В большинстве случаев это проблемы, связанные с замерзанием воды в трубопроводах.

В случае закупорки трубопровода полного давления (pitot probes) указатель скорости не покажет увеличения скорости в процессе разбега на взлете. Однако после отрыва скорость начнет расти, поскольку статическое давление будет уменьшаться. Высотомеры будут работать практически правильно. При дальнейшем наборе скорость будет расти через правильное значение и далее превысит ограничение с соответствующим срабатыванием сигнализации (overspeed warning). Сложность данного отказа в том, что какое-то время приборы будут показывать практически нормальные показания, что может вызвать иллюзию восстановления нормальной работы системы.

В случае закупорки трубопровода статического давления (static ports) в процессе разбега система будет работать нормально, но в процессе набора высоты покажет резкое уменьшение скорости вплоть до нуля. Показания высотомеров останутся на высоте аэродрома. Если пилоты пытаются сохранить требуемые показания скорости путем уменьшения тангажа в наборе высоты, то, как правило, это заканчивается выходом за ограничения по максимальной скорости.

Кроме случаев полной закупорки возможна частичная закупорка или разгерметизация трубопроводов. При этом распознать отказ может быть значительно сложнее. Ключевым моментом является распознание систем и приборов, не затронутых отказом и завершение полета с их помощью. Если есть индикация угла атаки – пилотировать внутри зеленого сектора, если нет – установить тангаж и обороты двигателей N1 в соответствие с режимом полета по таблицам Unrelaible airspeed в QRH. По возможности выйти из облаков. Попросить помощь у службы движения, учитывая, что они могут иметь неправильную информацию о вашей высоте полета. Не доверять приборам, показания которых были под подозрением, но в данный момент, кажется, работают правильно.

Как правило, надежная информация в этом случае: инерциальная система (положение в пространстве и путевая скорость), обороты двигателей, радиовысотомер, срабатывание stick shaker (приближение к сваливанию), срабатывание EGPWS (опасное сближение с землей).

На графике показана потребная тяга двигателя (сила сопротивления самолета) в горизонтальном полете на уровне моря в стандартной атмосфере. Тяга указана в тысячах фунтов, а скорость – в узлах.

Взлет самолета

Траектория взлета простирается от точки старта до набора высоты 1500 футов, или окончания уборки закрылков с достижением скорости V F T O (final takeoff speed), какая из этих точек выше.

Максимальный взлетный вес самолета ограничивается следующими условиями:

  1. Максимально-допустимой энергией, поглощаемой тормозами, в случае прерванного взлета .
  2. Минимально-допустимым градиентом набора высоты.
  3. Максимально-допустимым временем работы двигателя на взлетном режиме (5 минут), в случае продолженного взлета для набора необходимой высоты и разгона для уборки механизации.
  4. Располагаемой дистанцией взлета.
  5. Максимально-допустимой сертифицированной взлетной массой.
  6. Минимально-допустимой высотой пролета над препятствиями.
  7. Максимально-допустимой путевой скоростью отрыва от ВПП (по прочности пневматиков). Обычно 225 узлов, но возможно 195 узлов. Эта скорость написана прямо на пневматиках .
  8. Минимальной эволютивной скоростью разбега; V M C G (minimum control speed on the ground)

Минимально-допустимый градиент набора высоты

В соответствии с нормами летной годности FAR 25 (Federal Aviation Regulations) градиент нормируется по трем сегментам:

  1. С выпущенными шасси , закрылки во взлетном положении - градиент должен быть более нуля.
  2. После уборки шасси, закрылки во взлетном положении - минимальный градиент 2,4 %. Взлетный вес ограничивается, как правило, выполнением данного требования.
  3. В крейсерской конфигурации - минимальный градиент 1,2 %.

Дистанция взлета

В располагаемую дистанцию взлета (takeoff field length) входит рабочая длина взлетно-посадочной полосы с учетом концевой полосы безопасности (Stopway) и полосы, свободной от препятствий (Clearway).

Располагаемая дистанция взлета не может быть меньше любой из трех дистанций:

  1. Дистанции продолженного взлета от начала движения до набора высоты условного препятствия (screen height) 35 футов и безопасной скорости V 2 при отказе двигателя на скорости принятия решения V 1 .
  2. Дистанции прерванного взлета , при отказе двигателя на V E F . Где V E F (engine failure) - скорость в момент отказа двигателя, при этом предполагается, что пилот распознает отказ и выполнит первое действие по прекращению взлета на скорости принятия решения V 1 . На сухой ВПП не учитывается влияние реверса работающего двигателя.
  3. Дистанции взлета с нормально работающими двигателями от начала движения до набора высоты условного препятствия 35 футов, умноженной на коэффициент 1,15.

В располагаемую дистанцию взлета входят рабочая длина ВПП и длина концевой полосы безопасности (Stopway).

Длину полосы, свободной от препятствий (Clearway), разрешается прибавлять к располагаемой дистанции взлета, но не более половины воздушного участка траектории взлета от точки отрыва до набора высоты 35 футов и безопасной скорости.

Если мы прибавляем к длине ВПП длину КБП, то мы можем увеличить взлетный вес, при этом скорость принятия решения увеличится, для обеспечения набора высоты 35 футов над концом КБП.

Если мы используем полосу свободную от препятствий, то мы также можем увеличить взлетный вес, но при этом скорость принятия решения уменьшится, поскольку нам необходимо обеспечить остановку самолета в случае прерванного взлета с увеличенным весом в пределах рабочей длины ВПП. В случае продолженного взлета в этом случае самолет наберет высоту 35 футов за пределами ВПП, но над полосой, свободной от препятствий.

Минимально-допустимая высота пролета над препятствиями

Минимально-допустимая высота пролета над препятствиями по «чистой» (net) траектории взлета равна 35 футов.

«Чистая» - это траектория взлета, градиент набора высоты которой уменьшен на 0,8 % по сравнению с реальным градиентом для данных условий.

При построении схемы стандартного выхода из района аэродрома после взлета (SID) закладывается минимальный градиент «чистой» траектории 2,5 %. Таким образом, чтобы выполнить схему выхода, максимальный взлетный вес самолета должен обеспечить градиент набора высоты 2,5 +0,8 = 3,3 %. Некоторые схемы выхода могут требовать более высокого градиента, что требует уменьшения взлетного веса.

Минимальная эволютивная скорость разбега

Это земная индикаторная скорость в ходе разбега, при которой в случае внезапного отказа критического двигателя, возможно сохранять управление самолетом, используя только руль направления (без использования управления передним колесом шасси) и сохранять поперечное управление в такой степени, чтобы удерживать крыло в близком к горизонтальному положении для обеспечения безопасного продолжения взлета. V M C G не зависит от состояния ВПП, поскольку при ее определении не учитывается реакция ВПП на самолет.

В таблице представлена V M C G в узлах для взлета с двигателями с тягой 22К. Где Actual OAT- температура наружного воздуха, а Press ALT- превышение аэродрома в футах. Приписка снизу касается взлета с выключенными отборами воздуха от двигателей (no engine bleeds takeoff), поскольку тяга двигателей возрастает, то возрастает и V M C G .

Actual OAT Press ALT
C 0 2000 4000 6000 8000
40 111 107 103 99 94
30 116 111 107 103 99
20 116 113 111 107 102
10 116 113 111 108 104

For A/C OFF increase V1(MCG) by 2 knots.

Взлет с отказавшим двигателем может быть продолжен лишь в случае, если отказ двигателя произойдет при скорости не менее, чем V M C G .

Взлет с мокрой полосы

При расчете максимально-допустимой взлетной массы, в случае продолженного взлета, используется уменьшенная высота условного препятствия (screen height) 15 футов, вместо 35 футов для сухой ВПП. В связи с этим нельзя в расчет взлетной дистанции включать полосу, свободную от препятствий(Clearway).

В режиме ручного (штурвального) управления пилот наблюдает за рысканием самолета по указателю курсовой системы и воздействует на педали при возникновении колебаний таким образом, чтобы отклонение руля направления противодействовало бы этим колебаниям. Для освобож­дения пилота от решения этой задачи служат демпферы рыскания.

Демпфер рыскания (ДР)- средство автоматического управления, обес­печивающее демпфирование колебаний самолета по рысканию путем от­клонения руля направления при возникновении угловой скорости рыскания.

Простейший демпфер, рыскания реализует следующий закон управле­ния рулем направления: .

Д52р = к„уюу, (6.83)

где Д 8 ^-автоматическое отклонение руля направления от балансировочного поло­жения демпфером рыскания; к№ — передаточный коэффициент по угловой скорости рыскания, показывающий, на какой угол должен отклониться руль направления при изменении угловой скорости рыскания на 1°/с (1 рад/с).

Другими словами, отклонение руля направления демпфером рыскания пропорционально угловой скорости рыскания.

Демпферы рыскания применяются на самолетах с бустерной или элект­родистанционной системой управления, если собственная путевая устой-

чивость самолета неудовлетворительна. Исполнительные устройства серво­приводов демпферов рыскания-рулевые агрегаты включаются в механи­ческую проводку управления по последовательной схеме. Поэтому общее отклонение руля направления от балансировочного положения А6Н равно сумме ручного отклонения руля направления пилотом посредством педалей А5Е и автоматического отклонения руля направления демпфером рыскания:

А5Н = Д5Е + А5£р. (6.84)

Функциональная схема аналогового демпфера рыскания аналогична функциональным схемам демпферов тангажа и крена (рис. 6.9). Отклонение руля направления Д5Е создается пилотом путем перемещения педалей Пна величину Дхн от балансировочного положения. С помощью дифференци­альной качалки осуществляется суммирование этого сигнала с управляю­щим сигналом демпфера рыскания А5ЕР. Рулевой привод руля направления РПЬП формирует отклонение руля направления.

Рис. 6.10. Переходные процессы в контуре угловой скорости рыскания при отклоне­нии пилотом руля направления:

а-свободный самолет; 5-при включенном демпфере рыскания 194

При возникновении угловой скорости рыскания со датчик ДУС выраба­тывает электрический сигнал иш, пропорциональный этой скорости. Вы­числитель В вырабатывает управляющий сигнал ив согласно закону управ­ления (6.83) на вход сумматора С сервопривода руля направления СПЬИ. Сервопривод преобразует этот сигнал в перемещение штока рулевого агрегата руля направления Д8£р.

Влияние демпферов рыскания на путевую устойчивость и управляемость.

Покажем, что с помощью демпфера рыскания улучшается степень путевой

статической устойчивости самолета m При отклонении руля направления демпфером появляется приращение коэффициента момента рыскания

Amy = my"A5;|p = my, k0)coy. (6.85)

Возьмем частную производную выражения (6.85) по угловой ско­рости соу:

Следовательно, при включенном демпфере рыскания:

т. е. степень путевой статической устойчивости самолета с демфером рыскания выше, чем степень собственной путевой статической устойчиво­сти самолета.

Покажем, что с помощью демпфера рыскания улучшается динамическая устойчивость бокового движения. На рис. 6.10, а представлены переходные процессы, возникающие в результате ступенчатого отклонения пилотом руля направления на угол Д5Р. Как видно из графиков рис. 6.10, б, демпфер рыскания уменьшает колебательность переходных процессов по угловой скорости и углу рыскания — уменьшаются период короткопериодических колебаний и время затухания. Так как отклонение руля направления демпфером Д6ДР вычитается из отклонения руля направления пилотом Л8Е, общее отклонение руля направления Л5Н становится меньше. Это приводит к уменьшению установившегося значения угловой скорости рыскания мурст по сравнению с управлением без демпфера, т. е. эффективность управления рулем направления от педалей уменьшается.

Особенности законов управления демпферов рыскания. Разновидностями демпферов рыскания являются демпферы, реализующие следующие законы управления:

Д5ДР = Цюу =кйурюу, (6.89)

Д5ДР = кй—————— соу. (6.90)


В законе управления (6.89) управляющий параметр-угловое ускорение рыскания юу, получаемое дифференцированием в ДУС сигнала юу. Изо­дромный фильтр Т^р/(Т^р + 1) закона управления (6.90) реализуется в вычислителе блока демпфера, например, с помощью КС-цепочки.

Законы управления демпферов рыскания (6.89) и (6.90) позволяют уменьшить неблагоприятное влияние демпфера рыскания на путевую уп­равляемость. Это достигается возвращением штока рулевого агрегата в нейтральное положение, когда юу = 0, т. е. А5“р = 0 при соуруст = сопзі. Поэтому противодействие демпфера пилоту прекращается и расход переме­щения педалей для создания угловой скорости не изменяется. При этом, естественно, ухудшаются характеристики устойчивости.


Кроме уменьшения неблагоприятного влияния на путевую управляе­мость демпферы рыскания с законом управления (6.89) и (6.90) устраняют негативные последствия взаимосвязи движений по рысканию и крену. Так, в установившемся развороте с креном демпфер рыскания с законом управления (6.83) противодействует развороту отклонением руля направле­ния при возникновении угловой скорости cov. Фильтрация постоянной

составляющей этой скорости законами управления (6.89) и (6.90) позволяет держать руль направления в нейтрали при совершении разворота и реа­гировать лишь на колебательность углового движения относительно по­стоянной составляющей скорости разворота.

Для дополнительного демпфирования самолета при заходе на посадку, когда скорость самолету мала и эффективность руля направления снижает­ся, в закон управления (6.52) включается дополнительный демпфирующий сигнал, пропорциональный угловой скорости рыскания,

AS?1 = К, ^ ш, + F™. К®, (6.91)

где Fa3n принимает значение, равное 1 при включении режима автоматического захода на посадку (АЗП) и 0 во всех остальных режимах.

Структурная схема демпфера рыскания, реализующего закон управле­ния (6.91), представлена на рис. 6.11. Таким образом осуществляется демпфирование колебаний по рысканию с помощью системы АБСУ-154.

На малых скоростях полета требуется дополнительное демпфирование самолета по рысканию при вхождении самолета в крен и при отклонении элеронов. Тогда в закон управления (6.90) включаются дополнительные сигналы, пропорциональные углу крена и углу отклонения элеронов, пропущенные через изодромные фильтры с постоянными времени Tf и Т

А5? = кй———- ^—— ray + F3ai[ Ц 1————— у+к5з—————- , (6-92)

Тр+ 1 1 Т, р+1 TS(p+ 1 ‘

где F, aK принимает значение, равное 1 при выпуске закрылков на угол 30° и 0 при убранных закрылках.

Датчиком сигнала, пропорционального углу крена, служит гироверти­каль ГВ. Датчиком сигнала, пропорционального углу отклонения элеронов, служит датчик обратной связи рулевой машины автопилота. Датчиком выпуска закрылков является концевой выключатель КВ8Ш.

Структурная схема демпфера рыскания, реализующего закон управле­ния (6.92), представлена на рис. 6.12. Таким образом осуществляется демпфирование колебаний по рысканию с помощью системы АССУ-86.

Основной характеристикой боковой устойчивости самолета является степень путевой статической устойчивости по углу скольжения щР. Для ее увеличения и демпфирования боковых колебаний самолета в демпфере рыскания необходимо использовать сигнал, пропорциональный угловой скорости скольжения р. Однако создание датчиков такого сигнала затруд­нено, поэтому используют следующую упрощенную зависимость угловой скорости скольжения р от угловых скоростей рыскания и крена в горизон­тальном полете с постоянным углом атаки а0:

р = roycosa0 + caxsma0. (6.93)

Следовательно, для эффективного демпфирования колебаний самолета по углу скольжения необходимо в демпфере рыскания помимо сигнала, пропорционального угловой скорости рыскания, вводить сигнал, пропори циональный угловой скорости крена. Тогда закон управления принимает следующий вид: ‘

Д82р = Ц——— - «у + к*, ®, (6.94)

Передаточный коэффициент kffl корректируется по положению закрыл­ков (принимает большее значение при выпущенных закрылках и уменьша­ется при убранных).

Структурная схема демпфера рыскания, реализующего закон управле­ния (6.95), представлена на рис. 6.13. Так осуществляется демпфирование колебаний по рысканию с помощью демпфера рыскания ДР-62.

Де́мпфер ры́скания - электрогидравлическое устройство, предназначенное для улучшения собственных демпфирующих свойств самолёта в путевом канале рыскания . Включает в себя датчики скорости рыскания и процессор , который подаёт сигнал на исполнительный механизм, подключённый к рулю .

При вращении самолёта относительно нормальной оси киль получает дополнительную скорость движения направленную перпендикулярно вектору скорости самолёта. Благодаря этой дополнительной скорости направление потока воздуха, набегающего на киль , изменяется и возникает дополнительная боковая сила, создающая момент, противодействующий начавшемуся вращению. Этот момент называется демпфирующим , т.к. он появляется только при наличии вращения самолёта. Демпфирование - свойство движущегося тела противодействовать возникающему вращению. Основная причина установки демпфера рыскания на самолёт это предотвращение боковых колебаний типа «голландский шаг » (Dutch roll). Такой вид бокового движения самолёта характеризуется взаимосвязанными колебаниями по крену и скольжению . Причём колебания по скольжению отстают по фазе от колебаний по крену, что связано со слабой путевой и чрезмерной поперечной устойчивостью. Крен самолёта является причиной возникновения скольжения самолёта, устранение которого происходит с запаздыванием из-за слабой путевой устойчивости. Возникшее скольжение провоцирует энергичное кренение самолёта в противоположную сторону из-за повышенной поперечной устойчивости и процесс повторяется. При полёте на большой высоте и малой скорости демпфирование этих колебаний может сильно ухудшиться. На тяжелых самолётах для гашения колебаний используются демпферы рыскания.

На некоторых самолетах установлены автоматы демпфирования по всем трем каналам (демпферы рыскания, тангажа и крена).

Демпфер аэроупругих колебаний

Демпфер аэроупругих колебаний - самостоятельная бортовая электронная система или подсистема в составе системы автоматического управления полётом (САУ), предназначенная для автоматического гашения короткопериодических колебаний самолёта, неизбежно возникающих при изменениях полётных режимов и, что особенно важно, для предотвращения непроизвольной раскачки самолёта лётчиком, что может привести к значительным перегрузкам и разрушению конструкции. В техническом плане состоит из группы гироскопических датчиков, контролирующих угловые перемещения самолёта в пространстве, электронной схемы обработки и усиления сигналов демпфирования и исполнительных агрегатов, включённых последовательно в механическую проводку управления, либо эти сигналы подмешиваются к другим сигналам управления САУ.

См. также

Напишите отзыв о статье "Демпфер рыскания"

Ссылки

  • . aviacom.ucoz.ru

Отрывок, характеризующий Демпфер рыскания

На лице у меня, конечно же, написано этого не было, но я бы многое отдала, чтобы узнать, откуда она так уверенно всегда всё знала, когда дело касалось меня?
Через несколько минут мы уже дружно топали по направлению к лесу, увлечённо болтая о самых разнообразных и невероятных историях, которых она, естественно, знала намного больше, чем я, и это была одна из причин, почему я так любила с ней гулять.
Мы были только вдвоём, и не надо было опасаться, что кто-то подслушает и кому-то может быть не понравится то, о чём мы говорим.
Бабушка очень легко принимала все мои странности, и никогда ничего не боялась; а иногда, если видела, что я полностью в чём-то «потерялась», она давала мне советы, помогавшие выбраться из той или иной нежелательной ситуации, но чаще всего просто наблюдала, как я реагирую на, уже ставшие постоянными, жизненные сложности, без конца попадавшиеся на моём «шипастом» пути. В последнее время мне стало казаться, что бабушка только и ждёт когда попадётся что-нибудь новенькое, чтобы посмотреть, повзрослела ли я хотя бы на пяту, или всё ещё «варюсь» в своём «счастливом детстве», никак не желая вылезти из коротенькой детской рубашонки. Но даже за такое её «жестокое» поведение я очень её любила и старалась пользоваться каждым удобным моментом, чтобы как можно чаще проводить с ней время вдвоём.
Лес встретил нас приветливым шелестом золотой осенней листвы. Погода была великолепная, и можно было надеяться, что моя новая знакомая по «счастливой случайности» тоже окажется там.
Я нарвала маленький букет каких-то, ещё оставшихся, скромных осенних цветов, и через несколько минут мы уже находились рядом с кладбищем, у ворот которого... на том же месте сидела та же самая миниатюрная милая старушка...
– А я уже думала вас не дождусь! – радостно поздоровалась она.
У меня буквально «челюсть отвисла» от такой неожиданности, и в тот момент я видимо выглядела довольно глупо, так как старушка, весело рассмеявшись, подошла к нам и ласково потрепала меня по щеке.
– Ну, ты иди, милая, Стелла уже заждалась тебя. А мы тут малость посидим...
Я не успела даже спросить, как же я попаду к той же самой Стелле, как всё опять куда-то исчезло, и я оказалась в уже привычном, сверкающем и переливающемся всеми цветами радуги мире буйной Стеллиной фантазии и, не успев получше осмотреться, тут же услышала восторженный голосок:
– Ой, как хорошо, что ты пришла! А я ждала, ждала!..
Девчушка вихрем подлетела ко мне и шлёпнула мне прямо на руки... маленького красного «дракончика»... Я отпрянула от неожиданности, но тут же весело рассмеялась, потому что это было самое забавное и смешное на свете существо!..
«Дракончик», если можно его так назвать, выпучил своё нежное розовое пузо и угрожающе на меня зашипел, видимо сильно надеясь таким образом меня напугать. Но, когда увидел, что пугаться тут никто не собирается, преспокойно устроился у меня на коленях и начал мирно посапывать, показывая какой он хороший и как сильно его надо любить...