Генератор импульсных токов. Высоковольтные генераторы с индуктивными накопителями энергии Генератор мощных импульсов тока схемы

В данной статье поговорим про импульсный генератор для ячейки Мэйера.

Изучая элементную базу электронных плат, на которых были собраны все устройства входящие в состав сложной установки, применяемой Мэйером в водородном генераторе, установленном им на автомобиль, я собрал «главную часть» устройства – импульсный генератор.

Все электронные платы выполняют в Ячейке определённые задачи.

Электронная часть мобильной установки генератора водорода Мэйера состоит из двух полноценных устройств, оформленных в виде двух независимых блоков. Это блок управления и контроля ячейки, вырабатывающей кислородно-водородную смесь и блок управления и контроля за подачей этой смеси в цилиндры двигателя внутреннего сгорания. Фотография первого представлена ниже.

Блок управления и контроля за работой ячейки состоит из устройства вторичного питания обеспечивающего все платы модуля энергией и одиннадцати модулей – плат, состоящих из генераторов импульсов, схем контроля и управления. В этом же блоке, за платами импульсных генераторов находятся импульсные трансформаторы. Один из одиннадцати комплектов: плата импульсного генератора и импульсного трансформатора используется конкретно только для одной пары трубок Ячейки. А поскольку пар трубок одиннадцать, то и генераторов тоже одиннадцать.

.

Судя по фотографиям, импульсный генератор собран на простейшей элементной базе цифровых логических элементов. Принципиальные схемы, публикуемые на различных сайтах, посвящённых Ячейке Мэйера, по принципу работы не так далеки от её оригинала, за исключением одного – они упрощены и работают бесконтрольно. Другими словами, импульсы подаются на трубки-электроды до той поры, пока не наступит «пауза», которую по своему усмотрению оперативно с помощью регулировки устанавливает конструктор схемы. У Мэйера «пауза» формируется только тогда, когда сама Ячейка, состоящая из двух трубок, сообщит что пора бы эту паузу сделать. Имеется регулировка чувствительности схемы контроля, уровень которой устанавливается оперативно с помощью регулировки. Кроме того, имеется оперативная регулировка длительности «паузы» — времени, в течение которого на ячейку не поступают импульсы. В схеме генератора Мэйера предусмотрена автоматическая регулировка «паузы» в зависимости от необходимости количества вырабатываемого газа. Эта регулировка осуществляется по сигналу, поступающему от блок управления и контроля за подачей топливной смеси в цилиндры ДВС. Чем быстрее вращается двигатель внутреннего сгорания, тем больше расход кислородно-водородной смеси и тем короче «пауза» у всех одиннадцати генераторов.

На переднюю панель генератора Мэйера выведены шлицы подстроечных резисторов осуществляющих регулировку частоты импульсов, длительности паузы между пачками импульсов и ручной установки уровня чувствительности схемы контроля.

Для репликации опытного импульсного генератора нет необходимости в автоматическом контроле потребности газа и автоматическом регулировании «паузы». Это упрощает электронную схему импульсного генератора. Кроме того, современная электронная база более развита, чем была 30 лет назад, поэтому при наличии более современных микросхем, нет смысла использовать простейшие логические элементы, которые ранее использовал Мэйер.

В настоящей статье публикуется схема импульсного генератора, собранного мной, воссоздающего принцип работы генератора ячейки Мэйера. Это не первая моя конструкция импульсного генератора, до неё было ещё две более сложных схемы, способных генерировать импульсы различной формы, с амплитудной, частотной и временной модуляцией, схемами контроля тока нагрузки в цепях трансформатора и самой Ячейки, схемами стабилизации амплитуд импульсов и формы выходного напряжения на Ячейке. В результате исключения, по моему мнению «ненужных» функций получилась простейшая схема, очень похожая на схемы, публикуемые на различных сайтах, но отличающаяся от них наличием схемы контроля тока Ячейки.

Как и в других публикуемых схемах, в ячейке имеются два генератора. Первый является генератором – модулятором, формирующим пачки импульсов, а второй генератором импульсов. Особенностью схемы является то, что первый генератор — модулятор работает не в режиме автогенератора, как у других разработчиков схем Ячейки Мейера, а в режиме ждущего генератора. Модулятор работает по следующему принципу: На начальном этапе он разрешает работу генератора, а по достижении непосредственно на пластинах Ячейки определённой амплитуды тока, происходит запрет генерации.

В мобильной установке Мэйера в качестве импульсного трансформатора используется тонкий сердечник, а количество витков всех обмоток огромное. Ни в одном патенте не указаны ни размеры сердечника, ни количество витков. В стационарной установке у Мэйера замкнутый торроид с известными размерами и количеством витков. Именно его и решено было использовать. Но поскольку тратить энергию впустую на намагничивание в однотактной схеме генератора это – расточительство, было решено использовать трансформатор с зазором, взяв за основу ферритовый сердечник от строчного трансформатора ТВС-90 применяемого в транзисторных чёрно-белых телевизорах. Он наиболее подходит под параметры, указанные в патентах Мэйера для стационарной установки.

Принципиальная электрическая схема Ячейки Мэйера в моём исполнении представлена на рисунке.

.

Никакой сложности в конструкции генератора импульсов нет. Он собран на банальных микросхемах – таймерах LM555. По причине того, что генератор экспериментальный и неизвестно какие токи нагрузки нас могут ожидать, для надёжности в качестве выходного транзистора VT3 используется IRF.

Когда ток Ячейки достигнет определённого порога, при котором происходит разрыв молекул воды, необходимо сделать паузу в подаче импульсов на Ячейку. Для этого служит кремниевый транзистор VT1 — КТ315Б, который запрещает работу генератора. Резистор R13 «Ток срыва генерации» предназначен для установки чувствительности схемы контроля.

Переключатель S1 «Длительность грубо» и резистор R2 «Длительность точно» являются оперативными регулировками длительности паузы между пачками импульсов.

В соответствии с патентами Мэйера трансформатор имеет две обмотки: первичная содержит 100 витков (для 13 вольт питания) провода ПЭВ-2 диаметром 0,51 мм, вторичная содержит 600 витков провода ПЭВ-2 диаметром 0,18 мм.

При указанных параметрах трансформатора оптимальная частота следования импульсов – 10 кГц. Катушка индуктивности L1 намотана на картонной оправке диаметром 25 мм, и содержит 100 витков провода ПЭВ-2 диаметром 0,51 мм.

Теперь, когда вы всё это «проглотили», произведём разбор полётов этой схемы. С данной схемой я не применял дополнительных схем повышающих выход газа, потому что в мобильной Ячейке Мэйера их не наблюдается, конечно не считая лазерной стимуляции. Или я забыл сходить со своей Ячейкой к «бабке – шептунье», чтобы она нашептала высокую производительность Ячейки, или не правильно выбрал трансформатор, но КПД установки получился очень низкий, а сам трансформатор сильно нагревался. Учитывая, что сопротивление воды мало, сама Ячейка не способна выступать в качестве накопительного конденсатора. Ячейка просто не работала по тому «сценарию» который описывал Мэйер. Поэтому я добавил в схему дополнительный конденсатор С11. Только в этом случае на осциллограмме выходного напряжения появилась форма сигнала, с выраженным процессом накопления. Почему я поставил его не параллельно Ячейке, а через дроссель? Схема контроля тока ячейки должна отслеживать резкое повышение этого тока, а конденсатор будет препятствовать этому своим зарядом. Катушка уменьшает влияние С11 на схему контроля.

Я использовал простую воду из под крана, использовал и свежее дистиллированную. Как я только не извращался, но затраты энергии при фиксированной производительности были в три — четыре раза выше, чем напрямую от аккумулятора через ограничительный резистор. Сопротивление воды в ячейке настолько мало, что повышение импульсного напряжения трансформатором, с лёгкостью гасилось на малом сопротивлении, заставляя магнитопровод трансформатора сильно нагреваться. Возможно, предположить, что вся причина в том, что я использовал трансформатор на феррите, а в мобильной версии Ячейки Мэйера стоят трансформаторы, у которых сердечник почти отсутствует. Он больше выполняет функцию каркаса. Не трудно понять, что Мэйер компенсировал малую толщину сердечника большим количеством витков, тем самым увеличив индуктивность обмоток. Но сопротивление воды от этого не увеличится, поэтому и напряжение, о котором пишет Мэйер, не поднимется до описываемого в патентах значения.

С целью повышения КПД я решил «выкинуть» из схемы трансформатор, на котором происходит потеря энергии. Принципиальная электрическая схема Ячейки Мэйера без трансформатора представлена на рисунке.

.

Так как индуктивность катушки L1 очень маленькая, я так же исключил её из схемы. И «о чудо» установка стала выдавать сравнительно высокий КПД. Я провёл эксперименты и пришел к выводу, что на заданный объём газа установка затрачивает ту же самую энергию, что и при электролизе постоянным током, плюс-минус погрешность измерений. То есть я наконец собрал установку, в которой не происходит потерь энергии. Но зачем она нужна, если напрямую от аккумулятора точно такие же затраты энергии?

Завершение

Завершим тему очень маленького сопротивления воды. Сама Ячейка не способна работать в качестве накопительного конденсатора потому, что вода, которая выступает в качестве диэлектрика конденсатора, быть им не может – она проводит ток. Для того, чтобы над ней совершался процесс электролиза – разложения на кислород и водород, она должна быть проводящей. Получается неразрешимое противоречие, которое возможно разрешить только по одному пути: Отказаться от версии «Ячейка-конденсатор». Накопления в Ячейке подобно конденсатору происходить не может, это Миф! Если учитывать площадь обкладок конденсатора образованного поверхностями трубок, то даже при воздушном диэлектрике ёмкость ничтожно мала, а здесь в качестве диэлектрика выступает вода со своим малым активным сопротивлением. Не верите? Возьмите учебник физики и посчитайте ёмкость.

Можно предположить, что накопление происходит на катушке L1, но этого также не может быть по той причине, что её индуктивность также очень мала для частоты порядка 10 кГц. Индуктивность трансформатора на несколько порядков выше. Можно даже задуматься над тем, зачем её с малой индуктивностью вообще «воткнули» в схему.

Послесловие

Кто-то скажет, что всё чудо в бифилярной намотке. В том виде, в каком она представлена в патентах Мэйером, толку от неё не будет. Бифилярная намотка применяется в защитных фильтрах питания, не одного и того же проводника, а противоположных по фазе и предназначена для подавления высоких частот. Она даже имеется во всех без исключения блоках питания компьютеров и ноутбуков. А для одного и того же проводника, бифилярная намотка делается в проволочном резисторе, для подавления индуктивных свойств самого резистора. Бифилярная намотка может использоваться в качестве фильтра, защищающего выходной транзистор, не пропускающего мощные СВЧ-импульсы в схему генератора, подаваемые от источника этих импульсов непосредственно на Ячейку. Кстати и катушка L1 является отличным фильтром для СВЧ. Первая схема импульсного генератора, которая использует повышающий трансформатор – правильная, только чего-то не хватает между транзистором VT3 и самой Ячейкой. Этому я посвящу следующую статью.

Mitchell Lee

LT Journal of Analog Innovation

Источники импульсов с крутыми фронтами, имитирующие ступенчатую функцию, часто оказываются полезными при выполнении тех или иных лабораторных измерений. Например, если крутизна фронтов имеет порядок 1…2 нс, можно оценить время нарастания сигнала в кабеле RG-58/U или любом другом, взяв отрезок длиной всего 3…6 м. Рабочая лошадка многих лабораторий - вездесущий генератор импульсов HP8012B - не дотягивает до 5 нс, что недостаточно быстро для решения подобной задачи. Между тем, времена нарастания и спада выходных сигналов драйверов затворов некоторых контроллеров импульсных регуляторов могут быть менее 2 нс, что делает эти устройства потенциально идеальными источниками импульсов.

На Рисунке 1 показана простая схема реализации этой идеи, основанная на использовании контроллера обратноходового преобразователя , работающего на фиксированной частоте переключения. Собственная рабочая частота контроллера равна 200 кГц. Подача части выходного сигнала на вывод SENSE заставляет устройство работать с минимальным коэффициентом заполнения, формируя выходные импульсы длительностью 300 нс. Немаловажное значение для этой схемы имеет развязка питания, поскольку выходной ток, отдаваемый в нагрузку 50 Ом, превышает 180 мА. Элементы развязки 10 мкФ и 200 Ом минимизируют искажения вершины импульса без ущерба для крутизны фронтов.

Выход схемы подключается непосредственно к согласованной нагрузке 50 Ом, обеспечивая на ней размах сигнала около 9 В. В случае, когда первостепенное значение имеет качество импульсов, рекомендуется подавлять сигнал тройного прохождения, поглощая отражения от кабеля и удаленной нагрузки с помощью показанного на схеме последовательного согласования. Последовательное согласование, то есть, согласование на передающей стороне, оказывается полезным также тогда, когда схема работает на пассивные фильтры и иные аттенюаторы, рассчитанные на определенный импеданс источника сигнала. Выходной импеданс микросхемы LTC3803 равен примерно 1.5 Ом, что следует принимать во внимание при выборе сопротивления последовательного согласующего резистора. Последовательное согласование работает хорошо до импедансов, по меньшей мере, 2 кОм, выше которых становится трудно обеспечивать необходимую полосу пропускания в точке соединения резистора и схемы, что приводит к ухудшению качества импульсов.

В системе с последовательным согласованием выходной сигнал имеет следующие характеристики:

  • амплитуда импульсов - 4.5 В;
  • времена нарастания и спада одинаковы, и равны 1.5 нс;
  • искажение плоской вершины импульса - менее 10%;
  • спад вершины импульса - менее 5%.

При непосредственном подключении нагрузки 50 Ом времена нарастания и спада не ухудшаются. Для того, чтобы получить импульсы наилучшей формы, конденсатор 10 мкФ подключите как можно ближе к выводам V CC и GND микросхемы LTC3803, а выход соедините прямо с согласующим резистором, используя полосковую технологию. Волновое сопротивление, примерно равное 50 Ом, имеет печатный проводник шириной 2.5 мм на двухсторонней печатной плате толщиной 1.6 мм.

Материалы по теме

PMIC; преобразователь DC/DC; Uвх:5,7÷75В; Uвых:5,7÷75В; TSOT23-6

Поставщик Производитель Наименование Цена
ЭИК Linear Technology LTC3803ES6-5#TRMPBF 85 руб.
Триема Linear Technology LTC3803ES6#PBF 93 руб.
LifeElectronics LTC3803ES6-3 по запросу
ЭлектроПласт- Екатеринбург Linear Technology LTC3803HS6#PBF по запросу
  • Linear Technology вообще топовая фирма! Очень-очень жаль что их сожрала ширпотребовская Analog Devices. Ничего хорошего от этого не жди. Встречал я раньше статью англоязычного радиолюбителя. Он собрал генератор очень коротких импульсов шириной в единицы наносекунд и временами нарастания/спада в пикосекундах. На очень скоростном компараторе. Жаль не сохранил статью. И найти теперь никак не могу. Называлась что-то вроде "...real ultrafast comparator...", но как-то не так, не гуглится. Название компаратора забыл, и фирму его не помню. Компаратор на ebay тогда находил, около 500 руб стоил, в принципе бюджетно для действительно достойного прибора. У Linear Tecnology есть очень интересные микросхемки. Например LTC6957: время нарастания/спада 180/160 пс. Обалденно! Но сам построить измерительный прибор на подобной микрухе я вряд ли смогу.
  • Случаем не это на LT1721? Перестраиваемый 0-10нс.

Задачей расчета являетсяопределение структуры электрической схемы, выбор элементной базы, определение параметров электрической схемы генераторов импульсов.

Исходные данные:

· вид технологического процесса и его характеристики;

· конструктивное использование разрядной цепи;

· характеристики напряжения питания;

· параметры электрического импульса и др.

Последовательность расчета:

Последовательность расчета зависит от структуры электрической схемы генератора, которая состоит полностью или частично из следующих элементов: источник постоянного (переменного) напряжения, автогенератор, выпрямитель, разрядная цепь, высоковольтный трансформатор, нагрузка (рис.2.14).

· расчет преобразователя напряжения (рис. 2.15, а);

· расчет собственно генератора импульсов (рис. 2.16).


2.14. Полная структурная схема генератора импульсов: 1 – источник напряжения; 2 – автогенератор; 3 – выпрямитель; 4 – сглаживающий фильтр; 5 – разрядная цепь с высоковольтным трансформатором; 6 – нагрузка.

Расчет преобразователя (рис. 2.15 а). Напряжение питания U n =12В постоянного тока. Выбираем выходное напряжение преобразователя U 0 = 300В при токе нагрузки J 0 = 0,001 А, выходная мощность P 0 =0,3 Вт, частота f 0 =400Гц.

Выходное напряжение преобразователя выбираем из условий повышения стабильности частоты генератора и для получения хорошей линейности выходных импульсов напряжения, т. е. U n >>U вкл.тир, обычно U n =2U вкл.тир.

Частота выходного напряжения задается из условий оптимальной работоспособности задающего генератора преобразователя напряжения.

Величины Р 0 и U 0 позволяют использовать в схеме генератора динистор VS серии KY102.

В качестве транзистора VT используем МП26Б, для которого предельные режимы следующие: U кбм = 70В, I КМ = 0,4А, I бм = 0,015А, U кбм = 1В.

Сердечник трансформатора предлагаем выполненным из электротехнической стали. Принимаем В М = 0,7Тл, η = 0,75, 25с.

Проверяем пригодность выполняемого трансформатора для работы в схеме преобразователя по условиям:

U кбм ≥2,5U n ; I км ≥1,2I кн; I бм ≥1,2I бн. (2.77)

Ток коллектора транзистора

Ток коллектора максимальный:

Согласно выходным коллекторным характеристикам транзистора МП26Б для данного коллекторного тока β ст =30, поэтому ток насыщения базы

А.

Ток базы:

I бм =1,2·0,003=0,0036А.

Следовательно, транзистор МП26Б по условию (2.78) пригоден для проектируемой схемы.

Сопротивление резисторов в цепи делителя напряжения:

Ом,; (2.79)

Ом.

Принимаем ближайшие стандартные значения сопротивлений резисторов R 1 =13000 Ом, R 2 =110 Ом.

Резистором R в цепи базы транзистора регулируют выходную мощность генератора, его сопротивление принимают 0,5…1 кОм.

Сечение сердечника трансформатора ТV1:



Рис 2.15. Принципиальная электрическая схема генератора импульсов: а – преобразователь;

б – генератор импульсов

Выбираем сердечник Ш8×8, для которого S c =0,52·10 -4 м2 .

Количество витков в обмотках трансформатора TV1:

Вит.; (2.81)

вит.; (2.82)

вит. (2.83)

Емкость конденсатора фильтра VC1:

Диаметр проводов обмоток трансформатора TV1:

Выбираем стандартные диаметры проводов d 1 =0,2 мм, d 2 = мм, d 3 =0,12 мм.

С учетом толщины эмаль изоляции d 1 =0,23 мм, d 2 = 0,08мм, d 3 =0,145 мм.



Рис. 2.16. Расчетная схема генератора импульсов

Расчет генераторов импульсов (рис. 2.16)

Принимаем напряжение на входе генератора равным напряжению на вы­ходе преобразователя U 0 = 300 В. Частота импульсов f =1…2 Гц. Амплитуда на­пряжения импульса не более 10 кВ. Количество электричества в импульсе не более 0,003 Кл. Длительность импульса до 0,1 с.

Выбираем диод VD типа Д226Б (U обр = 400 В, I пр = 0,3 А, U пр = 1 В) и тири­стор типа КН102И (U вкл =150 В, I пр т =0,2 А, U пр =1,5 В, I вкл =0,005 А, I выкл = 0,015 А, τ вкл = 0,5·10 -6 с τ выкл = 40·10 -6 с).

Прямое сопротивление постоянному току диода R д.пр = 3,3 Ом и тиристора R т.пр = 7,5 Ом.

Период повторения импульсов для заданного диапазона частот:

. (2.86)

Сопротивление зарядной цепи R 3 должно быть таким, чтобы

Ом. (2.88)

Тогда R 3 =R 1 +R д.пр =20·10 3 +3,3=20003,3 Ом.

Ток заряда:

А. (2.89)

Резистор R 2 ограничивает ток разряда до безопасной величины. Его сопротивление:

Ом, (2.90)

где U p – напряжение на зарядном конденсаторе VC2 в начале разряда, его величина равна U выкл. При этом должно соблюдаться условие R 1 >>R 2 (20·10 3 >>750).

Сопротивление разрядной цепи:

R p =R 2 R т. пр =750+7,5=757,5 Ом.

Условия устойчивого включения (2.91, 2.92) выполняются.

, , (2.91)

, . (2.92)

Емкость конденсатора VC2:

. (2.93)

Емкость VC2 для частоты f=1 Гц:

Ф

И для частоты 2 Гц:

С 2 =36·10 -6 Ф.

Амплитуда тока в цепи заряда конденсатора VC2

, (2.94)

Амплитуда тока в цепи заряда конденсатора VC2:

, (2.95)

Энергия импульса:

Дж. (2.96)

Максимальное количество электричества в импульсе:

q м =I p τ p =I p R p C 2 =0,064·757,5·72·10 -6 =0,003 Кл (2.97)

не превышает заданное значение.

Рассчитаем параметры выходного трансформатора TV2.

Расчетная мощность трансформатора:

Вт, (2.98)

где η т = 0,7…0,8 – КПД маломощного трансформатора.

Площадь сечения сердечника трансформатора:

Количество витков каждой обмотки трансформатора, приходящееся на

вит/В. (2.100)

Количество витков в обмотках трансформатора TV2:

W 4 =150 N=150·16,7=2505 вит.; (2.101)

W 5 =10000·16,7=167·10 3 вит.

Диаметр проводов в обмотках (2.85):

мм;

мм.

Выбираем стандартные диаметры проводов с эмалированной изоляцией d 4 =0,2 мм, d 5 =0,04 мм.

Пример. Определить напряжение и токи в схеме рис. 2.16.

Дано: U с = 300 В переменного тока 400 Гц, С = 36·10 -6 Ф, R д.пр = 10 Ом, R т.пр =2,3 Ом, L w =50 мГн, R 1 =20 кОм, R 2 =750 Ом.

Напряжение на конденсаторе в момент заряда:

, (2.102)

где τ ст = 2·10 4 ·36·10 -6 =0,72 с.

Полное сопротивление цепи заряда емкости VC2:

Ток заряда равен:

А.

В один прекрасный день мне понадобился срочно генератор прямоугольных импульсов со следующими характеристиками:

--- Питание: 5-12в


---
Частота: 5Гц-1кГц.


---
Амплитуда выходных импульсов не менее 10в


--- Ток: около 100мА.

За основу был взят мультивибратор, он реализован на трех логических элементах микросхемы 2И-НЕ. Принцип которого при желании можно прочитать в Википедии. Но генератор сам по себе дает инверсный сигнал, что подтолкнуло меня применить инвертор (это 4-й элемент). Теперь мультивибратор дает нам импульсы положительного тока. Однако у мультивибратора нет возможности регулирования скважности. Она у него автоматически выставляется 50%. И тут меня осенило поставить ждущий мультивибратор реализованный на двух таких же элементах (5,6), благодаря которому появилась возможность регулировать скважность. Принципиальная схема на рисунке:

Естественно, предел указанный в моих требованиях не критичен. Все зависит от параметров С4 и R3 – где резистором можно плавно изменять длительность импульса. Принцип работы так же можно прочитать в википедии. Далее: для высокой нагрузочной способности был установлен эммитерный повторитель на транзисторе VT-1. транзистор применен самый распостранненый типа КТ315. резисторов R6 служит для ограничения выходного тока и зашита от перегорания транзистора в случае КЗ.

Микросхемы можно применять как ТТЛ, так и КМОП. В случае применения ТТЛ сопротивление R3 не более 2к. потому что: входное сопротивление этой серии приблизительно равно 2к. лично я использовал КМОП К561ЛА7 (она же CD4011) – два корпуса питание до 15в.

Отличный вариант для использования как ЗГ для какого ни будь преобразователя. Для использования генератора среди ТТЛ – подходят К155ЛА3, К155ЛА8 у последней коллекторы открыты и на выхода нужно вешать резисторы номиналом 1к.

Генератор импульсов тока (ГИТ) предназначен для формиро­вания многократно повторяющихся импульсов тока, воспроизво­дящих электрогидравлический эффект. Принципиальные схемы ГИТ были предложены еще в 1950-х годах и за истекшие годы не претерпели существенных изменений, однако значитель­но усовершенствовались их комплектующее оборудование и уро­вень автоматизации. Современные ГИТ предназначены для работы в широком диапазоне напряжения (5-100 кВ), емкости конден­сатора (0,1 -10000 мкФ), запасенной энергии накопителя (10-106 Дж), частоты следования импульсов (0,1 -100 Гц).

Приведенные параметры охватывают большую часть режимов, в которых работают электрогидравлические установки различного назначения.

Выбор схемы ГИТ определяется в соответствии с назначением конкретных электрогидравлических устройств. Каждая схема ге­нератора включает в себя следующие основные блоки: блок питания - трансформатор с выпрямителем; накопитель энер­гии - конденсатор; коммутирующее устройство - формирующий (воздушный) промежуток; нагрузка - рабочий искровой про­межуток. Кроме того, схемы ГИТ включают в себя токоограни­чивающий элемент (это может быть сопротивление, емкость, индуктивность или их комбинированные сочетания). В схемах ГИТ может быть несколько формирующих и рабочих искровых про­межутков и накопителей энергии. Питание ГИТ осуществляется, как правило, от сети переменного тока промышленной частоты и напряжения.

ГИТ работает следующим образом. Электрическая энергия через токоограничивающий элемент и блок питания поступает в накопитель энергии - конденсатор. Запасенная в конденсаторе энергия с помощью коммутирующего устройства - воздушного формирующего промежутка - импульсно передается на рабочий промежуток в жидкости (или другой среде), на котором происхо­дит выделение электрической энергии накопителя, в результате чего возникает электрогидравлический удар. При этом форма и длительность импульса тока, проходящего по разрядной цепи ГИТ, зависят как от параметров зарядного контура, так и от па­раметров разрядного контура, включая и рабочий искровой про­межуток. Если для одиночных импульсов специальных ГИТ пара­метры цепи зарядного контура (блока питания) не оказывают существенного влияния на общие энергет-ические показатели электрогидравлических установок различного назначения, то в промышленных ГИТ КПД зарядного контура существенно влияет на КПД электрогидравлической установки.

Использование в схемах ГИТ реактивных токоограничивающих элементов обусловлено их свойством накапливать и затем отдавать энергию в электрическую цепь, что в конечном счете повы­шает КПД.

Электрический КПД зарядного контура простой и надежной в эксплуатации схе{ды ГИТ с ограничивающим активным зарядным сопротивлением (рис. 3.1, а) весьма низок (30-35 %), так как заряд конденсаторов осуществляется в ней пульсирующими напря­жением и током. Введением в схему специальных регуляторов напряжения (магнитного усилителя, дросселя насыщения) можно добиться линейного изменения вольт-амперной характеристики заряда емкостного накопителя и тем самым создать условия, при которых потери энергии в зарядной цепи будут минимальны, а общий КПД ГИТ может быть доведен до 90 % .

Для увеличения общей мощности при использовании простей­шей схемы ГИТ кроме возможного применения более мощного трансформатора целесообразно иногда использовать ГИТ, имеющий три однофазных трансформатора, первичные цепи ко­торых соединены «звездой» или «треугольником» и питаются от трехфазной сети. Напряжение с их вторичных обмоток подается на отдельные конденсаторы, которые работают через вращающий­ся формирующий -промежуток на один общий рабочий искровой промежуток в жидкости (рис. 3.1, б) [-|] . .4

При проектировании и разработке ГИТ электрогидравлических установок значительный интерес представляет использование резонансного режима заряда емкостного накопителя от источника переменного тока без выпрямителя. ОбгЦий электрический КПД резонансных схем очень высок (до 95 %), а при их использова­нии происходит автоматическое значительное повышение рабо­чего напряжения. Резонансные схемы целесообразно использо­вать при работе на больших частотах (до 100 Гц), но для этого требуются специальные конденсаторы, предназначенные для работы на переменном токе. При использовании этих схем необходимо соблюдать известное условие резонанса

Ш = 1 /л[ГС,

Где со-частота вынуждающей ЭДС; Ь-индуктивность контура; С- емкость контура.

Однофазный резонансный ГИТ (рис. 3.1, в) может иметь общий электрический КПД, превышающий 90%. ГИТ позволяет получать стабильную частоту чередования разрядов, оптимально равную либо однократной, либо двукратной частоте питающего тока (т. е. 50 и 100 Гц соответственно) при питании током про­мышленной частоты. Применение схемы наиболее рационально (. при мощности питающего трансформатора 15-30 кВт. В разряд­ный контур схемы вводится синхронизатор - воздушный форми­рующий промежуток, между шарами которого расположен вра-

Щающийся диск с контактом, вызывающим срабатывание форми­рующего промежутка при проходе контакта между шарами. При этом вращение диска синхронизируется с моментами пиков напряжения .

Схема трехфазного резонансного ГИТ (рис. 3.1,г) включает" в себя трехфазный повышающий трансформатор, каждая обмотка на высокой стороне которого работает как однофазная резонан­сная схема н^ один общий для всех или на три самостоятель­ных рабочих искровых промежутка при общем синхронизаторе на три формирующих промежутка. Эта схема позволяет получать частоту чередования разрядов, равную трехкратной или шести­кратной частоте питающего тока (т. е. 150 или 300 Гц соответ­ственно) при работе на промышленной частоте. Схема рекомен­дуется для работы на мощностях ГИТ 50 кВт и более. Трехфазная схема ГИТ экономичнее, так как время зарядки емкостного на­копителя (той же мощности) меньше, чем при использовании одно­фазной схемы ГИТ. Однако дальнейшее увеличение мощности выпрямителя будет целесообразно" только до определенного предела .

Повысить экономичность процесса заряда емкостного накопи­теля ГИТ можно путем использования различных схем с фильтро­вой емкостью. Схема ГИТ с фильтровой емкостью и индуктив­ной зарядной цепью рабочей емкости (рис. 3.1, (3) позволяет по­лучать, практически любую частоту чередования импульсов при работе на небольших (до 0,1 ^мкФ) емкостях и имеет общий электрический КПД - около 85 %. Это достигается тем, что филь­тровая емкость работает в режиме неполной разрядки (до 20 %), а рабочая емкость заряжается через индуктивную цепь - дрос­сель с малым активным сопротивлением - в течение одного полу- периода в колебательном режиме, задаваемым вращением диска на первом формирующем. промежутке. При этом фильтровая емкость превышает рабочую в 15-20 раз .

Вращающиеся диски формирующих искровых промежутков сидят на одном валу и поэтому частоту чередования разрядов можно варьировать в очень широких пределах, максимально огра­ниченных лишь мощностью питающего трансформатора. В этой схеме могут быть использованы трансформаторы на 35-50 кВ, так как она удваивает напряжение. Схема может подсоединяться и непосредственно к высоковольтной сети.

В схеме ГИТ с фильтровой емкостью (рис. 3.1, е) поочередное подсоединение рабочей и фильтровой емкостей к рабочему искро­вому промежутку в жидкости осуществляется при помощи одного вращающегося разрядника - формирующего промежутка . Однако при работе такого ГИТ срабатывание вращающегося разрядника начинается при меньшем напряжении (при сближении шаров) и заканчивается при большем (при удалении. шаров), чем это задано минимальным расстоянием между шарами раз­рядников. Это приводит к нестабильности основного параметра

Разрядов-.напряжения, а следовательно, к снижению надеж­ности работы генератора.

Для повышения надежности работы ГИТ путем обеспечения заданной стабильности параметров разрядов в схему ГИТ с фильт­ровой емкостью включают вращающееся коммутирующее устрой­ство - диск со скользящими контактами для поочередного пред­варительного бестокового включения и выключения зарядного и разрядного контуров.

При подаче напряжения на з"арядный контур генератора пер­воначально заряжается фильтровая емкость. Затем вращающимся контактом без тока (а значит, и без искрения) замыкается цепь, на шарах формирующего разрядника возникает разность потен­циалов, происходит пробой и рабочий конденсатор заряжается до напряжения фильтровой емкости. После этого ток в цепи ис­чезает и контакты вращением диска размыкаются вновь без искрения. Далее вращающимся диском (также без тока и искре­ния) замыкаются контакты разрядного контура и напряжение рабочего конденсатора подается на формирующий разряднйк, происходит его пробой, а также пробой рабочего искрового про­межутка в жидкости. При этом рабочий конденсатор разряжается, ток в разрядном контуре прекращается и, следовательно, контак­ты вращением диска могут быть разомкнуты вновь без разрушаю­щего их искрения. Далее цикл повторяется с частотой следования разрядов, задаваемой частотой вращения диска коммутирующего устройства.

Использование ГИТ этого типа позволяет получать стабильные параметры неподвижных шаровых разрядников и осуществлять замыкание и размыкание цепей зарядного и разрядного контуров в бестоковом режиме, тем самым улучшая все показатели и надеж­ность работы генератора силовой установки.

Была разработана также схема питания электрогидравли - ческих установок, позволяющая наиболее рационально исполь­зовать электрическую энергию (с минимумом возможных потерь). В известных электрогидравлических устройствах рабочая камера заземлена и поэтому часть энергии после пробоя рабочего искрового промежутка в жидкости практически теряется, рас­сеиваясь на заземлении. Кроме того, при каждом разряде рабочего конденсатора на его обкладках сохраняется небольшой (до 10 % от первоначального) заряд.

Опыт показал, что любое электрогидравлическое устройство может эффективно работать по схеме, в которой энергия, запасен­ная на одном конденсаторе С1, пройдя через формирующий про­межуток ФП, поступает на рабочий искровой промежуток РП, где в большей своей части расходуется на совершение полезной работы электрогидравлического удара. Оставшаяся неизрас­ходованной энергия поступает на второй незаряженный конденса­тор С2, где и сохраняется для последующего использования (рис. 3.2). После этого энергия дозаряженного до требуемого
значения потенциала второго конденса­тора С2, пройдя через формирующий про­межуток ФП, разряжается на_ рабочий искровой промежуток РП и вновь неис­пользованная часть ее попадает теперь уже на первый конденсатор СУ и т. д.

Поочередное подсоединение каждого из конденсаторов то в зарядную, то в раз­рядную цепь производится переключате­лем /7, в котором токопроводящие пласти­ны А и В, разделенные диэлектриком, по­очередно подсоединяются к контактам 1-4 зарядного и разрядного контуров.