Первые: автоматические коробки передач. Устройство акпп: структура, строение и принцип работы Появилась первая автоматическая коробка передач

Опция, за которую многие готовы брать дополнительный кредит и вещь, которая интересует нас сразу после двигателя – «автомат».

Сегодня речь пойдет о вещb, которая, как и двигатель, являет собой небольшой мир внутри автомира. Как она появилась? Кто её изобрел? Давайте разбираться.

Сегодня под «автоматом» понимают гидромеханическую планетарную коробку передач. К автоматической коробке можно отнести еще и коробки с автоматизированным переключением – «роботы», совсем нельзя относить вариаторы (последние вообще не коробки передач). На сегодняшний день коробка являет собой систему из гидротрансформатора и планетарной системы передач. И это накладывает небольшие трудности на правильность определении первенства, так как гидротрансформатор изобрел немецкий инженер Герман Феттингер в начале ХХ столетия, а планетарная система передач была известна со времен Птолемея. Но воедино все собрал и заставил работать изобретатель Оскар Бэнкер (при рождении его звали Азатуром Сарафяном).

“Так просто?” – спросите вы. – Вот так сразу взять и выложить все факты? А как же предыстория?”. Сейчас все будет!

Начнем с главного устройства, которое сделало возможным появление автоматической трансмиссии. Это – гидротрансформатор. Изобрели его исключительно для нужд судостроения. В конце ХIX века в морском флоте в качестве корабельного двигателя все чаще стали применять быстроходные паровые турбины вместо прежних тихоходных паровых машин. Эти машины поначалу соединялись с гребными винтами судов напрямую, и немного позже такая конструкция начала вызывать ожидаемые проблемы. Оборотность гребных винтов увеличить не удавалось, и для соединения их с более высокооборотными паровыми турбинами требовался дополнительный механизм.

Высокооборотные шестеренные передачи большой мощности тогда делать не умели. Высказывалось предложение использовать гидравлические лопастные машины, чтобы двигатель вращал колесо лопастного насоса и работа двигателя переходила в энергию жидкости, прокачиваемой насосом. Далее эта жидкость направляется в лопастную турбину, в которой энергия жидкости преобразуется в механическую энергию, используемую для вращения гребного винта.

Выходом явилось изобретение Г. Феттингером новой гидравлической машины, объединяющей в одном корпусе все лопастные колеса гидродинамической передачи – насос, турбину, направляющий аппарат (реактор). В такой машине (патент 1902 г.) исключены потери энергии в трубопроводах, спиральных камерах, подводах и отводах, что почти вдвое увеличило КПД. Уже в 1912 г. на пассажирском пароходе «Тирпиц» КПД составил 88,5%. Позже на пароходе «Висбаден» при мощности 15 000 – 20 000 л. с. гидродинамический трансформатор имел КПД 91,3%.

В 1904 году братья Стартевенты из Бостона показали свой прототип автоматической трансмиссии. Коробка имела две передачи, и суть механизма была очень похожа на немного доработанную механическую коробку передач. Проблема была в том, что промышленность на тот момент не готова была делать такие коробки серийно, поэтому дальше концепта дело не зашло.

Следующий шаг сделал Ford со своим Model T. Машина оснащалась планетарной коробкой передач и имела две передачи вперед и одну – назад. Преимуществом такой коробки было значительной упрощение управления, а мы ведь помним, что машина создавалась не для инженеров Фридрихов, а для простых Билли, которым инструкции были невдомек. Тогда еще не было синхронизаторов в коробках, и передачи переключались не так просто, как сейчас. На модели Т коробка управлялась педалями, и все что требовалось – вовремя переключиться.

Дальше была коробка передач от General Motors и фирмы Reo в середине 1930-х. В некоторой мере ту коробку можно считать первым «роботом», так как она являла собой механическую коробку, в которой было автоматизирована работа сцепления. А немного позже добавилась планетарная система передач, что во всю приблизило конструкцию к современным коробкам-автоматам.

Планетарный механизм был очень удобен для конструкторов автоматических передач. Для управления его передаточным числом и направлением вращения выходного вала, осуществляемого за счёт торможения отдельных частей планетарной передачи, могли быть использованы сравнительно небольшие и притом постоянные усилия с задействованием в качестве исполнительных механизмов фрикционов и ленточных тормозов. Управление последними при помощи сервоприводов в те годы не вызывало особых затруднений, так как уже было хорошо отработано, к примеру, на танках, где фрикционы использовались для разворота. Кроме того, отсутствовала необходимость выравнивать скорости отдельных элементов, так как все шестерни планетарной передачи находятся в постоянном зацеплении. В противоположность этому автоматизация «классической» механической коробки передач при всей логичности такого решения в те годы встречала целый ряд существенных затруднений, в первую очередь связанных именно с отсутствием подходящих для используемого в ней принципа переключения передач сервоприводов: для перемещения шестерён или муфт включения и введения их в зацепление друг с другом требовались надёжные и быстродействующие исполнительные механизмы, обеспечивающие достаточно большие усилия и рабочие ходы - намного большие, чем требуемые для сжатия блока фрикционов или затягивания ленточного тормоза. Удовлетворительное решение эта задача получила лишь ближе к середине 50-х годов XX века, а пригодное для массовых моделей - только в последние десятилетия, в частности, после появления многоконусных синхронизаторов вроде используемых в коробках передач типа DSG.

Интересной коробкой была «Уильсон», устанавливаемая на малолитражки английской фирмы BSA. Для торможения элементов планетарного механизма были применены ленточные тормоза. Выбор передачи осуществлялся подрулевым рычажком, а непосредственно включение передачи - нажатием на педаль. Коробка Уильсона была преселекторной, то есть водитель мог заранее выбрать нужную передачу, которая включалась только после нажатия на педаль переключения передачи, располагавшуюся обычно на месте педали сцепления - без необходимости точно координировать действия рычагом и педалью, что упрощало вождение и ускоряло переключения, особенно по сравнению с тогдашними несинхронизированными механическими коробками передач. Но главная заслуга коробки Уильсона – это то, что она первой получила переключатель, практически как в современных коробках, а для американцев она и по сей день остается стандартом. Кроме того, все позиции переключателя уже практически соответствовали общепринятыми (законодательно положения P-R-N-D-L были приняты в середине 1960-х).

Однако первую в мире полностью автоматическую коробку передач создала другая американская фирма - General Motors. В 1940 модельном году таковая стала доступна в виде опции на автомобилях марки Oldsmobile, затем Cadillac, впоследствии - Pontiac. Она несла коммерческое обозначение Hydra-Matic и представляла собой комбинацию гидромуфты и четырёхступенчатой планетарной коробки передач с автоматическим гидравлическим управлением. Система управления учитывала такие факторы, как скорость автомобиля и положение дроссельной заслонки. Hydra-Matic использовалась не только на автомобилях всех подразделений GM, но и на автомобилях таких марок, как Bentley, Hudson, Kaiser, Nash и Rolls-Royce, а также некоторых моделях военной техники. С 1950 по 1954 год автомобили Lincoln также снабжались АКП Hydra-Matic. Впоследствии немецкий производитель Mercedes-Benz разработал на её основе весьма похожую по принципу работы четырёхступенчатую АКП, хотя и имеющую значительные конструктивные отличия.

Настоящий бум в развитии «автоматов» был в 1950-х годах, и к середине 1960-х коробки были практически идентичны современными. В них даже заменили китовую ворвань на синтетические смазки, что серьезно снизило цену на коробки и их дальнейшее обслуживание.

В 1980-х коробки получили экономичные четырехступенчатые версии, но главное – микропроцессорное управление, что позволило существенно уменьшить количество движущихся элементов (все управление осуществлялось с помощью соленоидов, а не механики).

Сегодня нас уже не удивишь 7-ступенчатым автоматом, а на днях должны завезти 10-ступенчатые автоматы от VW. Коробки стали надежнее, на порядок удобнее, а главное – быстрее и экономичнее хорошей «механики». Казалось бы, механические коробки должны были остаться в прошлом и там, где они действительно нужны, но желание зарабатывать не позволяет автопроизводителям пойти на такой шаг. Быть может, электрокары их подстегнут?

  • , 27 мая 2015

Автоматическая коробка передач - АКП, механизм изменения передаточного отношения трансмиссии, работающий без непосредственного участия водителя. Автомобиль, оснащенный АКП, имеет сокращенное количество устройств управления, вместо трех педалей («газа», тормоза и сцепления) в нем установлено две педали («газа» и тормоза, педаль выключения сцепления отсутствует). При этом педаль «газа» служит не для увеличения-уменьшения оборотов двигателя, как в автомобиле с механической КП, а для изменения скорости движения автомобиля. В отличие от механической коробки передач АКП оснащается не рычагом переключения, а селектором выбора режима работы.
По устройству АКП разделяются на обычные двух и трехвальные МКП, дополненные гидротрансформатором (вместо сухого сцепления) и системой автоматического переключения (с электронным, электромеханическим или электропневматическим управлением), и на планетарные , в которых планетарный редуктор работает в паре с гидротрансформатором . Наиболее типичные - планетарные АКП с гидротрансформатором.

Устройство

Планетарная АКП состоит из гидротрансформатора, планетарной КП (планетарных редукторов), барабанов, фрикционных и обгонной муфт, соединительных валов. Барабаны АКП оснащаются ленточными тормозами для их остановки и включения нужной передачи планетарного редуктора.
Гидротрансформатор в автоматической трансмиссии выполняет функции сцепления и устанавливается между коленчатым валом двигателя и КП. Гидротрансформатор состоит из ведущей и ведомой турбин и неподвижно закрепленного относительно двигателя статора (иногда статор выполняется вращающимся, в этом случае он оснащается ленточным тормозом - применение подвижного статора добавляет гидротрансформатору гибкости на малых оборотах двигателя и улучшает его характеристики). Ведущая турбина вращается, как и ведущий диск сцепления, с той же частотой, что и коленчатый вал двигателя. Ведомая турбина вращается за счет гидродинамических сил, возникающих из-за вязкости заполняющей внутреннюю полость гидротрансформатора жидкости. Основное назначение гидротрансформатора - передача вращения коленчатого вала на шестерни планетарной КП с проскальзыванием, что обеспечивает плавное переключение передач и начало движения автомобиля. При больших оборотах двигателя ведомая турбина блокируется и гидротрансформатор выключается, передавая крутящий момент с коленчатого вала на шестерни АКП напрямую (соответственно, потерь).
Планетарная КП или планетарный редуктор - комплекс из большой коронной шестерни (эпицикла), малой солнечной шестерни и связывающих их шестерен-сателлитов, закрепленных на водиле. В разных режимах работы редуктора вращаются разные шестерни, а один из блоков (эпицикл, солнечная шестерня или водило с сателлитами) закреплен неподвижно.

Схема АКП: 1 - турбинное колесо;
2 - насосное колесо;
3 - колесо реактора;
4 - вал реактора;
5 - первичный вал планетарного редуктора;
6 - главный масляный насос;
7 - фрикцион II и III передач:
8 - тормоз I и II передач;
9 - фрикцион III передачи и передачи заднего хода;
10 - муфта свободного хода I передачи;
11 - тормоз заднего хода;
12 - первый промежуточный вал;
13 - второй промежуточный вал;
14 - барабан с зубчатым венцом;
15- центробежный регулятор;
16 - вторичный вал;
17 - механизм переключения передач;
18 - дроссельный клапан;
19 - кулачок

Фрикционные муфты предназначены для переключения передач введением в зацепление (или, наоборот, выведением из зацепления) шестерен планетарного редуктора АКП. Муфта состоит из ступицы (хаба) и барабана. На внешней поверхности ступицы и внутренней барабана расположены прямоугольные зубья (на ступице) и такие же шлицы (внутри барабана), которые по форме соответствуют друг другу, но не зацеплены. Между ступицей и барабаном располагается набор (пакет) кольцеобразных фрикционных дисков. Половина дисков выполнена из металла и оснащена выступами, входящими в шлицы внутренней поверхности барабана. Вторая половина дисков - из пластмассы и имеет вырезы, в которые входят зубья ступицы. Таким образом, механическое сцепление ступицы и барабана происходит через трение металлических и пластмассовых дисков пакета фрикционной муфты.
Сообщение и разобщение ступицы и барабана фрикционной муфты происходит после сжатия пакета дисков кольцеобразным поршнем, установленным внутри ступицы. Поршень имеет гидравлический привод. Жидкость в цилиндр привода подается под давлением через кольцевые канавки в барабане, валах и картере АКП.
Обгонная муфта используется для уменьшения ударных нагрузок на фрикционные муфты при переключении передач и для отключения двигателя при движении автомобиля накатом (при некоторых режимах работы АКП). Обгоная муфта устроена таким образом, что свободно проскальзывает при вращении в одном направлении и заклинивает при обратном (передавая деталям АКП вращающий момент). Она состоит из двух колец - внешнего и внутреннего - и расположенных между ними набора роликов, разделенных сепаратором. После увеличения оборотов двигателя и переключения передачи АКП один из блоков планетарного ряда стремится вращаться в обратную сторону - обгонная муфта заклинивает этот блок, предотвращая обратное вращение.

Принцип работы АКП

Рассмотрим работу четырехступенчатой АКП, оснащенной двумя планетарными редукторами.
Первая передача . Солнечная шестерня первого планетарного ряда не подключена к двигателю, первый ряд не участвует в передаче крутящего момента. Солнечная шестерня второго ряда соединена с коленчатым валом двигателя (добавим - через гидротрансформатор). Водило с сателлитами второго планетарного ряда соединено с выходным валом КП. Эпицикл (самая большая коронная шестерня) второго ряда при низких оборотах двигателя прокручивается через обгонную муфту, крутящий момент на механизмы трансмиссии не передается. Как только обороты двигателя повышаются, обгонная муфта блокирует коронную шестерню - начинается передача крутящего момента через сателлиты и водило. Автомобиль трогается с места и начинает движение.
Вторая передача . Солнечная шестерня первого ряда заблокирована и неподвижна. Водило с сателлитами первого ряда входит в зацепление с эпициклом второго ряда через обгонную муфту. Эпицикл первого ряда входит в зацепление с водилом второго ряда, которое соединено с выходным валом КП. Крутящий момент от двигателя передается через солнечную шестерню второго ряда. В этом режиме работают оба планетарных ряда КП.
Третья передача . Шестерни первого ряда не принимают участия в передаче крутящего момента. Солнечная шестерня второго ряда и эпицикл второго ряда соединены со входным валом, крутящий момент передается водилом на выходной вал. Преобразования крутящего момента не происходит - АКП работает в режиме прямой передачи.
В режимах первой, второй и третьей передач водитель не может тормозить двигателем. Для обеспечения возможности торможения двигателем предусмотрена блокировка обгонной муфты фрикционной муфтой. Тогда при отпускании педали «газа» шестерни коробки не будут разобщать механизмы трансмиссии с двигателем.
Четвертая передача . Это режим ускоряющей передачи, когда передаточное число трансмиссии больше единицы. Солнечная шестерня первого ряда остановлена. Крутящий момент передается на водило с сателлитами первого планетарного ряда. Эпицикл первого ряда входит в зацепление с водилом второго ряда, которое, в свою очередь, передает крутящий момент на механизмы трансмиссии. Солнечная шестерня и эпицикл второго ряда в передаче крутящего момента не участвуют.
Задний ход . Солнечная шестерня первого ряда соединена с коленчатым валом двигателя. Водило второго ряда заблокировано фрикционной муфтой. Эпицикл первого ряда входит в зацеплении с водилом второго ряда, которое, в свою очередь, соединено с выходным валом. Выходной вал вращается в обратную сторону.

Системы управления АКП

Система управления режимами работы АКП выполнена в виде гидравлических приводов, передающих давление масла от гидронасоса к поршням исполнительных механизмов фрикционных муфт и тормозных лент барабанов. Поток масла в маслопроводах перераспределяют золотники, которые управляются либо вручную положением селектора АКП, либо автоматически. Блок автоматического управления АКП может быть гидравлическим или электронным.
«Классическая» АКП управляется гидравлическим механизмом, который состоит из центробежного регулятора давления жидкости, установленного на выходном валу двигателя и датчика давления гидравлического привода педали «газа». Золотники перемещаются под давлением обеих гидроцепей, что позволяет АКП переключать передачи в соответствии с частотой вращения коленчатого вала двигателя и положения педали «газа».
В электронной системе автоматического управления вместо гидравлического привода золотников используется электромеханический - золотники перемещаются соленоидами. Команды на перемещения золотников дает блок электронного управления, в современных автомобилях - центральный бортовой компьютер автомобиля. Этот же компьютер обычно управляет и системой зажигания, и впрыском топлива. Команды на перемещение золотников блок электронного управления получает от датчика частоты вращения выходного вала двигателя и положения педали «газа». Переключать передачи можно и в ручном режиме, перемещая селектор в нужное положение.
В большинстве современных АКП предусмотрено ручное управление коробкой даже после полного выхода из строя электронной системы управления. При этом в любом случае вручную можно включить прямую (третью по описанной выше четырехступенчатой схеме) передачу, а если не повреждена электромеханическая часть системы управления - все передачи ручным переводом селектора.

Селектор АКП

В 50-е годы прошлого века общепринятым стандартом системы управления АКП стал селектор «PRNDL» - по перечислению очередности включения режимов автоматической КП. Именно эта последовательность была признана наиболее безопасной и рациональной с точки зрения конструкции АКП.
Режимы работы АКП - положения селектора переключения .

P - парковочный режим . Двигатель отсоединен от трансмиссии. АКП блокирована внутренним механизмом и соединена с трансмиссией, что обеспечивает блокировку всех механизмов трансмиссии. При этом АКП никак не связана со стояночным тормозом и не отменяет необходимость его использования на стоянках.
R - режим заднего хода . Во всех современных АКП селектор в этом положении дополнен блокировочным механизмом, предотвращающим случайное включение заднего хода при движении автомобиля вперед.
N - нейтральный режим АКП. Задействуется при остановках, движении накатом, буксировке.
D - основной режим работы АКП («Драйв»). Задействованы все ступени АКП (обычно и повышающая передача, которая в противном случае может включаться дополнительным положением рукоятки селектора с обозначением «2» или «D2»).
L - режим пониженной передачи , который используется для движения по бездорожью и на крутых подъемах.
Этот порядок переключения селектора АКП был закреплен в США законодательно в 1964 году. Отступление от этого стандарта считается недопустимым с точки зрения безопасности автомобиля.

Идея создания автоматической коробки передач появилась практически одновременно с появлением автомобиля, оснащенного . При этом автопроизводители, изобретатели и энтузиасты из разных стран начали работать над агрегатом.

В результате уже в самом начале 20-го века стали появляться опытные образцы, которые имели трансмиссию, похожую на современный автомат. В этой статье мы поговорим о том, как создавалась и когда появилась первая АКПП, познакомимся с историей автоматической трансмиссии, а также ответим на вопрос, кто изобрел коробку автомат.

Читайте в этой статье

Кто изобрел коробку автомат и когда появилась первая АКПП

Как известно, трансмиссия является вторым по важности агрегатом после . При этом появление АКПП стало настоящим прорывом, так как благодаря такой коробке передач значительно повышается не только комфорт, но и безопасность при управлении автомобилем.

Такая КПП является системой, состоящей из гидротрансформатора () и планетарной коробки. Принципы и основы планетарной передачи были известны еще в средние века, а гидротрансформатор создал немец Герман Феттингер в начале 20-го века.

Первым объединил коробку и ГДТ американский изобретатель Азатур Сарафян, более известный под именем Оскар Бэнкер. Именно он запатентовал автоматическую коробку передач в 1935г., хотя для получения патента больше 7 лет отстаивал свое право в борьбе с крупными автопроизводителями.

Родился Сарафян в 1895 году. Его семья оказалась в США в результате печально известного Геноцида армян, который имел место быть в Османской империи. Обосновавшись в Чикаго, Асатур Сарафян сменил свое имя, став Оскаром Бэнкером.

Талантливый изобретатель создал различные полезные устройства, среди которых можно выделить несколько незаменимых сегодня решений (например, шприц-пистолет для смазки), однако главным его достижением является изобретение первой автоматической гидромеханической коробки передач. В свою очередь, General Motors (GM), которая ранее устанавливала полуавтоматическую коробку передач на свои модели, первой перешла на АКПП.

История создания автоматической коробки передач

Итак, важнейшим элементом, благодаря которому стало возможным появление полноценной АКПП, является гидротрансформатор.

Изначально ГДТ появился в судостроении. Причина – вместо низкооборотистых паровых двигателей ближе к концу 19-го века появились более мощные паровые турбины. Такие турбины соединялись с винтом напрямую, что неизбежно привело к возникновению целого ряда технических проблем.

Решением оказалось изобретение Г. Феттингера, который предложил гидравлическую машину, где лопастные колеса гидродинамической передачи, насос, турбина и реактор были объединены в одном корпусе.

Такой гидротрансформатор был запатентован в 1902 году и имел большое количество преимуществ по сравнению с другими механизмами и устройствами, которые могли бы преобразовать крутящий момент от двигателя.

ГДТ Феттингера минимизировал потери полезной энергии, КПД устройства оказался высоким. На практике, указанный гидродинамический трансформатор, в среднем, обеспечивал на судах КПД около 90% и даже больше.

Вернемся к коробкам передач на автомобилях. В самом начале 20-го века (1904 год) изобретатели братья Стартевенты из города Бостон, США, представили раннюю версию автоматической коробки.

Данная КПП на две передачи фактически являлась усовершенствованной МКПП, где переключения могли быть автоматическими. Другими словами, это был прототип коробки- робот. Однако в те годы по ряду причин серийное производство оказалось невозможным, от проекта отказались.

Следующими автоматическую коробку начали ставить в компании Ford. Легендарная модель Model-T была оснащена планетарной коробкой передач, которая получила две скорости для движения вперед, а также заднюю передачу. Управление КПП было реализовано при помощи педалей.

Далее появилась коробка от компании Reo на моделях General Motors. Такая трансмиссия вполне может считаться первой РКПП, так как это была механическая коробка с автоматизированным сцеплением. Немного позже стала использоваться и планетарная система передач, еще больше приблизив момент появления полноценных гидромеханических автоматов.

Планетарный механизм (планетарная передача) наилучшим образом подходит для АКПП. Чтобы управлять передаточным числом, а также направлением вращения выходного вала, выполняется торможение отдельных частей планетарной передачи. При этом для решения задачи можно использовать относительно небольшие и постоянные усилия.

Другими словами, речь идет об исполнительных механизмах АКПП ( , ленточный тормоз). Также в те годы реализовать эффективное управление данными механизмами не составляло труда. Еще необходимость выровнять скорости отдельных элементов АКПП отсутствовала, так как все шестерни планетарной передачи находятся в постоянном зацеплении.

Если сравнить такую схему с попытками автоматизировать работу механической коробки, в то время это было крайне сложной задачей. Основной проблемой являлось то, что в те годы не было эффективных, быстрых и надежных сервомеханизмов (сервоприводов).

Указанные механизмы необходимы для того, чтобы перемещать шестерни или муфты включения для введения в зацепление. Сервомеханизмы также должны обеспечить большое усилие и рабочий ход, особенно если сравнивать усилие для сжатия пакета фрикционов или затяжки ленточного тормоза АКПП.

Качественное решение было найдено только ближе к середине XX века, а массовой роботизированная механика стала только за последние 10-15 лет (например, или ).

Дальнейшее развитие коробки автомат: эволюция гидромеханической АКПП

Перед тем, как переходить к АКПП, нужно упомянуть коробку передач Уильсона. Водитель выбирал передачу при помощи подрулевого переключателя, а включение производилось посредством нажатия на отдельную педаль.

Такая трансмиссия была прообразом преселективной коробки передач, так как водитель заранее выбирал передачу, при этом ее включение осуществлялось только после нажатия на педаль, которая стояла на месте педали сцепления МКПП.

Данное решение облегчало процесс управления ТС, переключения передач требовали минимум времени по сравнению с МКПП, которые в те годы не имели . При этом значимая роль коробки Уильсона заключается в том, что это первая КПП с переключателем режимов, которая напоминает современные аналоги ().

Вернемся к АКПП. Итак, полностью автоматическую гидромеханическую коробку передач Hydra-Matic представила General Motors в 1940 году. Данную КПП ставили на модели Cadillac, Pontiac и т.д.

Такая трансмиссия представляла собой гидротрансформатор (гидромуфту) и планетарную коробку передач с автоматическим гидравлическим управлением. Управление было реализовано с учетом скорости движения автомобиля, а также положения дроссельной заслонки.

Коробка Hydra-Matic ставилась как на модели GM, так и на Bentley, Rolls-Royce, Lincoln и т.д. В начале 50-х специалисты Mercedes-Benz взяли данную коробку за основу и разработали собственный аналог, который работал по схожему принципу, однако имел целый ряд отличий в плане конструкции.

Ближе к середине 60-х автоматические гидромеханические коробки передач достигли пика своей популярности. Также появление синтетических смазок на рынке ГСМ позволило удешевить их производство и обслуживание, повысить надежность агрегата. Уже в те годы АКПП не сильно отличались от современных версий.

В 80-х стала прослеживаться тенденция к постоянному увеличению числа передач. В автоматических коробках сначала появилась четвертая передача, то есть повышенная. Одновременно стала использоваться и функция блокировки гидротрансформатора.

Также четырехступенчатые автоматы стали управляться при помощи , что дало возможность избавиться от многих механических элементов управления, заменив их .

Например, первыми внедрение электронной системы управления автоматической коробкой передач реализовали специалисты Toyota в 1983 г. Далее Ford в 1987 году также перешел на использование электроники для управления повышающей передачей и блокировочной муфтой ГДТ.

Кстати, сегодня АКПП продолжает эволюционировать. С учетом жестких экологических стандартов и роста цен на топливо производители стремятся повысить КПД трансмиссии, добиться топливной экономичности.

Для этого увеличивается общее количество передач, скорость переключений стала очень высокой. Сегодня можно встретить АКПП, которые имеют 5, 6 и более «скоростей». Основная задача – успешно конкурировать с преселективными роботизированными коробками типа DSG.

Параллельно происходит и постоянное усовершенствование блоков управления АКПП, а также программного обеспечения. Изначально это были системы, которые только определяли момент переключения передачи и отвечали за качество включений.

В дальнейшем в блоки стали «зашивать» программы, которые способны подстраиваться под манеру езды, динамично меняя алгоритмы переключения передач (например, адаптивные АКПП с режимами эконом, спорт).

Позже появилась и возможность ручного управления АКПП (например, Tiptronic), когда водитель может самостоятельно определять моменты переключения передач подобно механической коробке. Дополнительно коробка автомат получила расширенные возможности в плане , контроля температуры трансмиссионной жидкости и т.д.

Читайте также

Управление автомобилем с АКПП: как пользоваться коробкой - автомат, режимы работы автоматической коробки, правила использования данной трансмиссии, советы.

  • Как работает коробка-автомат: классическая гидромеханическая АКПП, составные элементы, управление, механическая часть. Плюсы, минусы данного типа КПП.


  • Статья о том, как правильно пользоваться коробкой «автомат» - символы на панели АКПП, запуск мотора, движение и остановка, возможные ошибки. В конце статьи - видео об использовании автоматической коробки.

    На данный момент различают три вида автоматических трансмиссий: «классическая», с «бесступенчатым вариатором», с «роботизированной механикой». В зависимости от модификации и производителя указанные виды трансмиссий могут незначительно отличаться (разное число передач, немного другой ход рычага – прямой или зигзагообразный, обозначения и др.), но основные функции будут одинаковы для всех.

    Растущая популярность АКПП вполне объяснима – она более удобна в эксплуатации (чем «механика» - МКПП) особенно для новичков, надежна и предохраняет двигатель от перегрузок. Вроде бы все просто! Однако ошибки водители все же допускают, и даже самый надежный механизм может выйти из строя, если его неправильно эксплуатировать. Далее мы рассмотрим, как правильно пользоваться АКПП и как грамотно ее эксплуатировать.


    Чтобы научиться правильно пользоваться «автоматом», сначала нужно разобраться, что же означают буквенные символы (английские буквы) и цифры на панели АКПП с рукояткой переключения передач. Сразу отметим, что в зависимости от марки машины цифры и буквы могут различаться.
    • «P» – «паркинг». Включается при парковке автомобиля на стоянке. Некий аналог стояночного тормоза, только с блокировкой вала, а не с прижатием тормозных колодок.
    • «R» – «реверс». Включается для движения назад. Обычно его называют – «задняя скорость».
    • «N» – «нейтральный». Нейтральная передача. Часто называют – «нейтралка». В отличие от режима паркинга «P», в нейтральном режиме «N» колеса разблокированы, поэтому машина может двигаться накатом. Соответственно, машина также может самопроизвольно покатиться под уклон на парковке, если колеса не зафиксированы ручным тормозом.
    • «D» – «драйв». Режим движения вперед.
    • «A» – «автомат». Автоматический режим (практически, то же самое, что и режим «D»).
    • «L» – «лоу» (низкий). Режим пониженной передачи.
    • «B» – Такой же режим, как и «L».
    • «2» – режим движения не выше второй передачи.
    • «3» – режим движения не выше третьей передачи.
    • «M» – «мануал». Режим ручного управления с повышением/понижением передачи через знаки «+» и «–». Данный режим имитирует механический режим переключения с МКПП, только в более простом варианте.
    • «S» – «спорт». Спортивный режим движения.
    • «OD» – «овердрайв». Повышение передачи (ускоренный режим).
    • «W» – «винтер». Режим движения для зимнего периода, при котором трогание с места начинается со второй передачи.
    • «E» – «экономик». Движение в экономичном режиме.
    • «HOLD» – «удержание». Используется совместно с «D», «L», «S», как правило, на машинах марки «Мазда». (Читать руководство).
    При эксплуатации АКПП особое внимание следует уделить изучению руководства по эксплуатации конкретного автомобиля, так как некоторые обозначения могут функционально отличаться.

    Например, в руководстве некоторых автомобилей буква «B» означает «Block» (блокировка) – режим блокировки дифференциала, который нельзя включать во время движения.


    А если в полноприводном автомобиле присутствуют обозначения «1» и «L», то буква «L» может означать не «Low» (понижение), а «Lock» (замок) – что также обозначает блокировку дифференциала.


    Запуск двигателя с автоматической коробкой имеет следующие особенности:
    1. В машине с АКПП всего две педали: «тормоз» и «газ» . Поэтому левая нога водителя практически не используется. При запуске двигателя педаль «газа» не нажимается, а вот педаль тормоза в некоторых марках автомобилей нажимать обязательно, иначе двигатель не заведется (читать руководство по эксплуатации).

      Однако инструкторы по вождению советуют взять за правило – перед запуском двигателя с АКПП нажимать педаль тормоза всегда. Это предотвратит самопроизвольное движение машины при нейтральном режиме «N», а также позволит быстро перейти в режимы движения «D» или «R». (Без нажатия тормозной педали переключиться в указанные режимы и тронуться с места не получится).

    2. В автомобилях с АКПП предусмотрена защита – автоматическая блокировка запуска двигателя при неправильном положении рычага переключения передач . Это значит, что двигатель с АКПП можно завести только при условии, что рычаг переключения передач находится в одном из двух положений: или «P» (паркинг), или «N» (нейтралка). Если рычаг ПП будет находиться в любом другом положении, предназначенном для движения, будет срабатывать блокировочная защита от неправильного запуска.

      Данная защитная функция очень полезна, особенно для новичков, и особенно в городах с большой «автомобильной плотностью», где на парковках и в потоках автомобили стоят плотно друг к другу. Ведь даже опытные водители иногда забывают «снять автомобиль со скорости» перед запуском двигателя, в результате чего при запуске машина сразу начинает ехать и врезается в ближайшее авто или препятствие.

      Запускать двигатель с АКПП можно как в режиме «P» (паркинг), так и в режиме «N» (нейтральный), однако производители рекомендуют использовать только режим «P». Поэтому лучше установить для себя еще одно правило – парковаться и запускать двигатель только в режиме «паркинг».

    3. После поворота ключа в замке зажигания перед запуском стартера рекомендуется подождать несколько секунд , чтобы дать время включиться бензонасосу и подкачать компрессию.
    Следует помнить, что на некоторых марках автомобилей с АКПП переключение передач невозможно без вставки и поворота ключа в замке зажигания (разблокировки коробки передач). Также, на некоторых марках невозможно вытащить ключ из замка зажигания, если рычаг ПП находится в положении «D». (Читайте руководство по эксплуатации).


    Большинство водителей, которые пересаживаются с «механики» на «автомат», первое время машинально выполняют действия, которые они привыкли многократно выполнять при езде на автомобиле с механической коробкой передач. Поэтому таким водителям, прежде чем начинать ездить с АКПП по дороге в общем автомобильном потоке, рекомендуется предварительно потренироваться в одиночестве.

    Итак, стандартный порядок действий для трогания с места на автомобиле с АКПП выглядит следующим образом:

    • Вставить ключ в замок зажигания.
    • Выжать педаль тормоза правой ногой (левая нога при езде с АКПП не задействуется).
    • Проверить положение рычага переключения передач - он должен находиться в положении «P» – «паркинг».
    • Запустить двигатель (при нажатой педали тормоза).
    • Также при нажатой педали тормоза переключить рычаг ПП в положение «D» – «драйв» (движение вперед).
    • Полностью отпустить педаль тормоза, после чего автомобиль тронется с места и начнет движение вперед с небольшой скоростью - около 5 км/час.
    • Для увеличения скорости движения нужно нажать на педаль «газа». Чем сильнее вы будете нажимать на педаль «газа», тем выше будут передачи и скорость.
    • Для остановки автомобиля нужно убрать правую ногу с педали «газа» и выжать (ей же) педаль тормоза. Автомобиль остановится.
    • Если вы планируете покинуть автомобиль после остановки, то при нажатой педали тормоза переместите рычаг переключения передач в режим «P» – «паркинг». Если же остановка потребовалась в пробке, у светофора или пешеходного перехода, то, естественно, рычаг ПП переключать в «паркинг» не нужно. После того, как вы решите опять продолжить движение, отпустите педаль тормоза и нажмите на педаль «газа» для увеличения скорости.
    Многие современные АКПП имеют имитацию механического режима переключения передач «M» (как на МКПП) для повышения/понижения передач с помощью кнопок «+» и «–» на рычаге ПП. То есть, водителю предоставляется возможность самому вручную повышать или понижать передачи, забирая эту функцию у «автомата». При этом переход на механический режим переключения передач может производиться в движении, когда машина уже едет в режиме «D».

    Для предотвращения повреждения двигателя при переходе в ручной режим «M» на ходу у всех АКПП предусмотрена специальная защита. Переход на ручное управление «M» актуален в следующих ситуациях:

    • При движении по бездорожью на пониженной передаче, чтобы избежать пробуксовки.
    • При движении накатом с горки, с торможением двигателем. Использовать для движения накатом нейтральный режим «N» не рекомендуется, так как он вреден для АКПП. А накат в режиме «D» не совсем удобен, так как происходит постепенное снижение скорости.
    • Для удобного прохождения поворотов и других маневров, в том числе и для резкого ускорения при обгоне.

    1. Самой распространенной ошибкой, приводящей к поломке АКПП, является включение режима «D» - «драйв» (движение вперед) без полной остановки при движении задним ходом . И, то же самое, только наоборот – включение режима «R» (задний ход) без полной остановки при движении вперед.
    2. Вторая распространенная ошибка (скорее, заблуждение) связана с режимом «N» (нейтралка). Дело в том, что данный режим является экстренным, чтобы разблокировать колеса для кратковременной буксировки или перестановки машины в случае какой-либо неисправности. И только для этого!

      Но многие неопытные водители используют нейтральный режим «N» в пробках при кратковременных остановках , что приводит к гидравлическому удару и преждевременному износу АКПП. В пробках при частых остановках нужно использовать режим «D» вместе с педалью тормоза. Если нужно остановиться – нажимается педаль тормоза, если нужно медленно продвинуться вперед – педаль тормоза просто отпускается, и машина медленно катится вперед. И так можно ездить целый день.

    3. Третья ошибка – переход в нейтральный режим «N» из режима «D» на ходу, в движении по трассе . Это опасно (особенно на большой скорости), так как может заглохнуть двигатель, в результате чего отключится гидроусиление руля и усиление тормозов, и автомобиль станет почти неуправляемым.
    4. Еще одна ошибка – буксировка машины с АКПП на расстояние больше 40 км и на скорости более 50 км/час . В коробке «автомат», в отличие от МКПП, система подачи масла работает под давлением, но при буксировке она не работает. Соответственно, детали «автомата» вращаются «на сухую», без смазки, в результате чего происходит их очень быстрый износ.
    5. Нередкой ошибкой является попытка завести машину с АКПП «с толкача» . И хотя такие попытки часто приводят к желаемому результату (двигатель запускается), все равно на механизм АКПП это действует разрушающе, и при такой частой эксплуатации «автомат» может не выработать и половины заложенного ресурса.

    Заключение

    Вполне возможно, что для кого-то АКПП покажется сложным и привередливым механизмом, несмотря на простоту и удобство его использования. Но это только на первый взгляд. На самом деле «автоматы» зарекомендовали себя как вполне надежные агрегаты, но, конечно же, при условии их правильной и грамотной эксплуатации. Особенно удобно пользоваться АКПП в больших городах, где часто приходится стоять в пробках.

    Видео о том, как пользоваться «автоматом»:

    Определение

    Автоматическая коробка переключения передач (АКПП, автоматическая трансмиссия) - одна из разновидностей КПП, главным отличием от механической коробки переключения передач является то, что в АКПП переключение передач обеспечивается автоматически (т.е. не требуется прямое участия оператора (водителя)). Выбор передаточного числа соответствует текущим условиям движения, а так же зависит и от множества других факторов. Так же, если в традиционных КПП используется механический привод, то в автоматической коробке переключения передач иной принцип движения механической части, а именно, задействован гидромеханический привод или планетарный механизм. Встречаются конструкции, в которых двухвальная или трехвальная коробка передач работает вместе с гидротрансформатором. Такое сочетание использовали на автобусах ЛиАЗ-677 и в продукции компании ZF Friedrichshafen AG.

    В последние годы, в обиход пришли автоматизированные механические коробки передач с электронным управлением и электропневматическими или электромеханическими исполнительными устройствами.

    Предыстория

    Недаром говорят, что лень – двигатель прогресса, вот и желание комфорта и более простой, удобной жизни породило множество интересных вещей и изобретений. В автомобилестроении, таким изобретением можно считать автоматическую коробку переключения передач.

    Хотя конструкция АКПП является достаточно сложной и стала популярна лишь в конце 20 века, впервые ее установили в шведский автобус фирмы "Лисхольм-Смит" 1928 года. В серийное же производство, АКПП пришла лишь через 20 лет, а именно, в 1947 году в автомобиле Buick Roadmaster. Основой данной трансмиссии послужило изобретение немецкого профессора Феттингера, запатентовавшего в 1903 году первый гидротрансформатор.


    На фотографиях тот самый Buick Roadmaster – первый серийный автомобиль, имеющий АКПП.

    В автоматической трансмиссии роль сцепления выполняет гидротрансформатор, который передает крутящий момент к коробке передач от двигателя. Сам гидротрансформатор состоит из центростремительной турбины и центробежного насоса, между которыми расположен направляющий аппарат (реактор). Все они располагаются на одной оси и в одном корпусе, вместе с гидравлической рабочей жидкостью.

    Ближе к современности

    Середина 60х годов 20 века ознаменовалась окончательным закреплением и утверждением в США - современной схемы переключения АКПП - P-R-N-D-L . Где:

    "P" (Parking) – "Стоянка" - Включена нейтральный режим, при котором выходной вал коробки механически заблокирован, благодаря чему автомобиль не движется.

    "R" (Reverse) – "Задний ход" – Включение режима заднего хода (задняя передача).

    "N" (Neutral) – "Нейтраль" – Связи между выходными валами КПП и входными нет. Но при этом, выходной вал не заблокирован, и автомобиль может перемещаться.

    "D" (Drive) – "Основной режим" - Автоматическое переключение по полному кругу.

    "L" (Low) – Движение только на 1-й передаче. Используется только 1-я передача. Гидространсформатор заблокирован.

    Повышение требований к экономичности автомобилей привело к возвращению в 1980х годах четырехступенчатых трансмиссий, в которых четвертая передача имела передаточное число меньше единицы («овердрайв»). Так же получили распространение и блокирующиеся на большой скорости гидротрансформаторы, которые позволяли увеличить КПД трансмиссии за счет снижения потерь, возникающих в гидравлическом элементе.

    В период с 1980-1990 года произошла компьютеризация систем управления двигателем. Аналогичные системы управления применялись и в АКПП. Теперь контроль над потоками гидравлической жидкости регулировался при помощи соленоидов, связанных с компьютером. Вследствие чего, переключение передач стало более плавным и комфортным, а экономичность и эффективность работы опять увеличились. В эти же года появляется возможность ручного управления коробкой передач ("Типтроник" или аналогичные). Изобретена первая пятиступенчатая коробка передач. Отпадает необходимость смены масла в КПП, поскольку ресурс уже залитого в нее сопоставим с ресурсом коробки переключения передач.

    Конструкция

    Традиционно, автоматические коробки переключения передач состоят из планетарных редукторов, гидротрансформаторов, фрикционных и обгонных муфт, соединительных барабанов и валов. Иногда применяют тормозную ленту, которая замедляет один из барабанов относительно корпуса АКПП при включении одной из передач.

    Роль гидротрансформатора заключается в передаче момента с проскальзыванием при трогании с места. На высоких оборотах двигателя (3-4 передача), гидротрансформатор блокируется фрикционной муфтой, которая не дает ему проскальзывать. Конструктивно он устанавливается так же, как и сцепление на трансмиссии с МКПП – между АКПП и собственно двигателем. Корпус гидротрансформатора и ведущая турбина крепится на маховик двигателя, как и корзина сцепления.

    Сам гидротрансформатор состоит из трех турбин – статора, входной (составл. корпуса) и выходной. Обычно статор глухо затормаживается на корпус АКПП, однако в некоторых вариантах затормаживание статора включается фрикционной муфтой для максимального использования гидротрансформатора во всем диапазоне оборотов.

    Фрикционные муфты ("пакет") соединяя и разъединяя элементы АКПП – выходного и входного валов и элементов планетарных редукторов, и затормаживая их на корпус АКПП, осуществляют переключение передач. Муфта состоит из барабана и хаба. Барабан имеет крупные прямоугольные пазы внутри, а хаб – крупные прямоугольные зубья снаружи. Пространство между барабаном и хабом заполняют кольцеобразные фрикционные диски, часть из которых – пластмассовая с внутренними вырезами, куда входят зубья хаба, а другая часть выполнена из металла и имеет выступы снаружи, входящие в пазы барабана.

    Сжимая гидравлически кольцеобразным поршнем пакет дисков, производится сообщение фрикционной муфты. Масло к цилиндру подводится через канавки в валах, корпусе АКПП и барабане.

    Превью - увеличение по клику.

    На первой, слева, фотографии - разрез гидротрансформаторной восьмиступенчатой АКПП автомобиля Lexus, а на второй - разрез шестиступенчатой преселективной АКПП Volkswagen

    Обгонная муфта свободно скользит в одном направлении и заклинивает с передачей момента в другом. Традиционно она состоит из внутреннего и внешнего кольца и расположенного между ними сепаратора с роликами. Служит для снижения ударов во фрикционных муфтах при переключении передач, а также для отключения торможения двигателем в некоторых режимах работы АКПП.

    В качестве устройства управления АКПП использовали набор золотников, которые управляли потоками масла к поршням фрикционных муфт и тормозных лент. Положение золотников задаются, как вручную механически рукояткой селектора, так и автоматикой. Автоматика бывает электронной или же гидравлической.

    Гидравлическая автоматика задействует давление масла от центробежного регулятора, который соединен с выходным валом АКПП, а также давление масла от нажатой водителем педали газа. В результате чего, автоматика получает информацию о скорости автомобиля и положении педали газа, в зависимости от которой переключаются золотники.

    Электроника использует соленоиды, перемещающие золотники. Кабели от соленоидов расположены вне пределов АКПП и ведут к блоку управления, который иногда объединен вместе с блоком управления впрыском топлива и зажигания. В зависимости от положения рукоятки селектора, педали газа и скорости автомобиля, электроника принимает решение о перемещении соленоидов.

    Иногда, предусмотрена работа АКПП и без электронной автоматики, но только с третьей передачей переднего хода, или же со всеми передачами переднего хода, но с обязательным переключением рукоятки селектора. По вопросам поломки и ремонта КПП вас проконсультируют .