Электрическая схема от зарядника шуруповерта калибр. Зарядное устройство (зарядка) для шуруповерта и его схемы. Стандартные и индивидуальные характеристики зарядного устройства фирмы «Интерскол»

Использование, электроинструмента существенно облегчает наш труд и сокращает время сборки. В настоящее время большую популярность набрали шуруповерты с автономным питанием от аккумуляторной батареи. В рамках данной статьи рассмотрим схему типичного зарядного устройства для шуруповерта А также советы по ремонту и варианты радиолюбительских конструкций.

Силовую часть зарядного устройства шуроповерта представляет силовой трансформатор типа GS-1415 рассчитанный на мощность 25 Ватт.

Со вторичной обмотки трансформатора снимается пониженное переменное напряжение номиналом 18В оно следует на из 4 диодов VD1-VD4 типа 1N5408, через плавкий . Диодный мост. Каждый полупроводниковый элемент 1N5408 рассчитан на прямой ток до трех ампер. Электролитическая емкость C1 сглаживает пульсации появляющиеся в схеме после диодного моста.

Управление реализовано на микросборке HCF4060BE , которая совмещает в себе 14-разрядным счетчиком с компонентами задающего генератора. Она управляет типа S9012. Он нагружен на реле типа S3-12A. Таким образом схемотехнически реализован таймер, включающий реле на время заряда аккумуляторной батареи около часа. При включении ЗУ и подсоединения аккумулятора контакты реле находятся в нормально разомкнутом положении. HCF4060BE получает питание через 1N4742A на 12 вольт, т.к с выхода выпрямителя идет около 24 вольт.

При замыкании кнопки "Пуск" напряжение с выпрямителя начинает следовать на стабилитрон через сопротивление R6, затем стабилизированное напряжение идет на 16 вывод U1. Открывается транзистор S9012, которым управляет HCF4060BE. Напряжение через открытые переходы транзистора S9012 следует на обмотку реле. Контакты последнего замыкаются, и аккумулятор начинает заряжаться. Защитный диод VD8 (1N4007) шунтирует реле и защищает VT от скачка обратного напряжения, которое возникнет в момент обесточивания обмотки реле. VD5 не дает разряжаться аккумулятору при отключении сетевого напряжения. С размыканием контактов кнопки "Пуск" ничего не произойдет т.к питание идет через диод VD7 (1N4007), стабилитрон VD6 и гасящий резистор R6. Поэтому микросхема будет получать питание даже после отпускания кнопки.

Сменный типичный аккумулятор от электроинструмента собран из отдельных последовательно соединенных никель-кадмиевых Ni-Cd аккумуляторов, каждый по 1,2 вольта, т.о их 12 штук. Суммарное напряжение такой батареи будет около 14,4 вольта. Кроме того в блок аккумуляторов добавлен датчик температуры - SA1 он приклеен к одной из Ni-Cd батарей и плотно прилегает к ней. Один из выводов терморегулятора подключен к минусу аккумуляторной батареи. Второй вывод подсоединен к отдельному, третьему разъему.

При нажатии кнопки "Пуск" реле замыкает свои контакты, и начинается процесс заряда батареи. Загорается красный светодиод. Через час, реле своими контактами рвет цепь заряда аккумулятора шуроповерта. Загорается зеленый светодиод, а красный тухнет.

Термоконтакт отслеживает температуру батареи и разрывает цепь заряда, если температура выше 45°. Если такое случается раньше чем отработает, это говорит об присутствии "эффекта памяти".

Основой конструкции является регулируемый стабилизатор положительного напряжения. Он допускает работу с током нагрузки до 1,5А, которого вполне достаточно для заряда аккумуляторов.

Переменное напряжение величиной 13В, снимается с вторичной обмотки трансформатора, выпрямляется диодным мостом D3SBA40. На его выходе стоит фильтрующий конденсатор С1, который снижает пульсации выпрямленного напряжения. С выпрямителя постоянное напряжение поступает на интегральный стабилизатор, выходное напряжение, которого задается сопротивлением резистора R4 на уровне 14,1В (Зависит от типа АКБ шуруповерта). Датчиком тока зарядки является сопротивление R3, параллельно которому подсоединено подстроечное сопротивление R2, с помощью этого сопротивления задается уровень зарядного тока, который соответствует 0,1 от емкости аккумулятора. На первом этапе батарея заряжается стабильным током, затем, когда зарядный ток станет меньше величины тока ограничения, АКБ будет заряжаться более низким током до напряжения стабилизации DA1.


Датчиком зарядного тока для светодиода HL1 является VD2. В этом случае HL1 будет индицировать ток номиналом до 50 миллиампер. Если в качестве датчика тока использовать R3, то светодиод погаснет при токе 0,6А, что было бы слишком рано. Аккумулятор не успел бы зарядиться. Это устройство можно использовать и для шестивольтовых аккумуляторов.

Часто родное зарядное устройство, входящее в комплект шуруповерта, работает медленно, долго заряжая аккумулятор. Тем, кто интенсивно использует шуруповерт, это очень мешает в работе. Несмотря на то, что в комплект входит обычно два аккумулятора (один установлен в рукоятку инструмента и в работе, а другой подключен к зарядному устройству и находится в процессе зарядки), часто владельцы не могут приспособиться к рабочему циклу аккумуляторов. Тогда имеет смысл изготовить зарядное устройство своими руками и зарядка станет удобнее.

Аккумуляторы неодинаковы по типам и режимы заряда у них могут быть разными. Никель-кадмиевые (Ni-Cd) батареи являются очень хорошим источником энергии, способны отдавать большую мощность. Однако, по экологическим причинам их производство прекращено и они будут встречаться все реже и реже. Сейчас всюду их вытеснили литий-ионные аккумуляторы.

Сернокислотные (Pb) свинцовые гелевые аккумуляторы имеют неплохие характеристики, но утяжеляют инструмент и поэтому не пользуются особой популярностью, несмотря на относительную дешевизну. Поскольку они гелевые (раствор серной кислоты загущается силикатом натрия), то никаких пробок в них нет, электролит из них не вытекает и ими можно пользоваться в любом положении. (Кстати, и никель-кадмиевые аккумуляторы для шуруповертов тоже относятся к классу гелевых.)

Литий-ионные аккумуляторы (Li-ion) являются сейчас наиболее перспективными и продвигаемыми в технике и на рынке. Их особенностью является полная герметичность ячейки. Они имеют весьма высокую удельную мощность, безопасны в обращении (благодаря встроенному контроллеру заряда!), выгодно утилизируются, являются наиболее экологически чистыми, имеют малый вес. В шуруповертах в настоящее время применяются очень часто.

Режимы заряда

Номинальное напряжение Ni-Cd ячейки 1.2 В. Никель-кадмиевый аккумулятор заряжается током от 0.1 до 1.0 номинальной емкости. Это означает, что аккумулятор емкостью 5 амперчасов можно заряжать током от 0.5 до 5 А.

Заряд сернокислотных аккумуляторов хорошо знаком всем людям, держащим в руках шуруповерт, ведь практически каждый их них еще и автолюбитель. Номинальное напряжение ячейки Pb-PbO2 составляет 2.0 В, а ток зарядки свинцового сернокислотного аккумулятора всегда 0.1 C (доля тока от номинальной емкости, см. выше).

Литий-ионная ячейка имеет номинальное напряжение 3.3 В. Ток заряда литий-ионного аккумулятора, 0.1 C. При комнатной температуре этот ток можно плавно повышать до 1.0 С – это быстрый заряд. Однако, это годится только для тех батарей, которые не были переразряжены. При заряде литий-ионных батарей следует точно соблюдать напряжение. Заряд производится до 4.2 В точно. Превышение резко снижает срок службы, понижение – уменьшает емкость. При зарядке следует следить за температурой. Теплый аккумулятор следует либо ограничить током до 0.1 С, либо отключить до остывания.

ВНИМАНИЕ! При перегреве литий-ионного аккумулятора при зарядке свыше 60 градусов Цельсия возможен его взрыв и возгорание! Не следует слишком полагаться на встроенную электронику безопасности (контроллер заряда).

При заряде литиевой батареи, контрольное напряжение (напряжение окончания заряда) образует приблизительный ряд (точные напряжения зависят от конкретной технологии и указаны в паспорте на батарею и на ее корпусе):

Напряжение заряда следует контролировать мультиметром или схемой с компаратором напряжения, настроенным точно на применяемую батарею. Но для “электронщиков начального уровня” реально можно предложить только простую и надежную схему, описанную в следующем разделе.

Зарядное устройство + (Видео)

Зарядное устройство, которое предлагается ниже, обеспечивает нужный зарядный ток для любого аккумулятора из всех перечисленных. Шуруповерты питаются от аккумуляторов с разными напряжениями 12 вольт или 18 вольт. Это неважно, главный параметр зарядного устройства для аккумуляторов – ток заряда. Напряжение зарядного устройства при отключенной нагрузке всегда выше номинального, оно падает до нормы при подключении батареи при заряде. В процессе заряда оно соответствует текущему состоянию аккумулятора и обычно чуть выше номинального в конце заряжания.

Зарядное устройство представляет собой генератор тока на мощном составном транзисторе VT2, который питается от выпрямительного мостика, подключенного к понижающему трансформатору с достаточным выходным напряжением (см. таблицу в предыдущем разделе).

Этот трансформатор должен также иметь достаточную мощность, чтобы обеспечить необходимый ток при длительной работе без перегрева обмоток. Иначе он может сгореть. Ток заряда выставляется регулировкой резистора R1 при подключенном аккумуляторе. Он остается постоянным в процессе заряда (тем постоянней, чем выше напряжение от трансформатора. Примечание: напряжение от трансформатора не должно превышать 27 В).

Резистор R3 (не менее 2 Вт 1 Ом) ограничивает максимальный ток, а светодиод VD6 горит, пока идет заряд. К концу заряда, свечение светодиода уменьшается и он гаснет. Тем не менее, не забывайте про точный контроль напряжения литий-ионных аккумуляторов и их температуру!

Все детали в описанной схеме монтируются на печатной плате из фольгированного текстолита. Вместо диодов, указанных в схеме, можно взять русские диоды КД202 или Д242, они довольно доступны в старом электронном ломе. Располагать детали надо так, чтобы на плате оказалось как можно меньше пересечений, в идеале ни одного. Не следует увлекаться высокой плотностью монтажа, ведь вы собираете не смартфон. Распаивать детали вам будет значительно легче, если между ними останется по 3-5 мм.

Транзистор должен быть установлен на теплоотводе достаточной пощади (20-50 см.кв). Все части зарядного устройства лучше всего смонтировать в удобный самодельный корпус. Это будет самым практичным решением, в работе вам ничто не будет мешать. Но здесь могут возникнуть большие сложности с клеммами и подключением к аккумулятору. Поэтому лучше сделать так: взять старое или неисправное зарядное устройство у знакомых, подходящее к вашей модели аккумулятора, и подвергнуть его переделке.

  • Вскрыть корпус старого зарядного устройства.
  • Удалить из него всю бывшую начинку.
  • Подобрать следующие радиоэлементы:
  • Выбрать подходящий размер для печатной платы, помещающейся в корпус вместе с деталями из приведенной схемы, нарисовать нитрокраской ее дорожки по принципиальной схеме, протравить в медном купоросе и распаять все детали. Радиатор для транзистора нужно установить на алюминиевой пластинке так, чтобы она не касалась ни с какой частью схемы. Сам транзистор плотно прикручивается к ней винтиком и гайкой М3.
  • Собрать плату в корпусе и припаять клеммы по схеме строго соблюдая полярность. Вывести провод для трансформатора.
  • Трансформатор с предохранителем на 0.5 А установить в небольшой подходящий корпус и снабдить отдельным разъемом для подключения переделанного зарядного блока. Лучше всего взять разъемы от компьютерных блоков питания, папу установить в корпус с трансформатором, а маму подключить к диодам мостика в зарядном устройстве.

Собранное устройство будет работать надежно если вы аккуратно и тщательно проделали

Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.

Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы "Интерскол".

Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

Печатная плата зарядного устройства (CDQ-F06K1).

Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил .

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

Основа схемы управления – микросхема HCF4060BE , которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки "Пуск" микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки "Пуск" напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007 ) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

Что будет после того, когда контакты кнопки "Пуск" разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007 ) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

Сменный аккумулятор.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD . Маркировка термовыключателя JJD-45 2A . Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

При нажатии кнопки "Пуск" электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

Такой алгоритм работы примитивен и со временем приводит к так называемому "эффекту памяти" у аккумулятора. То есть ёмкость аккумулятора снижается.

Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован .

Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

На графике показано, как во время заряда меняется температура элемента (temperature ), напряжение на его выводах (voltage ) и относительное давление (relative pressure ).

Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV . На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за "эффекта памяти". При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством , например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства.

Со временем из-за износа и влажности кнопка SK1 "Пуск" начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.

В моей практике был случай, когда стабилитрон пробило, мультиметром он "звонился" как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на "пробой" можно также, как и обычный диод. О проверке диодов я уже рассказывал.

После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор "Сеть" (зелёный). Вынимаем АКБ и делаем "контрольный" замер напряжения на её клеммах. АКБ должна быть заряженной.

Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у

Шуруповерт - инструмент, который есть почти у каждого домашнего мастера. Как и другие электрические приборы, он требует подключения к сети либо аккумулирует заряд. Наиболее распространен последний вариант. Для подпитки съемного аккумулятора нужно зарядное устройство. Обычно оно есть в наборе. Однако, как и любое другое устройство, зарядка для шуруповерта не застрахована от поломки. Чтобы восстановить работоспособность инструмента, придется приобрести замену или сделать его самостоятельно.

Виды

Существует множество зарядок, подходящих для определенных марок и моделей инструментов. Все их можно разбить на основные виды.

Аналоговые со встроенным блоком питания

Аналоговые со встроенным блоком питания - довольно востребованы. Это объясняется невысокой стоимостью . Обычно не относятся к профессиональному оборудованию, быстро выходят из строя и «не хватают звезд с неба». Минимальная задача, которую, как правило, ставят их производители - получить постоянное напряжение и токовую нагрузку, необходимую для работы.

Устройства работают по принципу стабилизатора . Можно сделать самостоятельно, используя приведенную схему. Для работы нужно запомнить:

  1. Напряжение на выходе блока-зарядки - больше номинала батареи.
  2. Подходит любой тип аккумулятора.
  3. Можно использовать обычную монтажную плату.
  4. Такие стабилизаторы применяют компенсационный принцип: ненужная энергия, тепло отводится. Для его рассеивания можно взять, например, медный радиатор. Площадь - 20 см².
  5. Трансформатор на входе (Тр1) изменяет напряжение с 220 до 20 В. Его мощность определяется по току и напряжению на выходе.
  6. Ток выпрямляется диодным мостом (VD1).
  7. Можно позаимствовать решение производителей: сборку диодов Шоттки.
  8. После выпрямления ток - пульсирующий, что вредно. Для сглаживания нужен электролитический конденсатор (С1).
  9. В качестве стабилизатора идет КР142ЕН. Для 12 В ее индекс - 8Б.
  10. Управление - на основе транзистора (VT2) и резисторов (подстроечных).
  11. Автоматическое отключение после зарядки обычно не предусматривается. Придется самостоятельно определять необходимое время. Как вариант, можно использовать цепь, включающую диод (VD2), транзистор (VT1). После зарядки светодиод (HL1) тухнет. Есть и более серьезные варианты с коммутатором и электронным ключом, отключающиеся автоматически.

Если инструмент - бюджетный, схема его «родного» зарядника может быть проще. Неудивительно, что такие изделия быстро выходят из строя. Иногда без зарядки остается сравнительно новый шуруповерт. Используя рассмотренную выше схему, можно ответственно подойти к вопросу и устройство, скорее, прослужит дольше покупного. Подходящие трансформатор и стабилизатор определяются индивидуально для конкретного шуруповерта.

Аналоговые с внешним блоком, как видно из названия, состоят:

Блок - обычный, включает:

  • трансформатор;
  • диодный мост;
  • выпрямитель;
  • конденсаторный фильтр.

В фабричных сборках обычно нет теплоотвода . Его роль может выполнять резистор повышенной мощности. Одна из типичных причин поломок - в тепловом режиме.

Чтобы исправить ситуацию, для начала нужно выяснить, работает ли источник питания. Если функционирует, его дополняют схемой управления, если нет - ищется другой. Вполне подойдет, например, от ноутбука. Он имеет 18 В на выходе, что вполне достаточно. Остальные детали обычно найти не составляет труда. Они очень мало стоят, можно позаимствовать из другой техники.

Схема блока управления представлена ниже. Используется транзистор KT817, для усиления - КТ818. Нужен радиатор . Примерная площадь - 30−40 см². Здесь будет рассеиваться до 10 Вт

Многие китайские производители пытаются экономить буквально на каждой мелочи. Этого нужно избегать, если нужно более или менее достойное качество. В самодельной схеме есть подстроечник на 1 кОм. Он нужен для точной установки тока. На выходе - резистор на 4,7 Ом. Он рассеивает тепло. Светодиод оповестит об окончании зарядки

Полученная плата управления - примерно со спичечный коробок. Она вполне уместится в заводской коробке. Радиатор для транзистора выносить наружу нет необходимости. Достаточно движения воздуха внутри корпуса

Импульсные

Аналоговые устройства долго заряжаются: в среднем - 3−5 часов. Хотя для бытовых целей это не страшно. Другое дело - профессиональная сфера, где «время - деньги». Стоит такая продукция - соответствующе, в наборе обычно два аккумулятора.

Профессионалы чаще используют импульсные зарядные устройства. Они обладают интеллектуальной схемой управления процессом . Время полной зарядки впечатляет: около одного часа. Конечно, можно сделать такой же быстрый аналоговый зарядник, но тогда впечатлять будут его вес и размеры.

Импульсные устройства компактны и безопасны. Высокие качества требуют продуманной, сложной схемы. Однако можно повторить и ее. Схема ниже подходит для работы с никель-кадмиевыми аккумуляторами с третьим сигнальным контактом.

Применяется известный контроллер MAX713. Входное напряжение -25 В. Источник питания - простой , поэтому его схемы здесь нет.

Полученное в итоге зарядное для шуруповерта «отличается умом и сообразительностью». Оно проверяет напряжение и включает режим ускоренного заряда. Аккумулятор готов примерно через 1−1,5 часа. Схема позволяет выбирать:

  • напряжение заряда;
  • тип батареи.

На ней указано значение резистора (R 19) для переключения режимов и положение перемычек. Используя предложенный рисунок, можно отремонтировать поломку. Дополнительным стимулом станет финансовый вопрос. Экономия как минимум в два раза.

Зарядка при неисправном аккумуляторе

Иногда бывает так, что сам шуруповерт работает, но сломался аккумулятор. Есть несколько вариантов решения проблемы:

Модели с разным напряжением

Мало определиться с типом зарядника и маркой производителя, для приобретения нужно знать еще напряжение своего шуруповерта. Самые распространенные варианты - 12, 14 и 18 В.

Зарядки на 12 В

Цепь может состоять из транзисторов до 4,4 пФ. Это видно на схеме зарядного устройства для шуруповерта 12 вольт. Проводимость в цепи - 9 мк. Конденсаторы нужны , чтобы контролировать скачки тактовой частоты. Применяемые резисторы - обычно полевые. У зарядных устройств на тетродах есть дополнительный фазовый резистор. Он защищает от электромагнитных колебаний.

Зарядки на 12 В работают с сопротивлением до 30 Ом. Нередко их можно встретить на аккумуляторах на 10 мАч. Среди известных производителей чаще применяет Makita.

Зарядки на 14 В

На схеме видно, что для зарядок на 14 В нужно пять транзисторов. Другие особенности цепи:

  • микросхема подходит только четырехканальная;
  • конденсаторы - импульсные;
  • для работы с аккумуляторами на 12 мАч нужны тетроды;
  • два диода;
  • проводимость - около 5 мк;
  • средняя емкость резистора - не более 6,3 пФ.

Устройства, созданные по схеме, выдерживают ток до 3,3 А. Триггеры включаются в цепь редко. Исключением является продукция Bosch. У изделий Makita триггеры с успехом заменяются волновыми резисторами.

Зарядки на 18 В

Зарядное устройство для шуруповерта 18 вольт использует в схеме лишь транзисторы переходного типа. К другим особенностям изделий относятся:

  • три конденсатора;
  • тетрод и диодный мост;
  • сеточный триггер;
  • проводимость тока - около 5,4 мк, иногда для ее увеличения применяются хроматические резисторы.

Использование трансиверов повышенной проводимости является особенностью отечественной компании «Интерскол». Токовая нагрузка может доходить до 6 А. Makita часто использует в своих моделях дипольные транзисторы высокого качества.

Какой бы производитель шуруповерта ни был выбран, проблему с заменой зарядного устройства можно легко решить. Для этого достаточно хотя бы знать некоторые особенности своего инструмента.

Как изготовить самодельное зарядное устройство для шуруповерта? В строительном деле главным помощником является шуруповерт. Без него очень сложно в работе по сборке мебели, при закручивании всяких болтиков и гаек. И если он перестает работать, то сразу возникают проблемы.

Можно, конечно, пойти в магазин и купить готовое зарядное устройство, но цена порой очень кусается. Иногда и цена подходит, но нужной модели аккумулятора нет, и тогда остается один выход – создать самому зарядное устройство.

Какие бывают типы аккумуляторов? Чаще всего на рынке можно встретить никель-кадмиевые аккумуляторы. Они привлекают покупателей своими размерами и приемлемой ценой.

Этот вид аккумулятора очень эффективен тем, что его можно очень часто заряжать, только до полного заряда. Но у него есть один недостаток, такой вид токсичный, поэтому от него отказались в Европе.

Следующим видом является никель-металл-гидридный, с точки зрения экологии он вполне безопасен. Эти батареи можно не использовать очень долго, но при необходимости нужно постоянно перезаряжать. Еще одним из популярных видов является литий-ионный аккумулятор, минус которого состоит в том, что этот вид плохо переносит низкие температуры воздуха, а цена очень высокая на данный вид товара.

Как сделать зарядное устройство шуруповерта

Для самодельного зарядного устройства вам понадобятся следующие материалы и инструменты:

  • зарядный стакан;
  • испорченная батарея;
  • два провода длиной по 15 см;
  • паяльник;
  • отвертка;
  • дрель;
  • термопистолет.

Приступают к сборке аккумулятора:

Берут зарядный стакан и аккуратно вскрывают, с помощью паяльника оклеивают клеммы и всю электронику.

Затем берут испорченную батарею и с помощью паяльника отпаивают клеммы с плюса и минуса. Для дальнейшей работы не забудьте маркером на крышке батареи пометить, где был плюс и минус.

В подготовленном стакане делают отметки, где будут проходить проводки.

С помощью дрели делают отверстия, если нужно, то с помощью лезвия подгоняют по размеру.

Проводки пропускают через готовые отверстия, берут дрель и припаивают проводки к стакану (очень важно соблюдать полярность).

Для того чтобы разъем батареи не развалился, внутрь вставляют предварительно сделанную имитацию батареи из картона.
Крышку от батареи с помощью термопистолета прикрепляют к зарядному стакану.

И самым последним действием будет прикрепить нижнюю крышку к зарядному стакану.

Зарядное устройство готово, теперь его нужно вставить в переходник, а переходник в аккумулятор.

Вернуться к оглавлению

Устройство для шуруповерта из USB источника

Вам понадобятся такие материалы и инструменты:

  • шуруповерт;
  • розетка или гнездо от прикуривателя в автомобиле;
  • usb зарядное устройство;
  • предохранитель с машины на 10 А;
  • соединения разъемные обжимные;
  • краска;
  • изолента;
  • скотч.

Приступают к работе:

Для начала разберите шуруповерт на все мелкие детали, вам не понадобится статор, якорь, редуктор и вся верхняя часть.
С помощью ножа отрежьте верхний корпус от ручки.

Следующим этапом будет работа с дрелью, нужно в боковой части ручки просверлить отверстие и немного его заточить. Тут будет находиться предохранитель.

Возьмите провода с обжимными концами и соедините их с предохранителем.

В корпусе от ручки шуруповерта нужно закрепить предохранитель с проводами с помощью клея из пистолета.

Когда это все сделали, подсоединяете к разъему батареи.
В верхней части шуруповерта монтируете обжимные провода к розетке от прикуривателя и, чтобы все хорошо закрепить, используете клеевой пистолет.

Чтобы все хорошо зафиксировать, обмотайте скотчем весь корпус ручки.
Собираете весь шуруповерт и все хорошо соединяете изолентой.

Для эстетичного вида нужно отшлифовать зашпаклеванную часть и все покрыть краской.