18 в чем опасность нейтронного облучения. Природа, источники, механизм взаимодействия с веществом, особенности воздействия на организм человека нейтронного излучения. Контрольная работа по дисциплине

Нейтронное излучение возникает при ядерных реакциях (в ядерных реакторах, промышленных и лабораторных установках, при ядерных взрывах). Свободный нейтрон - это нестабильная, электрически нейтральная частица с временем жизни около 15 минут (880.1 ± 1.1 секунд ).

При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гамма-квантов .

При упругих взаимодействиях возможна обычная ионизация вещества. Проникающая способность нейтронов очень велика по причине отсутствия заряда и, как следствие, слабого взаимодействия с веществом. Проникающая способность нейтронов зависит от их энергии и состава атомов вещества, с которыми они взаимодействуют. Слой половинного ослабления лёгких материалов для нейтронного излучения в несколько раз меньше, чем для тяжёлых. Тяжёлые материалы, например металлы, хуже ослабляют нейтронное излучение, чем гамма-излучение. Условно нейтроны в зависимости от кинетической энергии разделяются на быстрые (до 10 МэВ), сверхбыстрые, промежуточные, медленные и тепловые. Нейтронное излучение обладает большой проникающей способностью. Медленные и тепловые нейтроны вступают в ядерные реакции, в результате могут образовываться стабильные или радиоактивные изотопы.

Защита

Быстрые нейтроны плохо поглощаются любыми ядрами, поэтому для защиты от нейтронного излучения применяют комбинацию замедлитель-поглотитель. Наилучшие замедлители - водородсодержащие материалы. Обычно применяют воду, парафин , полиэтилен . Также в качестве замедлителей применяют бериллий и графит . Замедленные нейтроны хорошо поглощается ядрами бора , кадмия .

Поскольку поглощение нейтронного излучения сопровождается гамма-излучением, необходимо применять многослойные экраны из различных материалов: свинец-полиэтилен, сталь - вода и т. д. В ряде случаев для одновременного поглощения нейтронного и гамма-излучений применяют водные растворы гидроксидов тяжёлых металлов, например железа Fe(OH) 3 .

Радиоактивное излучение, взаимодействуя с облучаемой средой, образует ионы разных знаков. Этот процесс называется ионизацией и обусловлен действием на облучаемую среду ядер атомов гелия (α-частицы), электронов и позитронов (β-частицы), а также незаряженных частиц (корпускулярное и нейтронное излучение), электромагнитного (γ-излучение), фотонного (характеристическое, тормозное и рентгеновское) и другого излучений. Ни один из этих видов радиоактивного излучения не воспринимается органами чувств человека.

Нейтронное излучение является потоком электронейтральных частиц ядра. Так называемое вторичное излучение нейтрона, когда он сталкивается с каким-либо ядром или электроном, оказывает сильное ионизирующее воздействие. Ослабление нейтронного излучения эффективно осуществляется на ядрах лёгких элементов, особенно водорода, а также на материалах, содержащих такие ядра - воде, парафине, полиэтилене и др.

В качестве защитного материала часто используют парафин, толщина которого для Ро-Be- и Ро-В-источников нейтронов будет примерно в 1,2 раза меньше, чем толщина водной защиты. Следует отметить, что нейтронное излучение радиоизотопных источников часто сопровождается γ-излучением, поэтому необходимо проверять, обеспечивает ли защита от нейтронов также защиту от γ-излучения. Если не обеспечивает, то необходимо вводить в защиту компоненты с высоким атомным номером (железо, свинец).

При внешнем облучении основную роль играют гамма- и нейтронное излучение. Альфа- и бета-частицы составляют главный поражающий фактор радиоактивных облаков, образуемых продуктами деления, остатками расщепляющегося материала и вторично активированными веществами при ядерном взрыве, однако эти частицы легко поглощаются одеждой и поверхностными слоями кожи. Под действием медленных нейтронов в организме создаётся наведенная радиоактивность , которая была обнаружена в костях и других тканях многих людей, умерших в Японии от лучевой болезни.

Нейтронная бомба

Нейтронная бомба отличается от «классических» видов ядерного оружия - атомной и водородной бомб - прежде всего мощностью. Она имеет мощность около 1 кт ТНТ, что в 20 раз меньше мощности бомбы, сброшенной на Хиросиму, и примерно в 1000 раз меньше больших (мегатонных) водородных бомб. Ударная волна и тепловое излучение, возникающие при взрыве нейтронной бомбы, в 10 раз слабее, чем при воздушном взрыве атомной бомбы типа «Хиросима». Так, взрыв нейтронной бомбы на высоте 100 м над землёй, вызовет разрушения только в радиусе 200-300 м. Губительное для всего живого действие оказывает излучение быстрых нейтронов, плотность потока которых при взрыве нейтронной бомбы в 14 раз выше, чем при взрыве «классических» ядерных бомб. Нейтроны убивают всё живое в радиусе 2,5 км. Поскольку нейтронное излучение создаёт короткоживущие радиоизотопы , к эпицентру взрыва нейтронной бомбы можно «безопасно» приблизиться - по утверждению её создателей - уже через 12 ч. Для сравнения укажем, что водородная бомба надолго заражает радиоактивными веществами территорию радиусом около 7 км.

Напишите отзыв о статье "Нейтронное излучение"

Примечания

Литература

  • Амиров Я. С. Безопасность жизнедеятельности. Кн2. Ч2, 1998, 270 с.
  • Атаманюк В. Г. Гражданская оборона, 1987, 288 с.
  • Белов С. В. Безопасность жизнедеятельности 2000, 2000, 345 с.
  • Кушелев В. П. Охрана труда в нефтеперерабатывающей и нефтехимической промышленности (нет 87-88, 157-158 стр.), 1983, 472 с.
  • Панов Г. Е. Охрана труда при разработке нефтяных и газовых месторождений, 1982, 248 с.
  • Еремин В. Г. Методы и средства обеспечения безопасности труда в машиностроении, 2000, 328 с.
  • Карпов Б. Д. Справочник по гигиене труда, 1976, 536 с.
  • Кокорев Н. П. Гигиена труда на производстве Изд.2, 1973, 160 с.
  • Патолин О. Ф. Радиационная безопасность при промышленной дефектоскопии, 1977, 136 с.
  • Тёльдеши Ю.N. Радиация - угроза и надежда, 1979, 416 с.
  • Белов С. В. Средства защиты в машиностроении Расчет и проектирование Справочник, 1989, 366 с.
  • Шрага М. Х. Основы токсикологи (для инженерных специальностей), 2003, 211 с.
  • Гринин А. С. Безопасность жизнедеятельности, 2002, 288 с.
  • Ушаков К. З. Безопасность жизнедеятельности - Учебник для вузов, 2000, 427 с.
  • Починок А. П. Энциклопедия по безопасности и гигиене труда Т2, 2001, 926 с.
  • Кушелев В. П. Охрана труда в нефтеперерабатывающей и нефтехимической промышленности, 1983, 472 с.
  • Макаров Г. В. Охрана труда в химической промышленности, 568 с.

Отрывок, характеризующий Нейтронное излучение

– Вы очень пылки, Бельяр, – сказал Наполеон, опять подходя к подъехавшему генералу. – Легко ошибиться в пылу огня. Поезжайте и посмотрите, и тогда приезжайте ко мне.
Не успел еще Бельяр скрыться из вида, как с другой стороны прискакал новый посланный с поля сражения.
– Eh bien, qu"est ce qu"il y a? [Ну, что еще?] – сказал Наполеон тоном человека, раздраженного беспрестанными помехами.
– Sire, le prince… [Государь, герцог…] – начал адъютант.
– Просит подкрепления? – с гневным жестом проговорил Наполеон. Адъютант утвердительно наклонил голову и стал докладывать; но император отвернулся от него, сделав два шага, остановился, вернулся назад и подозвал Бертье. – Надо дать резервы, – сказал он, слегка разводя руками. – Кого послать туда, как вы думаете? – обратился он к Бертье, к этому oison que j"ai fait aigle [гусенку, которого я сделал орлом], как он впоследствии называл его.
– Государь, послать дивизию Клапареда? – сказал Бертье, помнивший наизусть все дивизии, полки и батальоны.
Наполеон утвердительно кивнул головой.
Адъютант поскакал к дивизии Клапареда. И чрез несколько минут молодая гвардия, стоявшая позади кургана, тронулась с своего места. Наполеон молча смотрел по этому направлению.
– Нет, – обратился он вдруг к Бертье, – я не могу послать Клапареда. Пошлите дивизию Фриана, – сказал он.
Хотя не было никакого преимущества в том, чтобы вместо Клапареда посылать дивизию Фриана, и даже было очевидное неудобство и замедление в том, чтобы остановить теперь Клапареда и посылать Фриана, но приказание было с точностью исполнено. Наполеон не видел того, что он в отношении своих войск играл роль доктора, который мешает своими лекарствами, – роль, которую он так верно понимал и осуждал.
Дивизия Фриана, так же как и другие, скрылась в дыму поля сражения. С разных сторон продолжали прискакивать адъютанты, и все, как бы сговорившись, говорили одно и то же. Все просили подкреплений, все говорили, что русские держатся на своих местах и производят un feu d"enfer [адский огонь], от которого тает французское войско.
Наполеон сидел в задумчивости на складном стуле.
Проголодавшийся с утра m r de Beausset, любивший путешествовать, подошел к императору и осмелился почтительно предложить его величеству позавтракать.
– Я надеюсь, что теперь уже я могу поздравить ваше величество с победой, – сказал он.
Наполеон молча отрицательно покачал головой. Полагая, что отрицание относится к победе, а не к завтраку, m r de Beausset позволил себе игриво почтительно заметить, что нет в мире причин, которые могли бы помешать завтракать, когда можно это сделать.
– Allez vous… [Убирайтесь к…] – вдруг мрачно сказал Наполеон и отвернулся. Блаженная улыбка сожаления, раскаяния и восторга просияла на лице господина Боссе, и он плывущим шагом отошел к другим генералам.
Наполеон испытывал тяжелое чувство, подобное тому, которое испытывает всегда счастливый игрок, безумно кидавший свои деньги, всегда выигрывавший и вдруг, именно тогда, когда он рассчитал все случайности игры, чувствующий, что чем более обдуман его ход, тем вернее он проигрывает.
Войска были те же, генералы те же, те же были приготовления, та же диспозиция, та же proclamation courte et energique [прокламация короткая и энергическая], он сам был тот же, он это знал, он знал, что он был даже гораздо опытнее и искуснее теперь, чем он был прежде, даже враг был тот же, как под Аустерлицем и Фридландом; но страшный размах руки падал волшебно бессильно.
Все те прежние приемы, бывало, неизменно увенчиваемые успехом: и сосредоточение батарей на один пункт, и атака резервов для прорвания линии, и атака кавалерии des hommes de fer [железных людей], – все эти приемы уже были употреблены, и не только не было победы, но со всех сторон приходили одни и те же известия об убитых и раненых генералах, о необходимости подкреплений, о невозможности сбить русских и о расстройстве войск.
Прежде после двух трех распоряжений, двух трех фраз скакали с поздравлениями и веселыми лицами маршалы и адъютанты, объявляя трофеями корпуса пленных, des faisceaux de drapeaux et d"aigles ennemis, [пуки неприятельских орлов и знамен,] и пушки, и обозы, и Мюрат просил только позволения пускать кавалерию для забрания обозов. Так было под Лоди, Маренго, Арколем, Иеной, Аустерлицем, Ваграмом и так далее, и так далее. Теперь же что то странное происходило с его войсками.
Несмотря на известие о взятии флешей, Наполеон видел, что это было не то, совсем не то, что было во всех его прежних сражениях. Он видел, что то же чувство, которое испытывал он, испытывали и все его окружающие люди, опытные в деле сражений. Все лица были печальны, все глаза избегали друг друга. Только один Боссе не мог понимать значения того, что совершалось. Наполеон же после своего долгого опыта войны знал хорошо, что значило в продолжение восьми часов, после всех употрсбленных усилий, невыигранное атакующим сражение. Он знал, что это было почти проигранное сражение и что малейшая случайность могла теперь – на той натянутой точке колебания, на которой стояло сражение, – погубить его и его войска.
Когда он перебирал в воображении всю эту странную русскую кампанию, в которой не было выиграно ни одного сраженья, в которой в два месяца не взято ни знамен, ни пушек, ни корпусов войск, когда глядел на скрытно печальные лица окружающих и слушал донесения о том, что русские всё стоят, – страшное чувство, подобное чувству, испытываемому в сновидениях, охватывало его, и ему приходили в голову все несчастные случайности, могущие погубить его. Русские могли напасть на его левое крыло, могли разорвать его середину, шальное ядро могло убить его самого. Все это было возможно. В прежних сражениях своих он обдумывал только случайности успеха, теперь же бесчисленное количество несчастных случайностей представлялось ему, и он ожидал их всех. Да, это было как во сне, когда человеку представляется наступающий на него злодей, и человек во сне размахнулся и ударил своего злодея с тем страшным усилием, которое, он знает, должно уничтожить его, и чувствует, что рука его, бессильная и мягкая, падает, как тряпка, и ужас неотразимой погибели обхватывает беспомощного человека.

C евастопольский Национальный Университет ядерной энергии и промышленности

Контрольная работа по дисциплине

Радиационная безопасность

Тема: Природа, источники, механизм взаимодействия с веществом, особенности воздействия на организм человека нейтронного излучения

Выполнил:

Студент заочного отделения

Факультета ЯХТ

Бурак Л.А.

Севастополь

Введение

Нейтрон был открыт в 1932 году. Открытие нейтрона было поворотным пунктом в исследовании ядерных реакций. Так как нейтроны лишены заряда, то они без препятствия проникают в атомные ядра и вызывают их превращения. Итальянский физик Ферми, который первым начал изучать реакции, вызываемые нейтронами, обнаружил, что ядерные превращения вызываются даже медленными нейтронами, движущимися с тепловыми скоростями. Практическое использование внутриядерной энергии оказалось возможным благодаря тому, что фундаментальным фактом ядерного деления является испускание в процессе деления двух-трёх нейтронов. Энергия освобождённых в процессе деления нейтронов имеет различное значение- от нескольких миллионов электрон-вольт до совсем малых, близких к нулю.Только в ядрах нейтрон за счёт взаимодействия с другими нуклонами приобретает стабильность. Свободный же нейтрон живёт в среднем 16 мин. Это было экспериментально доказано лишь после того, как были построены ядерные реакторы, дающие мощные пучки нейтронов.

Радиоактивность – способность радионуклидов спонтанно превращаться в атомы других элементов, вследствие перехода ядра с одного энергетического состояния в другое, что сопровождается ионизирующим излучением. В нормальном состоянии соотношение между количеством нейтронов и протонов в ядре строго определенное. Расстояние между ними, их энергия связи – минимальные, ядро устойчивое. В результате облучения нейтронами (или другими частицами), ядро переходит в возбужденное состояние. Через промежуток времени оно переходит в устойчивое состояние, а избыточная энергия превращается в радиоактивное излучение ядра. Процесс перехода ядер из неустойчивого в устойчивое состояние с излучением избыточной энергии называется радиоактивным распадом.

1. Природа, источники, механизм взаимодействия с веществом, особенности воздействия на организм человека нейтронного излучения

1 .1 Нейтронное излучение

Основными видами радиоактивных излучений при распаде ядер являются:

· гамма – излучение;

· бета – излучение;

· альфа – излучение;

· нейтронное излучение.

Нейтронное излучение . Нейтроны излучаются ядрами при ядерных реакциях, когда полученная извне ядром энергия бывает достаточная для разрушения связи нейтрона с ядром, в результате деления ядер урана. Не имея заряда, нейтроны не взаимодействуют с электрическими полями электронов и ядер при прохождении через вещество и беспрепятственно движутся до столкновения с ядром. А так как размеры ядер неизмеримо меньше самих атомов, то столкновения очень редки и длина свободного пробега даже в твердых телах достигает несколько сантиметров (в воздухе сотни метров).

Рассматривают три вида взаимодействия нейтронов с веществом:

· упругое рассеяние на ядрах – когда часть энергии нейтрона передается ядру, другая часть остается у рассеянного нейтрона. При упругом рассеянии внутренняя энергия ядра не изменяется, она лишь приобретает кинетическую энергию;

· неупругое рассеяние на ядрах – когда внутренняя энергия отдачи изменяется. Ядро становится возбужденным и возвращаясь в нормальное состояние может испустить гамма-квант;

· захват нейтронов ядрами – при захвате нейтронов ядрами образуется сильно возбужденное ядро, которое, возвращаясь в нормальное состояние, может испустить различные частицы.

По энергии нейтроны делятся на тепловые, промежуточные и быстрые. Для защиты от нейтронного излучения применяются материалы, обладающие высокой замедляющей и поглощающей способностью – вода, парафин, графиты, бор, кадмий и т.д.

Основным источником нейтронов является работающий реактор. Под действием нейтронов в реакторе происходит активация теплоносителя, конструкционных материалов, а также продуктов коррозии оборудования и трубопроводов. Образующиеся при этом радиоактивные изотопы являются источниками гамма- и бета – излучений. При делении урана в реакторе образуются осколочные продукты деления обладающие, в основном, гамма- и бета- активностью, а также газообразные продукты деления.

1 .2 Источники излучений на АЭС

Вне зависимости от типа реактора, установленного на АЭС, и ее технологической схемы основными источниками излучения на АЭС являются активная зона реактора, трубопроводы и оборудование технологического контура, бассейны выдержки с отработанным ядерным топливом, системы спецводоочистки и их оборудование, сама защита реактора.

Рис.1 Источники нейтронов.

Источники нейтронов в активной зоне работающего реактора можно подразделить на четыре группы:

· мгновенные нейтроны, т.е. нейтроны, сопровождающие процесс деления ядер горючего;

· запаздывающие нейтроны - испускаются сильно возбужденными ядрами осколков деления;

· нейтроны активации - испускаются при радиоактивном распаде продуктов некоторых ядерных реакций;

· фотонейтроны - образуются в результате (γ, n)-реакций на некоторых ядрах.

Наибольший вклад в дозу облучения, при работе реактора на мощности, вносят мгновенные нейтроны.

Источники нейтронов. Мгновенные нейтроны образуются практически одновременно с делением ядра. Среднее число мгновенных нейтронов при делении 235 U, 233 U, 239 Pu равно 2,5 ±0,03, 2,47 ± 0,03 и 2,9 ± 0,04 соответственно. Запаздывающие нейтроны образуются в количестве, существенно меньшем (0,002 - 0,007 нейтр./деление), и испускаются некоторыми продуктами деления с периодами полураспада 0,18 - 54,5 с.

Энергетическое распределение мгновенных и запаздывающих нейтронов описывается различными эмпирическими формулами, но чаще формулой:

где S(E n) - количество нейтронов.

E n - энергия нейтронов, МэВ.

В области энергий от 4 до 12 МэВ - наиболее важной с точки зрения радиационной зашиты-спектр нейтронов деления можно описать простой экспонентой:

S(E n) = 1,75 ехр (- 0,776 E n), (2)

погрешность этого соотношения не более 15%.

Для целей радиационной защиты необходимо иметь интегральный спектр нейтронов деления, то есть количество нейтронов в спектре нейтронов деления (1) с энергией, превышающей E n:

Для профилактической работы спектр нейтронов деления (рис. 6.2) и интегральный спектр нейтронов деления (рис. 6.3) представляют в виде таблиц, в которых S(E n) и χ(Ε n) нормированы на единицу. Наиболее вероятная энергия нейтронов деления 0,6 - 0,8 МэВ, а средняя - 2 МэВ, максимальная принимается равной 12 МэВ.

В результате взаимодействия нейтронов, образовавшихся при делении с ядрами элементов, входящих в состав активной зоны (упругое и неупругое рассеяние, поглощение, деление), спектр нейтронов деления (рис. 6.2) деформируется и приобретает вид, показанный на рис. 4. В области энергий, соответствующих группе быстрых нейтронов, он практически не отличается от спектра нейтронов деления, в промежуточной области энергий - это спектр замедляющихся нейтронов, то есть 1/E n - спектр, а в тепловой и надтепловой областях энергии - спектр Максвелла. Естественно, что на рис.4 показан принципиальный вид спектра, реальный зависит от состава активной зоны, и информацию о нем, так же как и о спектре нейтронов утечки из активной зоны и их количестве (плотности потока нейтронов на поверхности активной зоны), можно получить из результатов расчета физических характеристик активной зоны.

Рис. 4. Спектр нейтронов в активной зоне ядерного реактора.

1.3 Защитные свойства материалов от нейтронного излучения

Защитные свойства материалов от нейтронного излучения определяются их замедляющей и поглощающей способностью, степенью активации. Быстрые нейтроны наиболее эффективно замедляются веществами с малым атомным номером, такими как графит и водородсодержащие вещества (легкая и тяжелая вода, пластмассы, полиэтилен, парафин). Для эффективного поглощения тепловых нейтронов применяются материалы, имеющие большое сечение поглощения: соединения с бором - борная сталь, бораль, борный графит, карбид бора, а также кадмий и бетон (на лимонитовых и других рудах, содержащих связанную воду).

Вода используется не только как замедлитель нейтронов, но и как защитный материал от нейтронного излучения вследствие высокой плотности атомов водорода. После столкновений с атомами водорода быстрый нейтрон замедляется до тепловой энергии, а затем поглощается средой. При поглощении тепловых нейтронов ядрами водорода по реакции H(n,γ)D, возникает захватное γ-излучение с энергией E =2,23 МэВ. Захватное γ-излучение можно значительно снизить, если применить борированную воду. В этом случае тепловые нейтроны поглощаются бором по реакции B(n,α)Li, а захватное излучение имеет энергию E = 0,5 МэВ. Водяную защиту выполняют в виде заполненных водой секционных баков из стали или других материалов.

Кадмий хорошо поглощает нейтроны с энергией меньше 0,5 эВ. Листовой кадмий толщиной 0,1 см снижает плотность потока тепловых нейтронов в 10 9 раз. При этом возникает захватное γ-излучение с энергией до 7,5 МэВ. Кадмий не обладает достаточно хорошими механическими свойствами. Поэтому чаще применяют сплав кадмия со свинцом, который наряду с хорошими защитными свойствами от нейтронного и γ-излучений имеет лучшие механические свойства по сравнению с чистым кадмием.

Бетон является основным материалом для защиты от излучений, если масса и размер защиты не ограничиваются другими условиями. Бетон, применяющийся для защиты от излучений, состоит из заполнителей, связанных между собой цементом. В состав цемента в основном входят окислы кальция, кремния, алюминия, железа и легкие ядра, которые интенсивно поглощают γ-излучение и замедляют быстрые нейтроны в результате упругого и неупругого столкновений. Ослабление плотности потока нейтронов в бетоне зависит от содержания воды в материале защиты, которое определяется в основном типом используемого бетона. Поглощение нейтронов бетонной защитой может быть значительно увеличено введением соединения бора в состав материала защиты. Конструкция бетонной защиты может быть монолитной (для больших реакторов) или состоять из отдельных блоков (небольших реакторов).

1 .4 Дозиметрия нейтронного излучения

Процессы взаимодействия нейтронов с веществом определяются энергией нейтронов и атомным составом поглощающей среды. Для регистрации нейтронов используют различные виды вторичных излучений, возникающих в результате ядерных реакций или рассеяния нейтронов на ядрах с передачей им энергии. Тепловые и надтепловые нейтроны регистрируют с использованием реакций 10 В(n, α) 7 Li, 6 Li(n, α) 3 Н, 3 Не(n, р) 3 Н, а также деления тяжелых ядер 235 U и 239 Pu.

Пропорциональные счетчики. Если реакция с бором происходит внутри пропорционального счетчика, то результирующие ядра 4 He и 7 Li, разлетающиеся с энергией соответственно 1,6 и 0,9 МэВ, могут быть легко зарегистрированы. Обычно нейтронные пропорциональные счетчики имеют достаточно толстые стенки, счетчики могут заполняться газом BF 3 , в котором 10 B входит в молекулу. Тонкий слой твердого вещества B 4 C может наноситься на внутреннюю поверхность стенки счетчика(в этом случае в ионизации участвует только одна из частиц, так как другая поглощается стенкой). Поэтому камеры с газовым заполнением BF 3 более эффективны, чем камеры с твердым слоем B 4 C.Отметим, что вероятность захвата быстрых нейтронов ядром 10 B очень мала. Только тепловые нейтроны захватываются с высокой вероятностью. С другой стороны быстрые нейтроны становятся тепловыми при замедлении. Детектор тепловых нейтронов можно превратить в детектор быстрых, окружив его слоем замедлителя нейтронов, веществом с большим содержанием водорода (например, парафин). Такие"всеволновые" детекторы выполняются из 2- 3 водородсодержащих коаксиальных цилиндрических слоев с внутренним расположением борного счетчика или из нескольких полиэтиленовых шаров различных диаметров - замедлителей, надеваемых на детектор так, чтобы он находился в центре шара.

Рис5 Всеволновой счетчик

Конструкция всеволнового счетчика, который может регистрировать нейтроны в диапазоне от 0,1 до 5 МэВ с постоянной эффективностью, показана на рис5. Счетчик состоит из двух цилиндрических парафиновых блоков (1), вставленных один в другой (диаметр 380 и 200 мм, длина 500 и 350 мм соответственно), между которыми находится экран (2), состоящий из слоя B 2 O 3 . Экран и внешний цилиндрический парафиновый блок предназначены для уменьшения чувствительности всеволнового счетчика к рассеянным нейтронам, поступающим не с правого торца счетчика. Внутри парафиновых блоков устанавливают пропорциональный борный счетчик (4), который с правого торца закрывается кадмиевым колпачком (5) для экранировки от прямого пучка тепловых нейтронов. Для увеличения эффективности регистрации медленных нейтронов в торцевой части парафина по окружности высверлено несколько отверстий (3). Быстрые нейтроны проникают в парафин, где они замедляются и регистрируются счетчиком. При плотности потока нейтронов1 нейгр /(см 2 ·с) скорость счета всеволнового счетчика достигает 200отсч /мин Эффективность борного счетчика h, зависящую от длины рабочего объема l , энергиинейтронов E n и давления газа p , можно определить по формуле:

η = 1 - ехр(-0,07 р l /E n 1/2) (4)

При p = 0,1 МПа, l = 20см, E n = 0,0253 эВ, η = 0,9

Камеры деления. Для регистрации нейтронов любых энергий можно использовать деление тяжелых ядер в камерах деления, например 235 U и 239 Pu. Сечения деления для них изменяются незначительно в большом диапазоне энергий нейтронов и имеют наибольшие значения по сравнению с сечениями деления для других радионуклидов. Во избежание самопоглощения продуктов деления, делящееся вещество наносится тонким слоем (0,02 - 2 мг/см 2) на электроды ионизационной камеры, заполненной аргоном(0,5 - 1,0 МПа).

Рис. 6. Камера деления с высокой эффективностью.

По сравнению с борными счетчиками камеры деления более долговечны и могут работать при высокой температуре. Эффективность камер деления с 235 U равна 0,6%, те значительно ниже, чем для борных счетчиков. Для увеличения чувствительности камер деления к нейтронному излучению необходимо увеличить поверхность электродов камеры. Камера деления с высокой эффективностью имеющая четыре концентрических алюминиевых электрода показана на рис6.


Рис. 7. Сцинтилляционный счетчик нейтронов с шаровым замедлителем.

Для измерения потока нейтронов в интервале энергий от 10 -2 до 10 7 эВ можно применить сцинтилляционный детектор (рис. 7), который состоит из ФЭУ(4) с экраном(5), предусилителя (6), световода (3), сцинтиллятора 6 LiI(Eu) (2) со сменными полиэтиленовыми шаровыми замедлителями (1).

Трековые дозиметрические детекторы. В дозиметрии нейтронного излучения нашли применение твердотельные трековые детекторы в чувствительном объеме которых регистрируется число треков заряженных частиц. Дозиметрическое применение этих детекторов основано на связи числа треков с дозой излучения.

Активационный метод дозиметрии нейтронов В результате ядерныхреакций,протекающих под действием нейтронов, образовываются радиоактивные ядра При использовании активационного метода измеряют наведенную активность детектора А, равную

где λ - постоянная распада образующихся радиоактивных ядер;

N t -число радиоактивных ядер в единице объема детектора при его облучении в течение времени t;

n - число ядер нуклида мишени в единице объема;

φ(E) . dE - плотность потока нейтронов, имеющих энергию в интервале от E до E+dE;

σ(Ε) - сечение активации для нейтронов с энергией E в веществе детектора. Пределы интегрирования E 1 и E 2 соответствуют нижней и верхней границам энергии в спектре нейтронов.

Детекторы нейтронов прямой зарядки. Для измерения плотности потока нейтронов в активной зоне реактора применяются детекторы нейтронов прямой зарядки(ДПЗ). Эти детекторы основаны на первичных эффектах: захвате нейтронов и β-распаде(захват нейтронов сопровождается мгновенным испусканием γ-излучения и эмиссией из возбужденных ядер высокоэнергетических электронов); выходе электроновотдачи и фотоэлектронов при поглощении внешнего γ-излучения.

Индивидуальные дозиметры нейтронов.

В качестве примера приведём индивидуальный аварийный дозиметр.Для определения доз при аварийных облучениях персонала, обслуживающего ядерные реакторы, критические сборки и другие системы, где имеется вероятность непредвиденных превышений критической массы, разработаны термолюминесцентные итрековые детекторы нейтронов, входящие в комплект индивидуальных аварийных дозиметров ГНЕЙС, рис 8.

Рис 8 Конструкция аварийного дозиметра β-, γ- и нейтронного излучения ГНЕЙС

1 - бета-дозиметр, 2 - крышка кассеты индивидуального дозиметра ГНЕЙС, 3 - булавка, 4 - целлулоид, 5 - фотография с инициалами и фамилией, 6-дозиметр промежуточных и быстрых нейтронов, 7 - дозиметры γ~излучения, 8 - дозиметры тепловых нейтронов, 9 - корпус кассеты индивидуального дозиметра ГНЕЙС.

1.5 Влияние нейтронного излучения на организм человека

Внешнее облучение всего тела, с учетом его вклада в индивидуальные и коллективные дозы является основным на АЭС. Его источники: это γ-излучение ядерного реактора, технологических контуров, оборудования с радиоактивными средами и любые поверхности, загрязненные радиоактивными веществами. Существенно меньший вклад во внешнее облучение персонала АЭС вносят нейтронное и β-излучение. Человек в процессе своей жизни подвергается облучению как от естественных (природных), так и от искусственных (созданных человеком в результате его деятельности) источников ионизирующих излучений. Из искусственных источников радиации наибольшее значение имеет облучение в процессе медицинских процедур (рентгенодиагностика, рентгено- и радиотерапия). Средняя индивидуальная доза за счет этого источника составляет около 1,4 мЗв в год. Облучение населения за счет глобальных радиоактивных выпадений, после прекращения ядерных испытаний в атмосфере в 1963 г. стали уменьшаться, и годовые дозы составили 7% дозы от естественных источников в 1966 г., 2% в 1969 г., 1 % в начале 80-х годов. Следует отметить, что телезритель у цветного телевизора получает среднюю годовую дозу около 0,25 мЗв, что составляет 25% естественного фона.

Эксплуатация АЭС при нормальных режимах приводит к средней эффективной эквивалентной дозе персонала промышленных реакторов равной 7,5 - 10 мЗв/год, а для населения, проживающего вблизи АЭС к средней дозе 0,002-0,01 мЗв/год.

Эти цифры отражают ситуацию при нормальной эксплуатации АЭС. Однако всегда существует опасность аварий, последствия которых могут привести к значительно большим поражениям населения. Возможные величины этих поражений иллюстрируют последствия аварии на Чернобыльской АЭС.

Первое наблюдение установило, что при воздействии ионизирующего излучения на клетку поглощение ничтожного количества энергии может давать значительный биологический эффект. Например, смертельная доза ионизирующего излучения для млекопитающих равна 10 Гр. Поглощенная энергия соответствующая этой дозе повышает температуру человеческого тела не более, чем на 0,0001 0 C. Причиной гибели организма обычно является поражение какого-либо одного органа, критического в данной ситуации. В диапазоне доз 3 - 9 Гр критической является кровеносная система. Гибель облученного организма наблюдается на 7 -15 сутки после лучевого воздействия. Поражение кроветворения проявляется и при не смертельных лучевых поражениях. При этом снижается количество тромбоцитов, что является одной из причин кровоточивости.

При увеличении дозы радиации до 10 -100 Гр, организмы погибают на 3 - 5 сутки, то есть тогда, когда "костномозговой синдром" еще не успел развиться. Это происходит из- за того, что выходит из строя другой критический орган - кишечник. Он поражается и при меньших дозах, в диапазоне, когда гибель происходит из-за угнетения кроветворения, но при этом "синдром кишечника" не определяет исхода лучевой болезни, хотя и усугубляет ее тяжесть.

При еще больших дозах радиации (200 -1000 Гр), непосредственной причиной гибели облученного организма является массовое разрушение клеток центральной нервной системы. И если построить кривую зависимости сроков гибели облучаемых организмов от дозы облучения, на ней будут отчетливо наблюдаться три характерных участка, соответствующих диапазонам "костномозговой", "кишечной" и "нервной" форм гибели.

Репродуктивная система более радиоустойчива. Тем не менее, в соответствии с законом Бергонье и Трибонда производство сперматозоидов (молодых клеток спермы) у мужчин понижается или прекращается при низких дозах. Доза 250 бэр на гонады (половые органы) приводит к временной стерильности на период до года. Для полной стерильности необходима Доза от 500 до 600 бэр.

Доза 170 бэр на женские гонады приводит к стерильности на период 1- 3 года. Полная стерильность наступает при дозе 300-600 бэр, в зависимости от возраста.

Действие ионизирующего излучения на организм условно можно разделить на соматические и генетические. Соматические эффекты проявляются у самого облученного, а генетические - у его потомства. Разнообразные формы проявления поражающего действия радиации на организм называют лучевой болезнью. С другой стороны, многочисленные исследования радиобиологов показали: малые дозы радиации не только не оказывают угнетающего действия, а наоборот, во многих случаях даже стимулируют жизнедеятельность живых систем (гормезес). В частности у млекопитающих наблюдается: ускоренное развитие, повышенная устойчивость к неблагоприятным условиям, увеличение численности потомства и т.д. По мнению некоторых радиобиологов стимулирующее действие малых доз на человека доказано многими исследованиями (радоновые ванны). По их мнению, вся сумма имеющихся фактов единодушно подтверждает, хотя и не доказывает: существует реальный биологический порог действия ионизирующей радиации.

Литература

1. Мякишев Г.Я. Буховцев Б.Б. Физика. Москва.Просвещение.1976,366с.

2. Популярная медицинская энциклопедия. Гл.ред. Б.В.Петровский.Москва.Советская энциклопедия.1987.704с.

3. Борнников В.К., Волошко В.П., Копчинський Г.А., Штеййнберг Н.А. Состояние и проблемы ядерной енергетики Украины // Вісник інженерної академії України. – 1998 . - №2

Нейтронное излучение - это ядерное излучение, состоящее из потоков нейтронов. Основным источником нейтронов различных энергий служит ядерный реактор (см. Реакторы ядерные). При взаимодействии с тканями нейтронное излучение производит ионизацию среды. Так как нейтроны не несут электрического заряда (см.Атом), ионизация осуществляется за счет вторичных ядерных частиц (протоны и др.), образующихся в результате ядерных реакций. В зависимости от энергии нейтроны разделяются на медленные с энергией до 100 кэв и быстрые с энергией до 10 Мэв. Медленные нейтроны легко захватываются ядрами атомов среды, при этом образуются сильно ионизирующие вторичные частицы. Это свойство медленных нейтронов используют в нейтронозахватной терапии (см. Нейтронная терапия). Благодаря отсутствию электрического заряда нейтроны проходят в веществе значительные расстояния. В связи с этим при облучении нейтронами больших по объему объектов достигается высокая степень равномерности дозного поля. Медленные и быстрые нейтроны могут вызывать деление ядер таких тяжелых элементов, какплутоний(см.),торий(см.),уран(см.). Такие реакции деления находят широкое использование в различных отраслях промышленности.

38.Гамма-излучение.

Гамма-излучение (гамма-лучи) - это электромагнитное излучениес длиной волны менее 1А, распространяющееся со скоростью света; возникает гамма-излучение при распаде ядер некоторых естественных и искусственно-радиоактивных изотопов (см.), торможении заряженных частиц и других ядерных реакциях. В настоящее время в медицине в качестве источников гамма-излучения (гамма-излучателей) используют в основном искусственно-радиоактивныеизотопы(радиоактивные кобальт Со 60 , цезий Cs 137 и Cs 134 ,сереброAg 111 , тантал Ta 182 ,иридийIr 192 , натрий Na 24 и др.). Из естественно-радиоактивных источников гамма-излучений используют (в курортологии)радонRn 222 ,радийRa 226 и радий-мезоторий MsTh 228 (в онкологической практике). Энергия гамма-квантов радиоактивных изотопов варьирует от 0,1 до 2,6 Мэв. Энергия гамма-квантов одних изотопов (Со 60 , Cs 137 , Tu 170) однородна, других (радий, тантал и др.) - имеет широкий спектр. Для лечебных целей необходимо гомогенное излучение (одной и той же энергии); поэтому применяют металлические фильтры для поглощения бета-частиц (см.Бета-излучение) и мягкого гамма-излучения. Дляфильтрациимягкого бета-излучения достаточны фильтры из никеля, алюминия толщиной 0,1 мм. Для поглощения бета-частиц большей энергии и мягкого гамма-излучения необходимы фильтры из платины,золотатолщиной 0,5-1 мм. Гамма-излучение, как и другие виды ионизирующих излучений, при взаимодействии с тканями организма вызывает ионизацию и возбуждениеатомови молекул, в результате чего возникают радиационно-химические реакции. Они вызывают изменения морфологических и функциональных свойств клеток, в первую очередь опухолевых, так как при лучевой терапии излучение всегда сосредоточивают в области опухоли. При достаточно высоких дозах излучения происходит гибель опухолевых клеток и замещение их рубцовой тканью. См. такжеГамма-терапия, Излучения ионизирующие.

Радиация представляет собой ионизирующее излучение, наносящее непоправимый вред всему окружающему. Страдают люди, животные, растения. Самая большая опасность заключается в том, что она не видима человеческим глазом, поэтому важно знать об ее главных свойствах и воздействии, чтобы защититься.

Радиация сопровождает людей всю жизнь. Она встречается в окружающей среде, а также внутри каждого из нас. Огромнейшее воздействие несут внешние источники. Многие наслышаны об аварии на Чернобыльской АЭС, последствия которой до сих пор встречаются в нашей жизни. Люди оказались не готовы к такой встрече. Это лишний раз подтверждает, что в мире есть события неподвластные человечеству.


Виды радиации

Не все химические вещества устойчивы. В природе существуют определенные элементы, ядра которых трансформируются, распадаясь на отдельные частички с выделением огромного количества энергии. Это свойство называется радиоактивностью. Ученые в результате исследований обнаружили несколько разновидностей излучения:

  1. Альфа излучение — это поток тяжелых радиоактивных частиц в виде ядер гелия, способных нанести наибольший вред окружающим. К счастью, им свойственна низкая проникающая способность. В воздушном пространстве они распространяются всего на пару сантиметров. В ткани их пробег составляет доли миллиметра. Таким образом, внешнее излучение не несет опасности. Можно защититься, используя плотную одежду или лист бумаги. А вот внутреннее облучение – внушительная угроза.
  2. Бета излучение – поток легких частичек, перемещающихся в воздухе на пару метров. Это электроны и позитроны, проникающие в ткань на два сантиметра. Оно несет вред при соприкосновении с кожей человека. Однако большую опасность дает при воздействии изнутри, но меньшую, чем альфа. Для предохранения от влияния этих частиц, используются специальные контейнеры, защитные экраны, определенное расстояние.
  3. Гамма и рентгеновское излучение – это электромагнитные излучения, пронизывающие тело насквозь. Защитные средства от такого воздействия включает создание экранов из свинца, возведение бетонных конструкций. Наиболее опасное из облучений при внешнем поражении, так как оказывает влияние весь на организм.
  4. Нейтронное излучение состоит из потока нейтронов, обладающих более высоким показателем проникающей способности, чем гамма. Образуется в результате ядерных реакций, протекающих в реакторах и специальных исследовательских установках. Появляется во время ядерных взрывов и находится в отходах утилизированного топлива от ядерных реакторов. Броня от такого воздействия создается из свинца, железа, бетона.

Всю радиоактивность на Земле можно поделить на два основных вида: естественную и искусственную. К первой относятся излучения из космоса, почвы, газов. Искусственная же появилась благодаря человеку при использовании атомных электростанций, различного оборудования в медицине, ядерных предприятий.


Естественные источники

Радиоактивность естественного происхождения всегда находилась на планете. Излучение присутствует во всем, что окружает человечество: животные, растения, почва, воздух, вода. Считается, что этот небольшой уровень радиации, не оказывает вредного воздействия. Хотя, некоторые ученые придерживаются иного мнения. Так как люди не имеют возможности повлиять на эту опасность, следует избегать обстоятельств, увеличивающих допустимые значения.

Разновидности источников естественного происхождения

  1. Космическое излучение и солнечная радиация — мощнейшие источники, способными ликвидировать все живое на Земле. К счастью, планета защищена от этого воздействия атмосферой. Однако люди постарались исправить это положение, развивая деятельность, приводящую к образованию озоновых дыр. Не стоит надолго попадать под прямые солнечные лучи.
  2. Излучение земной коры опасно вблизи месторождений различных минералов. Сжигая уголь или используя фосфорные удобрения, радионуклиды активно просачиваются внутрь человека с вдыхаемым воздухом и употребляемой им едой.
  3. Радон – это радиоактивный химический элемент, присутствующий в строительных материалах. Представляет собой бесцветный газ без запаха и вкуса. Этот элемент активно накапливается в почвах и выходит наружу вместе с добычей полезных ископаемых. В квартиры он попадает вместе с бытовым газом, а также с водопроводной водой. К счастью, его концентрацию легко уменьшить, постоянно проветривая помещения.

Искусственные источники

Данный вид появился благодаря людям. Его действие увеличивается и распространяется с их помощью. Во время начала ядерной войны не так страшна сила и мощность оружия, как последствия радиоактивного излучения после взрывов. Даже если вас не зацепит взрывная волна или физические факторы — вас добьет радиация.


К искусственным источникам относятся:

  • Ядерное оружие;
  • Медицинское оборудование;
  • Отходы с предприятий;
  • Определенные драгоценные камни;
  • Некоторые старинные предметы, вывезенные из опасных зон. В том числе из Чернобыля.

Норма радиоактивного излучения

Ученым удалось установить, что радиация по-разному оказывает влияние на отдельные органы и весь организм в целом. Для того чтобы оценить ущерб, возникающий при хроническом облучении ввели понятие эквивалентной дозы. Она рассчитывается по формуле и равна произведению полученной дозы, поглощенной организмом и усредненной по конкретному органу или всему организму человека, на весовой множитель.

Единицей измерения эквивалентной дозы есть соотношение Джоуля к килограммам, которое получило название – зиверт (Зв). С её использованием была создана шкала, позволяющая понять о конкретной опасности излучения для человечества:

  • 100 Зв. Моментальная смерть. У пострадавшего есть несколько часов, максимум пару дней.
  • От 10 до 50 Зв. Получивший повреждения такого характера погибнет через несколько недель от сильного внутреннего кровотечения.
  • 4-5 Зв. При попадании данного количества, организм справляется в 50% случаев. В остальном печальные последствия приводят к смерти спустя пару месяцев из-за повреждений костного мозга и нарушения кровообращения.
  • 1 Зв. При поглощении такой дозы лучевая болезнь неизбежна.
  • 0,75 Зв. Изменения в системе кровообращения на небольшой промежуток времени.
  • 0,5 Зв. Данного количества достаточно, чтобы у больного развились онкологические заболевания. Остальные симптомы отсутствуют.
  • 0,3 Зв. Такое значение присуще аппарату для проведения рентгена желудка.
  • 0,2 Зв. Допустимый уровень для работы с радиоактивными материалами.
  • 0,1 Зв. При таком количестве происходит добыча урана.
  • 0,05 Зв. Данное значение – норма облучения медицинских аппаратов.
  • 0,0005 Зв. Допустимое количество уровня радиации около АЭС. Также это значение годового облучения населения, которое приравнивается к норме.

К безопасной дозе радиации для человека относится значения до 0,0003-0,0005 Зв в час. Предельно допустимым считается облучение в 0,01 Зв в час, если такое воздействие непродолжительно.

Влияние радиации на человека

Радиоактивность оказывает огромное влияние на население. Вредному воздействию подвергаются не только люди, столкнувшиеся лицом к лицу с опасностью, но и последующее поколение. Такие обстоятельства вызваны действием радиации на генетическом уровне. Различают два вида влияния:

  • Соматический. Заболевания возникают у пострадавшего, получившего дозу радиации. Приводит к появлению лучевой болезни, лейкозу, опухоли разнообразных органов, локальные лучевые поражения.
  • Генетический. Связан с дефектом генетического аппарата. Проявляется в последующих поколениях. Страдают дети, внуки и более далекие потомки. Возникают генные мутации и хромосомные изменения

Помимо отрицательного воздействия, есть и благоприятный момент. Благодаря изучению радиации, ученым удалось создать на ее основе медицинское обследование, позволяющее спасать жизни.


Мутация после радиации

Последствия облучения

При получении хронического облучения в организме происходят восстановительные мероприятия. Это приводит к тому, что пострадавший приобретает меньшую нагрузку, чем получил бы при разовом проникновении одинакового количества радиации. Радионуклиды размещаются внутри человека неравномерно. Чаще всего страдают: дыхательная система, пищеварительные органы, печень, щитовидка.

Враг не дремлет даже спустя 4-10 лет после облучения. Внутри человека может развиться рак крови. Особую опасность он представляет у подростков, не достигших 15 лет. Замечено, что смертность людей, работающих с оборудованием для проведения рентгена, увеличена из-за лейкоза.

Самым частым результатом облучения проявляется лучевая болезнь, возникающая как при однократном получении дозы, так и при длительном. При большом количестве радионуклидов приводит к смерти. Распространен рак молочной и щитовидной желез.

Страдает огромное количество органов. Нарушается зрение и психическое состояние потерпевшего. У шахтеров, участвующих в добыче урана, часто встречается рак легких. Внешние облучения вызывают страшные ожоги кожных и слизистых покровов.

Мутации

После воздействия радионуклидов возможно проявление двух типов мутаций: доминантной и рецессивной. Первая возникает сразу же после облучения. Второй тип обнаруживается спустя большой промежуток времени не у пострадавшего, а у его последующего поколения. Нарушения, вызванные мутацией, приводят к отклонениям в развитии внутренних органов у плода, внешним уродствам и изменением психики.

К сожалению, мутации достаточно плохо изучены, так как обычно проявляются не сразу. Спустя время сложно понять, что именно оказало главенствующее влияние на её возникновение.

Бета-излучения

Бета-частицы – поток электронов или позитронов, испускаемых ядрами радиоактивных элементов при бета-распаде. Электрон (b – -частица) имеет массу m e = 9,109´10 -31 кг и отрицательный заряд e = 1,6´10 -19 Кл. Позитрон (b + -частица) – элементарная частица с положительным электрическим зарядом, античастица по отношению к электрону . Массы электрона и позитрона равны, а их электрические заряды и магнитные моменты равны по абсолютной величине, но противоположны по знаку. Позитрон стабилен, но в веществе существует лишь короткое время (доли секунды) из-за аннигиляции с электронами.

Бета-частицы одного и того же радиоактивного элемента обладают различным запасом энергии. Это объясняется природой бета-распада радиоактивных ядер, при котором образующаяся энергия распределяется между дочерним ядром, бета-частицей и нейтрино в различных соотношениях. Таким образом, энергетический спектр бета-частиц сложный и непрерывный. Максимальная энергия лежит в пределах от 0,018 до 13,5 МэВ. Бета-распад может происходить не только на основной уровень, но и на возбужденные уровни дочернего ядра. Поток бета-частиц называется бета-излучением. В результате электронного бета-распада исходное ядро превращается в новое ядро, масса которого остается прежней, а заряд увеличивается на единицу, при этом появляется частица – антинейтрино:

Позитронный бета-распад приводит к образованию ядра с прежней массой и зарядом, уменьшенным на единицу, при этом образуется нейтрино:


Нейтрино от антинейтрино отличается направлением спина по отношению к импульсу.

К бета-распаду относится еще один вид превращения ядер – электронный захват , при котором ядро притягивает к себе один из электронов, расположенных на внутренних орбитах атома (чаще К-слоя):

;

Место захваченного электрона сразу же заполняется электроном с более высокого уровня, при этом испускается рентгеновское излучение. Ядро же такого атома остается неизменным по массе, превращается в новое ядро с зарядом, уменьшенным на единицу.

Часто один и тот же радионуклид подвергается одновременно нескольким типам распада. Например, К-40 претерпевает электронный распад и электронный захват (К-захват).

Таким образом, при всех видах бета-распада массовое число ядра остается без изменения, а зарядовое число изменяется на единицу.

При взаимодействии бета-частиц с веществом происходит ионизация и возбуждение атомов, при этом бета-частицы передают атомам свою кинетическую энергию и рассеиваются. Потеря бета-частицей энергии при каждом акте взаимодействия с веществом сопровождается уменьшением ее скорости до тепловой скорости движения вещества. Отрицательная бета-частица при этом либо остается в виде свободного электрона, либо присоединяется к нейтральному атому или положительному иону, превращая первый в отрицательный ион, а второй – в нейтральный атом. Положительная бета-частица (позитрон) в конце своего пути, сталкиваясь с электроном, соединяется с ним и аннигилирует.



Многократные изменения направления бета-частицы при ее взаимодействии с веществом приводят к тому, что глубина проникновения ее в вещество – длина пробега – оказывается значительно меньше истиной длины пути бета-частицы в веществе, а ионизация носит объемный характер.

Средняя величина удельной ионизации – линейная плотность ионизации – в воздухе зависит от энергии бета-частиц и составляет 100–300 пар ионов на 1 см пути, а максимальный пробег в воздухе достигает нескольких метров, в биологической ткани – сантиметры, в металлах – десятки мкм. Скорость движения бета-частиц в воздухе близка к скорости света (250000–270000 км/с).

Для защиты от бета-излучения используются: стекло, алюминий, плексиглас, полимеры – материалы, состоящие из элементов с малым порядковым номером.

Толщина слоя вещества, в котором происходит полное поглощение бета-частиц, соответствует максимальной длине пробега – длине пробега бета-частиц, имеющих наибольшую энергию в данном спектре, может быть определена по формуле

где R max – максимальная длина пробега (толщина слоя), см; E max – максимальная энергия бета-частиц в спектре, МэВ; r – плотность вещества, г/см 3 .

Потеря энергии бета-частицами и рассеяние их в веществе приводят к постепенному ослаблению потока бета-частиц, которое выражается экспоненциальной зависимостью

, (3.4)

где N – число бета-частиц, прошедших слой вещества толщиной R в единицу времени; N 0 – начальное число бета-частиц, падающих в единицу времени на поглощающий слой; m л – линейный коэффициент поглощения, см -1 ; R – толщина поглощающего слоя, см.


Нейтронные излучения

Свободные нейтроны образуются в процессе спонтанного деления ядра, под которым понимается его расщепление, т.е. распад на два осколка, сумма масс которых примерно равна массе исходного ядра. Возникающие в процессе деления ядер нейтроны имеют энергию около 2 МэВ.

235 92 U + 1 0 n – 56 144 Ва + 89 36 Кr + 2 0 1 n + Q

Нейтрон (n) – элементарная, электрически нейтральная частица с массой m n = 1,6748´10 -27 кг. Нейтрон в свободном состоянии нестабилен, он самопроизвольно превращается в протон с испусканием электрона и антинейтрино: 1 0 ; время жизни нейтронов составляет около 16 мин.

Около 1 % нейтронов испускаются возбужденными осколками деления исходного ядра. При этом изменяется энергетическое состояние ядра-осколка с уменьшением массового числа на единицу:

.

Такие превращения происходят после завершения процесса деления ядра за время от долей до десятков секунд. Нейтроны, испускаемые спустя период времени порядка секунды после акта деления, называются запаздывающими . Энергия запаздывающих нейтронов – около 0,5 МэВ.

Нейтроны, взаимодействуя с веществом, либо рассеиваются, либо захватываются ядрами атомов вещества. Различаются рассеяние упругое и неупругое и радиационный захват с испусканием заряженных частиц.

Упругим называется такое рассеяние, при котором нейтрон, столкнувшись с ядром атома, передает ему часть кинетической энергии и отскакивает от ядра, изменив направление своего движения, с уменьшенной энергией. При столкновениях переданная нейтроном ядру энергия превращается в кинетическую энергию ядра, которое приходит в движение и называется ядром отдачи (рис.7) . Ядра отдачи, получившие от нейтрона достаточно большую энергию, могут оказаться выбитыми из атомов и будут взаимодействовать с веществом как заряженные частицы, производя ионизацию.

Наибольшую энергию нейтрон теряет при взаимодействии с ядрами, равными или близкими ему по массе. Так как при этом происходит замедление нейтронов, то особенно эффективными замедлителями являются легкие элементы (водород, бериллий, графит). Вероятность упругого рассеяния растет с уменьшением энергии нейтрона и заряда ядра.

Рис. 7. Упругое столкновение нейтрона с ядром

Неупругим рассеянием называется такое взаимодействие нейтрона с ядром, когда нейтрон проникает в него, выбивая из него один из нейтронов меньшей энергии и другого направления, чем первоначальный, и переводит ядро в возбужденное состояние, из которого оно очень быстро переходит в основное состояние с испусканием гамма-кванта (рис. 8).

Неупругое рассеяние характерно для взаимодействия нейтронов достаточно больших энергий с ядрами тяжелых элементов.

Рис. 8. Неупругое столкновение нейтрона с ядром

Явление, при котором нейтрон, проникая в ядро, образует более тяжелый изотоп взаимодействующего с ним ядра, называется захватом нейтронов . Ядро, захватившее нейтрон, переходит в возбужденное состояние и, возвращаясь в основное состояние, испускает один или несколько гамма-квантов с энергией порядка мегаэлектронвольт или заряженные частицы (рис. 9).

Захват нейтрона ядром сопровождается с испусканием гамма-квантов по следующей схеме:

0 1 n + 13 27 Al – 13 28 Al *

13 28 Al * –– 13 28 Al +гамма-квант

Захват нейтронов ядрами становится возможен благодаря тому, что не имея заряда и не испытывая вследствие этого отталкивающего электрического воздействия со стороны ядра, нейтрон способен приблизиться к нему на такие небольшие расстояния, на которых сказываются ядерные силы притяжения. Вероятность захвата возрастает для нейтронов малых энергий вследствие большего времени нахождения нейтрона вблизи ядра.

Рис. 9. Захват нейтрона ядром

Основной качественной характеристикой нейтронного излучения является энергетический спектр – распределение нейтронов по энергиям. При этом различают следующие энергетические спектры нейтронов: медленные с энергией до 0,5 эВ, промежуточные – с энергией от 0,5 эВ до 200 кэВ, быстрые – с энергией от 200 кэВ до 20 МэВ и сверхбыстрые – с энергией свыше 20 МэВ.

Нейтронное излучение является косвенно ионизирующим, это объясняется тем, что нейтроны практически не взаимодействуют с электронными оболочками атомов и непосредственно не ионизируют атомы. Нейтроны движутся в веществе без потери энергии, пока не встретятся с ядрами.

Проникающая способность нейтронов в воздухе сотни метров и сравнима с проникающей способностью гамма-излучений, или даже больше ее. В воздухе нейтрон проходит около 300 метров между двумя последовательными столкновениями, а в более плотных жидких и твердых веществах – около 1 см.


Гамма-излучения

Гамма-излучение – коротковолновое электромагнитное излучение, испускаемое возбужденными атомными ядрами. Гамма-излучение наблюдается при радиоактивном распаде атомных ядер и ядерных реакциях. Испускание гамма–лучей не приводит к превращениям элементов и поэтому не считается видом радиоактивных превращений. Гамма-излучение лишь сопровождает некоторые радиоактивные превращения, в которых ядра образуются в возбужденных состояниях. Возбужденные ядра в течение 10 -12 с переходят в основное состояние, испуская избыток энергии в виде гамма-кванта. Иногда ядро последовательно испускает ряд гамма-квантов, переходя каждый раз в менее возбужденное состояние, пока не станет стабильным. Это явление получило название каскадного излучения .

Гамма-кванты не обладают ни зарядом, ни массой покоя. Их испускание не приводит к образованию ядер новых элементов. Возбужденное и стабильное ядро одного элемента отличается только энергией, т.е. при гамма-переходах изменение заряда Z и массового числа А не происходит. Излучение гамма-кванта является процессом, самопроизвольно происходящим в ядрах и характеризующим свойства ядер.

Если значком * обозначить возбужденное состояние ядра, то процесс излучения гамма-кванта hn можно записать так:

,

где h – постоянная Планка (h = 6,626´10 –34 Дж×с); n – частота электромагнитных волн.

Излученные ядром гамма-кванты характеризуются большой энергией, каждый из них может быть обнаружен и зарегистрирован приборами. При радиоактивном распаде ядер обычно наблюдаются гамма-кванты с энергией от 10 кэВ до 5 МэВ, при ядерных реакциях встречаются гамма-кванты с энергиями до 20 МэВ. В современных ускорителях получают гамма-кванты с энергией до 20 ГэВ.

Гамма-излучение ядерного взрыва образуется непосредственно в процессе деления ядер U или Pu. Его источником являются также осколки деления, испускающие гамма-квант при переходе из возбужденного состояния в основное.

Среди процессов взаимодействия гамма-квантов с веществом наибольшую вероятность имеют: фотоэффект, комптоновское рассеяние и образование пары электрон-позитрон.

Процесс взаимодействия гамма-кванта с веществом, при котором гамма-квант полностью поглощается атомом вещества и выбивает из атома электрон, называется фотоэлектрическим эффектом (фотоэффектом). Фотоэффект чаще происходит при малых значениях энергии гамма-квантов и резко уменьшается с ее увеличением.

При энергии гамма-квантов от 0,2 до 1 МэВ наиболее вероятным становится процесс взаимодействия гамма-кванта с одним из внешних электронов. В процессе этого взаимодействия гамма-квант передает электрону часть своей энергии, которая переходит в кинетическую энергию электрона (Е е) и расходуется вторичным электроном на ионизацию атомов вещества. Соответственно уменьшается энергия гамма-кванта (Е g), при этом изменяется направление его движения. Процесс уменьшения энергии гамма-квантов и рассеяния их электронами получил название Комптон-эффекта (неупругое рассеяние) (рис.11).

При взаимодействии гамма-квантов с электромагнитным полем ядра он может прекратить свое существование как гамма-квант и превратиться в две частицы: электрон и позитрон. Такой процесс взаимодействия гамма-квантов с веществом называется образованием пар электрон-позитрон . Такое взаимодействие возможно, если гамма-квант имеет энергию, равную или большую 1,02 МэВ. Это объясняется тем, что энергия покоя электрона и позитрона соответственно равна 0,51 МэВ, то на их образование расходуется 1,02 МэВ.

Рис.10. Фотоэффект Рис. 11. Эффект Комптона

Вся избыточная энергия, которой обладает гамма-квант сверх 1,02 МэВ, сообщается поровну в виде кинетической энергии электрону и позитрону. Возникающие при образовании пары электрон и позитрон расходуют свою кинетическую энергию на ионизацию среды, после чего позитрон аннигилирует, соединяясь с одним из имеющихся в среде свободных электронов (рис. 12).

В отличие от альфа- и бета-частиц, непосредственно ионизирующих атомы, гамма-кванты во всех случаях, взаимодействуя с веществом, вызывают появление в нем свободных вторичных электронов и позитронов, которые производят ионизацию.

Рис. 12. Образование электронно-позитронной пары

Для гамма-излучения характерна очень низкая вероятность взаимодействия с веществом. Это означает, что фотоэффект, комптоновское рассеяние и образование электронно-позитронных пар при прохождении гамма-излучения через вещество проходят достаточно редко.

Ионизирующая способность гамма-квантов при одинаковой энергии гамма-квантов и заряженных частиц и при одинаковой взаимодействующей среде в тысячи раз меньше, чем ионизирующая способность заряженных частиц.

В воздухе линейная плотность ионизации гамма-квантов составляет 2-3 пары ионов на 1 см пути. Проникающая способность гамма-квантов в воздухе сотни метров.

Ослабление (поглощение) интенсивности гамма-излучения в веществе определяется по закону Бугера:

, (3.5)

где I – интенсивность гамма-излучения на глубине R в веществе; I 0 – интенсивность гамма-излучения при входе в вещество; m – линейный коэффициент ослабления.

Коэффициент m состоит из коэффициента поглощения при фотоэффекте m ф, коэффициента ослабления при комптон-эффекте m к и коэффициента поглощения при образовании электронно-позитронных пар m пар:

. (3.6)

Коэффициент m зависит не только от энергии гамма-квантов, но и от плотности и среднего атомного номера вещества среды. Поэтому поглощение гамма-квантов веществом удобнее выражать через массовый коэффициент ослабления m m = m/r. Тогда получим

. (3.7)


. Доза излучения – это количество энергии ионизирующего излучения, поглощенного единицей массы облучаемой среды. Различают поглощенную, экспозиционную и эквивалентную дозы излучения.

Поглощенной дозой излучения (D) называется количество энергии любого вида ионизирующего излучения, поглощенное единицей массы любого вещества:

, (3.8)

где dЕ – поглощенная энергия излучения; dm – масса облучаемого вещества.

Эта величина позволяет дать количественную оценку действия различных видов излучения в различных средах. Она не зависит от объема и массы облучаемого вещества и определяется главным образом ионизирующей способностью и энергией излучений, свойствами поглощающего вещества и продолжительностью облучения.

При определении дозы в биологическом объекте нужно учитывать внешнее и внутреннее облучение, так как радиоактивные вещества могут попасть в организм с пищей, водой и вдыхаемым воздухом. В этом случае облучение внутренних органов происходит не только гамма-, но также альфа- и бета-излучением.

Поглощенная доза является количественной мерой воздействия ионизирующего излучения на вещество. За единицу измерения поглощенной дозы принят грей (Гр) - поглощенная доза излучения, соответствующая энергии 1 джоуль ионизирующего излучения любого вида, переданной облученному веществу массой 1 кг: 1 Гр = 1 Дж/кг.

На практике применяется внесистемная единица – рад (Rad – по первым буквам английского словосочетания "radiation absorbet dose"). Доза в 1 рад означает, что в каждом грамме вещества, подвергшегося облучению, поглощено 100 эрг энергии. 1 рад = 100 эрг/г = = 0,01 Дж/кг = 0,01 Гр, т.е. 1 Гр = 100 рад (1 эрг = 10 Дж).

Поглощенная доза излучения зависит от свойств излучения и поглощающей среды. Для заряженных частиц (альфа -, бета-частиц, протонов) небольших энергий, быстрых нейтронов и некоторых других излучений, когда основными процессами их взаимодействия с веществом является непосредственная ионизация и возбуждение, поглощенная доза служит однозначной характеристикой ионизирующего излучения по его взаимодействию со средой. Это связано с тем, что между параметрами, характеризующими ионизирующую способность излучения в среде, и поглощенной дозой, можно установить адекватные прямые зависимости.

Для рентгеновского и гамма-излучений таких зависимостей не наблюдается, т.к. эти виды излучений косвенно ионизирующие. Следовательно, поглощенная доза не может служить характеристикой этих излучений по их воздействию на среду.