Смазки полимочевины при превышении температуры. Пластичные подшипниковые смазки SKF. Недостатки альтернативных смазок

Даже самый лучший подшипник может полностью соответствовать своим характеристикам только в том случае, если он правильно смазан. При этом очень важен правильный выбор смазочного материала, SKF а также интервалов и методов смазывания. Понимая это, специалисты компании SKF, мирового лидера в производстве подшипников качения, обратили особое внимание на процесс смазывания подшипников. Инженеры SKF отводят пластичной смазке роль важнейшего компонента подшипникового узла, наряду с такими его элементами как вал и корпус.

Обширный опыт SKF в производстве подшипников качения явился основой для разработки целого ряда специальных смазочных материалов, высочайшее качество которых стало результатом непрерывных испытаний и постоянного изучения свойств материалов. Строгие стандарты и испытательные параметры, разработанные в инженерно-исследовательском центре SKF, стали общепризнанными стандартами для смазочных материалов подшипников. Широкий ассортимент смазочных материалов SKF является результатом многих десятилетий научных исследований и разработок. Каждый тип смазки создан специально для использования в конкретной области применения.

Высокотемпературные смазки SKF позволяют обеспечить работоспособность узла при температурах до 260 градусов.

LGGB 2
"Зеленая" биоразрушаемая малотоксичная смазка для подшипников
Сельскохозяйственные и лесозаготовительные машины
Строительные и дорожные машины
Горнодобывающее оборудование
Оборудование для ирригации и водоснабжения
Машины для ухода за газонами
Замки, шлюзы и мосты
Шарниры и головки штоков
Аттракционы
Другие области применения, где нежелательно загрязнение окружающей среды
LGWM 1
Антизадирная низкотемпературная подшипниковая смазка SKF
Ветроустановки
Шнековые конвейеры

Загуститель (мыло)
Загуститель (мыло) - это компонент, который удерживает масло и/или присадки вместе, обеспечивая тем самым рабочие свойства пластичной смазки. Загуститель производится на основе мыла либо других веществ. От типа загустителя зависят свойства смазки.
В качестве загустителей используются литиевые, кальциевые, натриевые, бариевые или алюминиевые мыла. Кроме того, используются органические или неорганические вещества - полимочевина, силикагель и глина бентонит.

Примечание: высококачественная, высокотемпературная пластичная смазка SKF LGHP 2 не является обычной смазкой на основе полимочевины. Это пластичная смазка на основе димочевины, которая имеет положительные результаты испытаний на совместимость с литиевыми и литиевыми комплексными смазками.

Базовое масло
Базовое масло - это масло, которое входит в состав пластичной смазки и обеспечивает смазывание в рабочих условиях. Наиболее часто в качестве базового применяется минеральное масло.
Синтетические масла применяются только для очень специфических условий работы, например, для работы при очень низких или очень высоких температурах. Базовое масло обычно составляет более 70% от общего объема пластичной смазки.

Вязкость базового масла
Вязкость базового масла - это сопротивление сдвигу слоев жидкости, обычно характеризующееся кинематической вязкостью, которая определяется как время, необходимое для вытекания определенного объема жидкости через стандартное отверстие при заданной температуре. Кинематическая вязкость смазочных масел обычно определяется при +40 °C (иногда при +100 °C) и измеряется в 1мм 2 /с=сСт (Сантистокс).

Присадки
Присадки необходимы для придания пластичной смазке определенных свойств (например, противоизносных, антикоррозийных, антифрикционных и противозадирных), предотвращающих повреждения подшипников при граничном и смешанном смазывании

Консистенция/пенетрация
Мера “густоты” пластичной смазки.
Консистенцию пластичной смазки классифицируют согласно классам NLGI (Национальный Институт Пластичных Смазок США). Консистенция определяется пенетрацией (глубиной погружения) стандартного конуса в исследуемую смазку при температуре +25 °C за пять секунд. Пенетрация измеряется по шкале с шагом 0,1 мм; более “мягкие” смазки имеют большую величину пенетрации. Данный метод регламентирован стандартами DIN ISO 2137.

Классификация пластичных смазок по классу консистенции NLGI

Пенетрация (10 -1 мм)

Состояние при комнатной температуре

очень жидкая

полужидкая

очень мягкая

полутвердая

очень твердая

сверхтвердая

Система классификации DIN 51825
Пластичные смазки подшипников качения могут быть классифицированы в соответствии с DIN 51825.
Объяснения по коду KP2G-20 даны в приведенных далее таблицах.

Область применения DIN 51825

Смазка для подшипников

Смазка для закрытых узлов

Смазка для открытых узлов

Смазка для пары подшипник/уплотнение

Дополнительная информация

Присадки ЕР

Твердые смазки

(см. классификацию NLGI)

Верхняя рабочая температура и устойчивость к воде

(см. следующую таблицу)

Нижняя рабочая температура

Третья литера в обозначении

Верхняя рабочая температура (°С)

Устойчивость к воде DIN 51807

0 - 40 до 1 - 40

2 - 40 до 3 - 40

0 - 40 до 1 - 40

2 - 40 до 3 - 40

0 - 90 до 1 -9 0

2 - 90 до 3 - 90

0 - 90 до 1 - 90

2 - 90 до 3 - 90

Нет требований

Нет требований

Нет требований

Нет требований

Нет требований

Нет требований

Температура каплепадения
Температура каплепадения - это температура, при которой пластичная смазка начинает свободно стекать с образованием капель, измеряется по стандарту DIN ISO 2176. Температура каплепадения не является допустимой рабочей температурой пластичной смазки.

Механическая стабильность
Консистенция смазки подшипников качения не должна значительно меняться в процессе работы. Для оценки механической стабильности пластичной смазки в зависимости от условий работы применяется описанный ниже тест.

Продолжительная пенетрация
Образец пластичной смазки помещается в пенетрометр, после чего осуществляется 100 000 погружений конуса. Затем
измеряется пенетрация пластичной смазки. Изменение пенетрации пластичной смазки после 60 погружений и после 100 000 погружений измеряется в 10-1 мм.

Стабильность при перекатывании
Консистенция пластичных смазок при качении не должна изменяться в течении всего срока службы подшипников. Оценку стабильности консистенции при перекатывании проводят, помещая заданное количество смазки в цилиндрический сосуд, внутрь которого помещают ролик, соприкасающийся со стенкой сосуда. Цилиндр с роликом вращается в течение 2 часов при комнатной температуре. Данный метод регламентирован стандартом ASTM D 1403. В SKF модифицировали эту методику, изменяя условия испытаний в соответствии с условиями эксплуатации и увеличивая время испытания до 72 или 100 часов при 80 или 100°C. После окончания испытаний пластичная смазка охлаждается до комнатной температуры, затем оценивается ее пенетрация. Изменение пенетрации до и после испытаний измеряется в 10-1 мм.

Испытания на машине SKF V2F
Пластичная смазка испытывается на механическую стабильность следующим образом:
Испытательная машина состоит из железнодорожной буксы, подверженной ударной нагрузке от падающего груза. Частота падения - 1 Гц, ускорение - 12-15 g. Испытания проводятся на двух частотах вращения - 500 и 1000 об/мин. Пластичная смазка вытекает из буксы через лабиринтные уплотнения и собирается в специальном лотке. Если после 72 часов испытаний при 500 об/мин вытекло менее 50 грамм смазки, проводятся следующие 72 часа испытаний при 1000 об/мин. Если за время двойного испытания (72 часа при 500 об/мин и 72 часа при 1000 об/мин) вытекло не более 150 г пластичной смазки - выставляется оценка “М”. Если смазка выдержала первую часть испытаний (72 часа при 500 об/мин), но не выдержала вторую часть - выставляется оценка “m”. Если утечка составила более 50 грамм после 72 часов при 500 об/мин - выставляется оценка “неудовлетворительно”.

Защита от коррозии
Пластичные смазки должны обеспечивать защиту металлических поверхностей от коррозии. Антикоррозийные свойства пластичных смазок определяются методом SKF Emcor, регламентированным стандартом ISO 11007. При данном методе испытуемая смазка смешивается с дистилированной водой и помещается в подшипниковый узел. Подшипник вращается в соответствии с циклом, чередующим остановки с вращением с частотой 80 об/мин.
По окончании цикла испытания степень коррозии оценивается визуально по шкале от 0 (коррозии нет) до 5 (очень сильная коррозия). Метод испытаний в условиях повышенной сложности предполагает использование соленой воды.
Дополнительное испытание - это тест SKF на вымывание смазки дистилированной водой в течении цикла вращения подшипника. Процедура в этом случае не отличается от стандартной, однако условия испытаний более тяжелые, что предъявляет более высокие требования к антикоррозийным свойствам пластичной смазки.

Коррозия меди
Пластичные смазки должны защищать от коррозии детали из медных сплавов, применяемые в подшипниках. Защитные свойства пластичных смазок по отношению к меди оцениваются с помощью стандартных методов по DIN 51811. Медная полоска погружается в пластичную смазку и вместе с ней помещается в печь. Затем полоса очищается и оценивается состояние ее поверхности. Результаты испытаний оцениваются соответствующими баллами.

Водостойкость
Водостойкость пластичных смазок измеряется согласно стандарту DIN 51 807 часть 1. Исследуемая смазка наносится на стеклянную пластину, помещаемую в пробирку наполненную дистилированной водой. Пробирка ставится в водяную баню с заданной температурой на три часа. Изменение вида смазки оценивается визуально по шкале от 0 (изменений нет) до 3 (сильные изменения) при заданной температуре.

Маслоотделение
Базовое масло пластичных смазок имеет склонность к отделению от мыльной основы при длительном хранении либо при повышении температуры. Степень маслоотделения зависит от типа загустителя, типа базового масла и метода изготовления смазки. При испытаниях определенное количество пластичной смазки помещается в специальный сосуд, имеющий дно конической формы с отверстиями, под гнет массой 100 г. Сосуд помещается в термостат с температурой +40°C на одну неделю. После этого количество отделенного масла относится в % к первоначальной массе смазки. Испытание на маслоотделение регламентировано стандартом DIN 51 817.

Смазочная способность
Испытательная машина SKF R2F позволяет оценивать работоспособность при высоких температурах и смазочную способность пластичных смазок, имитируя условия работы крупногабаритных подшипников. Тесты проводятся в двух различных условиях: тест А - при комнатной температуре, тест В - при 120°C. Положительный результат теста А означает, что пластичная смазка обеспечивает смазывание крупногабаритных подшипников при нормальной температуре и малой вибрации. Положительный результат теста В при 120°C означает, что пластичная смазка обеспечивает смазывание крупногабаритных подшипников при повышенной температуре.

Ресурс пластичных смазок подшипников качения
Машина для испытания смазки SKF ROF позволяет определять срок службы и верхний температурный предел пластичных смазок. Десять радиальных шарикоподшипников устанавливаются в пяти корпусах и заполняются пластичной смазкой. Испытания проводятся при заданной частоте вращения и температуре. Подшипники нагружаются комбинированной (радиальной и осевой) нагрузкой и вращаются до выхода из строя. По данным долговечности каждого подшипника строится распределение Вейбулла и расчитывается срок службы смазки при данной температуре. Результаты испытаний используют при определении интервалов повторного смазывания подшипников в заданных условиях эксплуатации.

Противозадирные свойства

Нагрузка сваривания на 4-х шариковой машине характеризует противозадирные (EP - Extreme Pressure) свойства пластичной смазки. Данный метод испытаний регламентирован стандартом DIN 5151 350/4. Три стальных шарика помещаются в чашку и смазываются исследуемой смазкой, а четвертый размещается сверху; этот шарик вращается относительно трех шариков с заданной скоростью. Нагрузка увеличивается с определенным шагом до тех пор, пока вращающийся шарик не приварится к трем неподвижным шарикам. Данное испытание позволяет определить давление, характеризующее антизадирные свойства пластичной смазки. Пластичные смазки относятся к классу EP при нагрузке сваривания свыше 2600 Н.

Испытания на износ на 4-х шариковой машине
Данное испытание проводится на том же оборудовании, что и предыдущее. Нагрузка величиной 1400 Н прикладывается на четвертый шар в течение 1-й минуты. Затем измеряется износ нижних шариков. Стандартное испытание предполагает величину нагрузки 400 Н. Тем не менее, в SKF было принято решение увеличить нагрузку до 1400 Н, чтобы приблизить условия испытаний к реальным условиям работы подшипниковых узлов.

Ложное бриннелирование
Антифреттинговые свойства пластичных смазок имеют большое значение для обеспечения эффективной работы подшипниковых узлов. SKF оценивает эти свойства с помощью теста FAFNIR, стандартизованного как ASTM D4170. Два шариковых упорных подшипника нагружаются и подвергаются вибрации. Затем каждый подшипник взвешивается для того, чтобы измерить износ. Пластичная смазка считается антифреттинговой, если измеренный износ меньше 7 мг.

Общего применения

Многоцелевая

Постоянная температура подшипника > 100 °С

Высокотемпературная

Низкая температура окружающей среды (-50 °С), температура подшипника < 50 °С

Низко-температурная

Ударные нагрузки, тяжёлые нагрузки, вибрация

LGEP 2

Противозадирная

Пищевая промышленность

"Зелёная" биоразрушаемая, требования низкой токсичности

"Зелёная"

Примечания:

При повышенной температуре окружающей среды рекомендуется использовать смазку LGMT 3 вместо LGMT 2

Для особых условий работы

Быстрый выбор пластичной смазки для подшипников

Температура

Скорость

Основные требования

Нормальные условия, небольшие и средние подшипники

Нормальные условия, крупногабаритные подшипники (или высокая температура окружающей среды)

Антизадирные и антиизносные свойства, хорошая защита от коррозии

Совместимость с пищевыми продуктами, водостойкость

Отличные антизадирные и антиизносные свойства (твёрдые присадки), высокая вязкость

Отличные антизадирные и антиизносные свойства (твёрдые присадки), особо высокая вязкость

Бесшумное вращение, очень низкая начальная температура, антизадирные и антиизносные свойства

Биоразрушаемость, низкая токсичность, антизадирные и антиизносные свойства

Антизадирные и антиизносные свойства, хорошая работоспособность при низких температурах, антибренеллинг

Антизадирные и антиизносные свойства, отсутствие утечек, водостойкость, высокотемпературная

Особо высокие антизадирные свойства, антибренеллинг, водостойкость, высокотемпературная

Отличная защита от коррозии, водостойкость, большой ресурс смазки, высокотемпературная

Экстремальные температуры (высокотемпературная)

Широкий диапазон температур, антизадирные свойства, высокие нагрузки, водостойкость

Сухая смазка, совместимость с пищевыми продуктами, для разливочных конвейеров

Температура

М = средняя

Н = высокая

L = низкая

от -30 до 110 °С

от -20 до 130 °С

от -50 до 80 °С

Скорость шарикоподшипников

ЕН = особо высокая

VH = очень высокая

Н = высокая

М = средняя

более 700 000 п.dm

до 700 000 п.dm

до 500 000 п.dm

до 300 000 п.dm

VH = очень высокая

Н = высокая

М = средняя

L = низкая

Скорость роликоподшипников

Н = высокая

М = средняя

L = низкая

VL = очень низкая

более 150 000 п.dm

до 150 000 п.dm

до 75 000 п.dm

ниже 30 000 п.dm

п. dm = частота вращения, об/мин х 0,5 (D+ d), мм

Смазка - неотъемлемая составляющая подшипникового узла. Изменённые свойства масла или гидравлической жидкости могут привести к поломке оборудования, поэтому важно следить за их пригодностью. Методы измерения делятся на две группы: абсолютные (аналитические) и относительные .

Абсолютные

Аналитические методы основаны на непосредственном измерении различных параметров.

В последнее время стали появляться и широко использоваться измерители вязкости. Они являются хорошей альтернативой дорогостоящим и длительным лабораторным анализам. Хотя он и не выдаёт подробного отчёта о состоянии, химическом составе и изменении каждого физического параметра, как правило, для контроля состояния масла, смазки или гидравлических жидкостей достаточно знать насколько изменилась взякость. Измерение проводится при помощи специального ротора, по вращению которого и определяется коэффициент вязкости. Вращающиеся элементы можно заменять в зависимости от типа масла или для расширения диапазона измерения.

Относительные

Относительные методы измерения основаны на сравнении значений параметров для нового и уже использованного масла.

Одним из универсальных методов является использование прибора, который оценивает состояние масла по диэлектрической постоянной . Она напрямую зависит от степени его деградации и загрязнения, поэтому данный метод позволяет оптимизировать интервалы замены масла и свести к минимуму износ машин. Недостатком таких приборов является необходимость правильной интерпретации результатов измерения. Прибор зачастую оснащён шкалой с зелёными и красными делениями, которые свидетельствуют о пригодности масла. Но иногда случается так, что не сильно влияющие на работу подшипника частицы могут вызвать перемещение сегментов в "красную " область, хотя масло вполне пригодно для дальнейшего использования. Или же сочетание опасных для надёжной эксплуатации частиц может привести к тому, что масло будет проходить в "зелёную " область.

Прибор для контроля масла
SKF OilCheck

Некоторые правила при интерпретации показаний прибора:

  • Загрязнение водой и антифризом приводят к непригодности масла, о чём свидетельствует перемещение сегментов в красную область;
  • Металлические частицы также приводят к непригодности масла, при этом сегменты на экране прибора передвигаются скачками. Это связано с тем, что частицы металла оседают на поверхности датчика прибора;
  • Наличие в масле горючего определить трудно, т.к. оно маскируется присутствием других загрязнений. Если в масле содержится только горючее, то индикатор будет находится в красной области, но содержание воды или металла может перевести индикатор в зелёную;
  • Изменение вязкости масла приведёт к уменьшению диэлектрической постоянной, что затруднит детектирование;
  • Изменение кислотности обычно уменьшает диэлектрическую постоянную.

Также, такой прибор чувствителен к влажности , повышенной температуре и пыли , попадающей в масло при переносе измеряемого количества из машины к прибору. Прибор не применим для негорючих жидкостей (водно-масляные растворы).

Фасовки пластичных смазок

Тюбики, картриджы и банки
Фасовки: 35 г 200 г 420 г 0,5 кг 1 кг 5 кг 18 кг 50 кг 180 кг SYSTEM 24
LGHP 2
LGMT 2
LGMT 3
LGEP 2
LGLT 2 180г 0,9кг 25 кг 170 кг
LGFP 2 . . . .
LGGB 2
LGWA 2

На прошедшей ежегодной Конференции Национального института пластичных смазок (NLGI) в городе Варанаси (Индия) представители промышленного сектора заявили, что эта проблема может быть решена только при условии успешного поиска альтернативы литиевому мылу как загустителю.

В области промышленности и автомобилестроения на протяжении последних четырех десятилетий в качестве основных загустителей многоцелевых смазок использовались простые и комплексные литиевые мыла, а это в свою очередь породило жесточайшую конкуренцию за сырье.

Безумный спрос на литий, который демонстрируют производители электроавтомобилей и другие высокотехнологичные компании в США, Европе и Китае связан с тем, что он необходим им для производства литий-ионных батарей.

Согласно данным прогноза запасов полезных ископаемых на 2017 год, предоставленного Геологической службой США, в 2016 году производители аккумуляторов занимали первое место в тройке крупнейших конечных потребителей лития: на их долю приходилось 39% от общего объема потребления. За ним следовали производители керамики и стекла (30%), а замыкали тройку лидеров производители смазочных материалов (8%).

Примерно 3\4 мирового объема пластичных смазок производятся на основе литиевого мыла. По данным Национального института пластичных смазок (NLGI), в 2015 году объем мирового производства простых и комплексных смазок составил более 836 000 метрических тонн, при этом Индия в этом плане особенно сильно зависит от лития. Исследование, проведенное Национальным институтом пластичных смазок (NLGI) показало, что 91% от общего объема в этой стране смазочных материалов (около 69 000 из 75 500 метрических тонн) были произведены на основе литиевого мыла.

В начале февраля, на прошедшей Конференции Национального института пластичных смазок (NLGI), ведущий специалист в области разработки смазок Виджай Десмух (Vijay Deshmukh) заявил, что основной причиной популярности литиевых смазок являются их преимущества:

  • Превосходная водостойкость;
  • Способность работать при высокой температуре;
  • Хорошая совместимость с различными присадками.

Однако он отметил, что существует высокая вероятность дальнейшего роста стоимости гидроксида лития, в связи с чем необходимо найти альтернативные загустители.

«Белая нефть», как иногда называют литий благодаря его серебристо-белому цвету, в изобилии присутствует в земной коре, однако проблемой является то, что этот металл необходимо добывать по конкурентоспособной цене и в том виде, в котором он необходим конечным потребителям.

Альтернативные загустители включают алюминий,
полученный из бокситов

С точки зрения добычи наиболее доступными источниками сырья являются растворы солей, которые представляют собой исходный материал для карбоната лития, при этом более затратной является добыча различных горных пород, содержащих литий, таких как сподумен и петалит.

Применение лития возможно только после его переработки в карбонат лития или гидроксид лития – те две формы, в которых данный метал представлен на сырьевом рынке. По данным одной из лондонских консалтинговых компаний индекс BMI (показывающий динамику цен на литий) в 2016 году вырос на 66%, при том, что в учет брались данные продаж как карбоната лития, так и гидроксида лития.

По словам Элтепу Саяна (Eltepu Sayanna), президента индийского филиала Национального института пластичных смазок NLGI, возможность поставки и уровень цен на гидроксид лития оказываются влияние на всю индийскую индустрию смазочных материалов.

Производство в этой стране полностью зависит от импорта так как в Индии нет собственных доступных источников для добычи лития. А этот фактор в свою очередь вынуждает местных производителей смазочных материалов выходить за рамки очевидных вариантов в поисках подходящих альтернатив этому металлу.

Определение подходящих альтернатив

В зависимости от конечного применения, условий эксплуатации, а также ценовой политики могут быть выбраны другие альтернативные загустители. Эти загустители включают в себя:

  • Безводный кальциевый комплекс;
  • Алюминиевый комплекс;
  • Натриевый комплекс;
  • Бариевый комплекс;
  • Смазки на смешанных базовых маслах;
  • Полимочевина.

В сравнении со смазками, произведенными на основе литиевого мыла, данные альтернативные смазки несколько ограничены в производстве: к примеру, за 2015 год, согласно опросу, проведенному Национальным институтом пластичных смазок (NLGI), производство смазочных материалов на основе альтернативных загустителей представлены следующим образом в таблице 1:

Виджай Десмух (Vijay Deshmukh) отметил, что его компания тестировала некоторые альтернативные загустители при производстве смазок с точки зрения соответствия спецификациям ASTM и API. Полученные результаты были сопоставлены со спецификациями Бюро индийских стандартов (BIS) применимым к обычным и комплексным смазкам.

Результаты данного исследования продемонстрировали, что некоторые из видов альтернативных загустителей обладают большими перспективами для использования в сравнении с другими и обладают следующими характеристиками, представленными в таблице 2:

Типы смазок и их свойства
Тип смазки Свойства
Смазки на основе безводного кальциевого комплекса
  • Отличная водостойкость;
  • Защита от коррозии;
  • Хорошая устойчивость к сдвигу;
  • Температура каплепадения – 144°С;
  • Максимальная рабочая температура – 90°С (по сравнению с 120°С для литиевой смазки, которая отвечает индийской спецификации IS:7623).
Смазки на основе алюминиевого комплекса
(наиболее подходящие смазки для применения в сталелитейной промышленности и особенно в централизованных системах смазки)
  • Хорошая водостойкость;
  • Отличная прокачиваемость (благодаря гладкой структуре загустителя);
  • Высокая стойкость к коррозии.
Смазки на основе комплексного сульфоната кальция
  • Высокая производительность без необходимости в дополнительных присадках;
  • Могут быть улучшены дополнительными присадками;
  • Очень высокая точка каплепадения – 300°С (против 260°С в комплексных литиевых смазках);
  • Хорошая стойкость к повышенному давлению;
  • Высокие противоизносные свойства;
  • Защита от коррозии;
  • Высокая термостойкость;
  • Механическая и сдвиговая стабильность;
  • Возможность использования в условиях высокой влажности;
  • Возможность использования при тяжелых нагрузках в горнодобывающем, пищевом и внедорожном сегментах;
  • Плохая низкотемпературная прокачиваемость (затрудняющая их применение в централизованных системах смазки).
Смазки на основе полимочевины
(ранее применялись в основном для смазывания автомобилей, применяются в централизованных системах смазки, имеют хороший потенциал для внесения в спецификации производителей оборудования чтобы сделать их экономически выгодной альтернативой комплексным литиевым смазкам)
  • Высокая температура каплепадения;
  • Отличная окислительная стабильность;
  • Хорошая водостойкость;
  • Устойчивость к сдвигу;
  • Длительный срок службы;
  • Отличные свойства низкотемпературной текучести;
  • Применение токсичного сырья негативно сказывается на производстве полимочевины;
  • Плохая механическая стабильность;
  • Затвердение при хранении;
  • Требуются присадки для защиты от коррозии и при экстремальных нагрузках.
Смазки на основе натриевого комплекса
(Идеально применяются только при отсутствии возможности контакта с водой)
  • Высокая температура каплепадения;
  • Плохая водостойкость.
Смазки на основе кальциевого комплекса
  • Возможность использования в условиях высокой температуры;
  • Возможность использования в условиях экстремальной нагрузки;
  • Затвердение при хранении;
  • Трудности в транспортировке.
Смазки на основе бариевого комплекса
  • Высокая температура каплепадения;
  • Хорошая водостойкость;
  • Отличная адгезия к поверхности металла;
  • Отсутствие возможности использования в качестве смазок общего назначения из-за высокой токсичности.

Нилеш Каду (Nilesh Kadu) из компании Lubrizol India во время своей презентации на конференции заявил, что наиболее популярными являются комбинированные литий-кальциевые смазки, так как частичная замена лития на кальций дает дополнительное преимущество в виде более высокой водостойкости и при этом не оказывает негативного влияния на другие свойства смазки. Добавка кальциевого мыла также способствует снижению себестоимости смазки.

Недостатки альтернативных смазок

По словам Виджайя Десмуха (Vijay Deshmukh) потребители смазочных материалов смогут подобрать себе альтернативу, но так как все они обладают как положительными, так и негативными свойствами, не может быть какого-либо единственного выбора варианта замены.

Согласно докладу Национального института пластичных смазок Индии и NLGI, на территории Индии производство смазок на сульфонате кальция составляло около 1000 тонн (1,4% от общего объема производства смазок за 2015 год), на основе алюминиевого комплекса менее 50 тонн, а на основе полимочевины всего 1,6 тонны. При этом в стране вообще отсутствовало производство смазок на основе кальциевого комплекса или безводного кальциевого комплекса.

Тарифы и налоги на импорт сырья действительно прибавляют определенную сумму к общей стоимости изготовления этих альтернативных смазок, но они уже включены в конечную цену, указываемую импортерами.

Из-за ограничений на производство количество полимочевины в Индии крайне мало: смазки на полимочевине изготавливаются с использованием изоцианатов и аминов. Токсичность этих компонентов ограничивает их крупномасштабное производство, притом, что готовая смазка может быть использована во многих сферах пищевой промышленности. Виджай Десмух (Vijay Deshmukh) отметил, что в целом стоимость производства альтернативных смазок, таких как загущенные с помощью алюминиевого комплекса, полимочевины, сульфонатного комплекса будет на 10% выше чем стоимость комплексной литиевой смазки при текущих затратах на гидроксид лития.

Но самой главной и актуальной проблемой в поиске альтернативных загустителей является длительный период времени необходимый для тестирования и внедрения альтернатив.

Приложение 1: Сравнительные свойства литиевой смазки и ее альтернатив

Тест Метод Литий (IS 7623) Безводный кальций Комплекс лития (IS 14847) Комплекс алюминия Полимочевина Комплекс сульфонат кальция
Рабочая пенетрация, 60 движений, мм/10 D217 265-295 275 265-295 272 293 283
Минимальная температура каплепадения, ⁰С D566 (лит. и безвод. кальц.), D2265 (другие) 180 144 260 288 272 >300
Вымыванием водой, макс. (% мас.) D1264 15 2 5 1,8 0,6 2
Термостабильность при 100⁰С, 30 ч., макс. (% мас. отделенного масла) D6184 5 0,5 5 2 0 1
Стойкость к окислению. Падение давления, 100 часов (Кгс/ см 2), макс. D942 0,2 0,2 0,5 0,2 0,1 0,2
Максимальная склонность к утечке, г D1263 - - 8 4 2 IP239 - - 260 315 280 400
Максимальный диаметр пятна износа, мм D2266 - - 0,6 0,6 0,46 0,48
Все смазки класса NLGI 2 с минеральным базовым маслом.

Рассказать в соц. сетях:

Термостойкая смазка на основе полимочевины EFELE MG-251 надежно защитит подшипники и направляющие оборудования и техники от повышенного износа при трении, высоких скоростях и нагрузках.

Основной задачей смазочных материалов, предназначенных для промышленного и бытового использования, является повышение надежности и долговечности обрабатываемых деталей оборудования и техники.

Техническое обслуживание подшипников и поверхностей трения с применением смазки на основе полимочевины

Позволяет их защитить от разрушения под воздействием высокого трения и температур.

Термостойкая смазка на основе полимочевины EFELE

Многофункциональная смазка на основе полимочевины EFELE MG-251 производства компании "Эффективный Элемент" – оптимальный выбор для промышленного оборудования. Она специально разработана для смазывания подшипников качения и скольжения.

Данный материал не только эффективно снижает износ, но также предотвращает образование коррозии, попадания влаги и загрязнений. Термостойкость материала позволяет ее применять при высоких температурах эксплуатации на производстве.

Состав материала

Как и иные пластичные смазки, EFELE MG-251 состоит из трех основных компонентов: масла, загустителя и дополнительного пакета присадок.

В качестве базового масла в материале используются минеральные масла. Они состоят из углеводородов, которые получают путем переработки нефти и нефтепродуктов.

Такой вид масел является самым простым в производстве, поэтому цена на минеральные смазочные материалы значительно ниже по сравнению с синтетическими или комбинированными.

В качестве загустителя в EFELE MG-251 использована полимочевина. Это органический полимер, наделяющий смазочный материал дополнительными свойствами и улучшенными характеристиками.

Пластичные смазки с полимочевиной выдерживают более высокие температуры, обладают хорошей износостойкостью. Они устойчивы к влаге и УФ-излучению, надежно защищают от коррозии.

В состав EFELE MG-251 входят также EP-присадки. Это противозадирные присадки, которые предназначены для повышения устойчивости к износу. При недостаточно высоких противозадирных способностях составов появляется вероятность перегрева и сваривания в области трения.

Отличительные особенности смазки EFELE

Состав термостойкой смазки на основе полимочевины EFELE MG-251 придает ей ряд особых достоинств, которые выделяют материал среди широкого спектра других.

    Состав обладает хорошими противозадирными и противоизносными свойствами.

    Защищает металлические поверхности от коррозии.

    Устойчив к высоким температурам. Смазка работает при температурах до +180 °C.

    Не вымывается водой.

    Имеет мягкую консистенцию и хорошую прокачиваемость.

    Остается в узле в течение длительного времени.

    Имеет оптимальное соотношение цены и качества.

Области применения

Термостойкая смазка на основе полимочевины EFELE MG-251 – это многофункциональный материал. Он может применяться для многочисленных узлов оборудования и техники. В качестве основного использования выделяют ее нанесение на подшипники качения, подшипники и поверхности скольжения оборудования.

Она применяется в оборудовании сталелитейной, металлургической, цементной, деревообрабатывающей, добывающей и текстильной промышленности. Широкий диапазон температур (-20…+180 °C) делает состав пригодным для использования в подшипниках направляющих роликов машин непрерывного литья заготовок, печей, охлаждающих установках.

Смазку EFELE MG-251 используют также для узлов текстильных машин, конвейерных систем, вентиляторов обдува, электромоторов.

Состав может использоваться для пар трения металл – металл, металл – пластик и металл – эластомер. Однако перед его нанесением на уплотнительные материалы из пластмасс и эластомеров предварительно необходимо провести тест на совместимость.

Варианты использования

Многофункциональная пластичная смазка EFELE MG-251 наносится двумя способами.

Соединение можно смазывать составом при помощи кисти, шпателя, дозатора или иного инструмента. При нанесении избыточного количества излишки материала легко убираются чистой мягкой тканью или безворсовой ветошью.

Материал имеет мягкую консистенцию и высокую прокачиваемость, поэтому также применяется в автоматизированных и централизованных системах подачи смазки.

Фасовка

Смазка EFELE MG-251 выпускается в различных объемах, подходящих для любых объемов использования: тубах 400 грамм, ведрах массой 5 и 18 килограмм, бочках 180 килограмм.

Материал необходимо использовать в течение 48 месяцев от даты производства. Состав необходимо беречь от попадания влаги, осадков, воздействия прямых солнечных лучей и перегрева. Не рекомендуется его хранить вблизи кислот, баллонов с кислородом и другими окислителями, сжатыми и сжиженными газами, легкогорючими веществами.

Термостойкая смазка на основе полимочевины EFELE MG-251 эффективно снижает трение подшипников и направляющих, увеличивает рабочий ресурс узлов, повысить их надежность, снизить расходы на техническое обслуживание. Материал обладает высокими эксплуатационными характеристиками и оптимальным соотношением цена - качество.

02.09.2012
Пластичные смазки: преимущества и недостатки. Загустители

1. Введение
1.1 Определение

Пластичные смазки представляют собой продукты диспергирования агента-загустителя в жидком смазывающем материале, обладающие консистенцией от твердой до полужидкой. Обычно для придания специфических свойств в их состав вводят дополнительные компоненты, в частности агенты-загустители, представляющие собой металлические мыла. Разделить смазочные материалы на жидкие и твердые непросто, так как промежуточное положение занимают текучие вещества (флюиды). Жидкие масла, содержащие << 5 масс. агентов-загустителей (как правило, полимеров), обладают структурной вязкостью, не достигающей тем не менее точки текучести, поэтому их называют загущенными маслами. Относимые к твердым смазкам суспензии, содержащие > 40 %масс. твердых смазочных веществ в маслах, обычно называют пастами. Они содержат также агенты-загустители, обычно присутствующие в смазках; их также называют смазочными пастами.
В целом в состав пластичных смазок входит от 65 до 95 %масс. базовых масел, от 5 до 35 % масс. загустителей и от 0 до 10 % масс. добавок. Хотя каких-либо специальных физических или химических оснований для отдельного описания синтетических или чисто синтетических пластичных смазок не существует, следует определиться с соответствующей терминологией. Многие авторы называют пластичную смазку синтетической, если базовое масло не является минеральным маслом, а представляет собой синтетический продукт, например сложный эфир карбоновой кислоты, синтетический углеводород, полигликоль, силикон или перфторполиэфир. Иногда термин «чисто синтетическая смазка» используют в случае, когда загуститель также является синтетическим (например, соли амидокарбоновых кислот с олигомочевинами).

1.2. История вопроса

Можно вспомнить о том, что смазки, подобные пластичным, были известны еще шумерам, применявшим их для смазывания колесных повозок с 3500 до 2500 гг. дон. э.; установлено также, что еще в 1400 г. до н. э. египтяне применяли смазки, изготовленные из оливкового масла или таллового жира, смешанного с известью, для смазки осей колесниц; однако такие античные авторы, как Диоскурид и Плиний Второй, сообщают лишь о применении свиного жира с подобной целью. По-видимому, первый патент на смазочный материал индустриальной эпохи был выдан Партриджу в 1835 г.; он запатентовал кальциевую смазку, также изготовленную из оливкового масла или таллового жира. Пластичные смазки на основе минеральных масел, загущенные мылами, были, вероятно, первыми смазками — их, ориентировочно в 1845 г., предложил Раес, натриевую смазку с использованием таллового жира запатентовал Литтлом в 1849 г.
Производству и способам применения пластичных смазок посвящены две выдающиеся энциклопедические монографии, первая из которых была написана Клемгардом в 1937 г., вторая — Бонером в 1954 г.. Обе монографии содержат множество общей информации, ценность и актуальность которой сохраняется до наших дней.

1.3. Преимущества перед смазочными маслами

В 1954 г. Бонер в известной монографии перечислил тринадцать преимуществ пластичных смазок перед маслами. В 1988 г. семь преимуществ все еще считались существенными; в 1996 г. Лэнсдаун упоминал только шесть преимуществ и рассматривал их с другой точки зрения (табл. 1).

Таблица 1. Преимущества пластичных смазок перед смазочными маслами

1988
1. Пластичные смазки приобретают текучесть только под действием силы
2. Пластичные смазки обладают меньшими коэффициентами трения
3. Пластичные смазки лучше сцеплены с поверхностью
4. Пластичные смазки обладают повышенной водостойкостью
5. (Эффективная) вязкость пластичных смазок менее зависима от температуры
6. Пластичные смазки работают в расширенном температурном интервале
7. Пластичные смазки представляют собой герметичную защиту от грязи и других видов загрязнения

1996
1. Пластичные смазки не вызывают проблем при запуске и остановке механизмов
2. Пластичные смазки проявляют улучшенные характеристики в условиях работы в слое под давлением
3. Пластичные смазки решают проблемы герметизации
4. Пластичные смазки позволяют осуществлять дополнительную подачу смазки без специальных конструкционных приспособлений
5. Пластичные смазки позволяют избежать загрязнения чистых продуктов
6. Пластичные смазки допускают применение твердых присадок

1.4. Недостатки

По сравнению со смазочными маслами пластичные смазки имеют только два недостатка: не следует отдавать им предпочтение, если существуют проблемы с теплопередачей; кроме того, предельная скорость для пластичных смазок ниже, так как они обладают повышенной эффективной вязкостью. Третий недостаток, который является скорее теоретическим, связан с тем, что из-за более выраженного ионного характера и большей поверхности они более подвержены окислению по сравнению с маслами.

1.5. Классификация

Пластичные смазки получали (и до сих пор получают) названия по отрасли индустрии, в которой их применяют: например, смазки для сталепрокатного производства; по их назначению: например, смазки для колесных подшипников; по рабочим температурным интервалам: например, низкотемпературные смазки; по области применения: например, универсальные (многоцелевые) смазки. Значение последнего наименования с годами менялось, другие названия также не вполне отражают эксплуатационные качества смазок, о которых идет речь. Вопрос о консистенции материалов (от твердых до полужидких) является непростым, однако консистентность легко можно измерить с помощью несложных приспособлений. Поэтому даже в наши дни пластичные смазки получают наименования в соответствии с классом консистенции, установленным Национальным институтом пластичных смазок США (NLGI ) в 1938 г. — по глубине проникновения стандартного конуса в пластичную смазку; метод разработан в 1925 г. (табл. 2).

Таблица 2. Классификация пластичных смазок по индексам NLGI

Индекс NLGI

Внешний вид

Рабочая пенетрация (1/10 мм)

Применение

Полужидкая

Трансмиссионные смазки

Кремообразная

Смазка для подшипников

Мылоподобная

Брикетированные смазки

С физической точки зрения данный метод не является вполне удовлетворительным, поэтому в 1960-е гг. были предприняты попытки скоррелировать (или даже заменить) его реологическими методами, например измерением напряжения пластического течения (предела текучести) на роторном вискозиметре. В настоящее время рабочие характеристики пластичных смазок описаны в таких нормативных документах, как 1S0 6743-9 или DIN 51 825, определяющих главным образом консистенцию, верхний и нижний пределы рабочей температуры, водостойкость и допустимую нагрузку; для автомобильных смазок существует нормативный документ АSTМ D 4950, затем были представлены эталонные смазки и введены сертификационные марки NLGI.
Тем не менее, о характеристиках пластичных смазок в определенной степени лучше судить по физическим и химическим свойствам их базовых масел и агентов-загустителей — естественно, вязкость пластичной смазки возрастает по мере увеличения содержания загустителя, при этом изменяются отдельные характеристики смазки, которые наилучшим образом указывают на разумные пределы, ограничивающие ее практическое применение.

2. Загустители

Загустители не только преобразуют жидкие смазочные материалы в вязкие (консистентные) смазки, а также изменяют характеристики жидких смазочных материалов. Если принимать во внимание все характеристики продукта, то ни один из промышленных загустителей не имеет преимуществ перед остальными (табл.3). Они в равной степени конкурентоспособны и предназначены для выполнения различных задач. Различия появляются главным образом там, где к продуктам предъявляют специфические требования.

Таблица 3. Сравнительные характеристики загустителей

I II III IV V VI VII VIII IX X XI XII Sum
12- Гидроксистеарат лития 2,5 1,0 2,0 1,5 2,0 2,0 2,5 1,5 2,5 2,0 1,0 3,0 2,0
12- Гидроксистеарат кальция 3,0 1,0 3,0 1,0 1,5 1,0 2,5 1,0 2,0 2,0 1,0 3,0 1,8
Комплексы лития 1,5 2,0 1,5 2,0 1,5 2,0 2,0 2,5 1,5 2,0 2,0 2,5 1,9
Комплексы кальция 2,0 3,0 2,0 2,0 1,0 1,5 1,5 3,0 1,5 2,0 2,0 2,0 2,0
Комплексы алюминия 2,0 2,0 2,0 2,5 1,5 2,0 2,0 2,5 2,0 2,0 2,0 2,5 2,1
Неорганические загустители 1,5 1,0 1,0 3,0 3,0 1,0 3,0 1,0 3,0 3,0 2,5 3,0 2,2
Полимочевины 1,0 1,5 1,5 2,5 2,0 1,5 2,5 2,0 3,0 3,0 1,0 2,0 2,0
Терефталаматы 1,5 1,5 1,5 1,0 2,5 1,5 2,0 1,0 2,5 2,0 1,0 2,0 1,7
Кальций- сульфонатные комплексы 2,0 3,0 2,0 2,0 1,0 2,0 1,5 3,0 1,0 1,0 2,0 1,5 1,8
Загустители, содержащие карбаматную группу 2,0 1,5 2,0 2,0 2,0 2,0 2,5 1,5 2,0 2,0 1,0 2,0 1,9
I — высокая температура; II — низкая температура; III — старение; IV — совместимость; V — потеря масла; VI — токсичность; VII — липкость; VIII — текучесть; IX — нагрузка; X — сдвиг; XI — трение; XII — износ; Sum — суммарно; 1,0 — отлично; 2,0 — средне; 3,0 — слабо.

2.1. Простые мыла

Максимальный загущающий эффект, как правило, наблюдается при использовании карбоновых кислот, содержащих 18 атомов углерода, поэтому мыла обычно изготавливают из 12-гидроксистеариновой кислоты, полученной из растительного сырья, стеариновой кислоты, полученной из животного или растительного сырья, или из их сложных эфиров, обычно глицеридов, а также из гидроксидов элементов групп щелочных и щелочно-земельных металлов. Мыла, вызывающие загущение базовых масел, позволяют получать пластичные смазки с уникальными характеристиками. Они не только присутствуют в виде кристаллитов и растворенных молекул, но и содержатся в отдельной фазе в виде агломератов, называемых фибриллами (нитевидными молекулярными образованиями), или волокнами. Даже в малейшем зазоре, в который вводят смазку, присутствуют все компоненты продукта, обладающего характеристиками пластичной смазки.

2.1.1. Анионы мыла

Длина углеводородной цепи карбоновой кислоты влияет на растворимость и поверхностные свойства мыла. Удлиненные и укороченные углеводородные цепи снижают его загущающий эффект.
Увеличение длины цепи повышает растворимость в базовом масле, укороченная цепь ее понижает. Разветвленная алкильная цепь понижает температуру плавления мыла и уменьшает загущающий эффект. Карбоновые кислоты, содержащие двойные углеродные связи, так называемые ненасыщенные кислоты, лучше растворимы в минеральных маслах и также уменьшают загущающий эффект и понижают температуру каплепадения. Их применение ограничено из-за пониженной стойкости к окислению. Наличие гидроксильных групп повышает температуру плавления и усиливает загущающий эффект мыла, так как увеличивает полярность его молекул.

2.1.2. Катионы мыла

На основные характеристики мыльных пластичных смазок влияют также катионы, входящие в состав мыла. От катионов зависят эффективность использования загустителя, температура каплепадения, согласно DIN ISO 2176 — температура, при которой пластичная смазка переходит в жидкое состояние при нормальных условиях, водостойкость, и, в некоторой степени, допустимая нагрузка для пластичной смазки.
В 1996 г. пластичные смазки на основе простых мыл все еще составляли более 70% известного мирового производства. Самыми распространенными оказались литиевые мыла, доля которых составила около 50%, далее следовали кальциевые, натриевые и алюминиевые мыла. Значение последних постоянно снижалось в течение нескольких последних десятилетий.

2.1.3. Литиевые мыла

Пластичные смазки на основе литиевого мыла были впервые изготовлены Эрлом в 1942 г.; смазки на основе 12-гидроксистеарата лития (форм.1) — Фрезером в 1946 г. В настоящее время их обычно изготавливают путем взаимодействия порошкообразного или растворенного в воде гидроксида лития с 12-гидроксистериновой кислотой или ее глицеридом в минеральных или синтетических маслах. На выбор реагента — свободной кислоты или ее глицерида — влияет соотношение затрат и рабочих характеристик. Температура реакции составляет от 160 до 250 °С и зависит от базового масла и типа используемого реактора. Температура каплепадения смазки на основе минерального масла NLGI 2 находится в интервале от 185 до 195 °С. Требуемое содержание мыла в подобной многоцелевой смазке составляет около 6 % масс. при использовании нафтенового масла, около 9 % масс. — при использовании парафинового масла и около 12 %масс. — при использовании ПАО; кинематическая вязкость составляет около 100 мм -2 с -1 при 40 °С, загущающий эффект зависит не только от распределения углерода в базовом масле, но также и от его вязкости.
Размер волокон в пластичных смазках на основе 12-гидроксистеарата лития обычно попадает в интервал от 0,2x2 до 0,2x20 мкм. Хорошие универсальные характеристики, в частности высокая температура каплепадения, хорошая водостойкость и прочность на сдвиг, обусловленные водородными связями гидроксильных групп, а также хорошая реакция на добавление присадок — основные причины, по которым пластичные смазки на основе 12-гидроксистеарата лития являются наиболее популярными смазками на протяжении более полувека. Область их использования широка: от применения в качестве пластичных смазок при экстремальных давлениях на основе масел с кинематической вязкостью приблизительно от 200 до 120 мм 2 /с при 40 °С — для больших нагрузок; универсальных (многоцелевых) смазок на основе минеральных масел с кинематической вязкостью приблизительно от 60 до 1000 мм 2 /с при 40 °С — для всех типов подшипников, пластичных смазок, изготовленных с добавлением диэфиров или ПАО-масел с кинематической вязкостью от 15 до 30 мм2/с для высоких скоростей, до смазок для передаточных механизмов, содержащих нерастворимые в маслах полиакиленгликоли. Нижний температурный предел применения пластичной смазки, загущенной литиевым мылом, так же как и для всех прочих пластичных смазок, зависит главным образом от физических характеристик базового масла. Верхний температурный предел определяют испытанием с постепенным повышением температуры на испытательной установке FAG FE 9 согласно DIN 51 821 и DIN 51 825. И вновь, в зависимости от свойств базового масла, верхний предел попадает в интервал между 120 и 150 °С. Очевидно, что интервал между температурой каплепадения и верхней предельной температурой применения может составлять от 60 до 100 °С. В качестве критерия определения как нижнего, так и верхнего температурного предела было предложено маслоотделение. В последние годы предпринимались попытки улучшения структурной стабильности смазок на основе литиевого мыла за счет применения реактивных полимеров.

2.1.4. Кальциевые мыла

Кальциевые мыла, изготовленные из 12-гидроксистеариновой кислоты, называют также безводными кальциевыми мылами. Аналогично соответствующим литиевым мылам они содержат до 0,1 % масс. воды, которая присутствует не в качестве кристаллизационного компонента, как в мылах на основе стеариновой кислоты, хотя технические 12-гидроксистеараты содержат до 15% стеариновой кислоты вес/вес. Кальциевые смазки подобного типа изготавливают тем же способом, что и смазки на литиевой мыльной основе, но при температуре от 120 до 160 °С. Размер волокон является промежуточным между аналогичными величинами для литиевых мыл и гидратированных кальциевых мыл. Смазки можно использовать при температурах до 120 °С. Температура каплепадения находится в интервале от 130 до 150 "С, в зависимости от характеристик базового масла. Как правило, они обладают очень хорошими антикоррозийными свойствами и хорошей стойкостью к окислению; такие смазки, изготовленные из соответствующих базовых масел, вероятно, являются лучшими низкотемпературными смазками.
Кальциевые соли на основе стеариновой, пальмитиновой или олеиновой кислоты также называют кальциевыми мылами (форм. 2). Цена исходных материалов для изготовления смазок на данной основе является самой низкой, но они обладают наихудшими рабочими характеристиками. Их изготавливают путем нейтрализации суспензии гидроксида кальция в воде жирными кислотами в минеральном масле. На первой стадии реакции, которую обычно проводят в сосуде высокого давления, жиры расщепляются на жирные кислоты и глицерин. Стабильные пластичные смазки можно получить только в присутствии некоторого количества воды (обычно около 10 % масс. мыла). Содержание воды обычно регулируют на втором этапе, проводимом при перемешивании, или в охлаждаемом реакционном сосуде. Размер волокон, как правило, составляет около 0,1x1 мкм. В отсутствие воды структура смазки разрушается. Поэтому температура каплепадения для смазок такого типа составляет всего лишь от 90 до 110 °С, а верхний температурный предел применения — лишь 80 °С

Эти смазки обладают очень высокой водостойкостью и хорошей адгезией. Поскольку производство смазок данного типа является весьма затратным относительно рабочих характеристик полученного продукта, их значение быстро уменьшается.

2.1.5. Натриевые мыла

Значение пластичных смазок на основе натриевых мыл в наше время невелико по сравнению со смазками на основе 12-гидроксистеаратов лития и кальция; тем не менее, в виде полужидких продуктов они все еще представляют интерес в качестве смазочного материала для передаточных механизмов. Интервал температур капле¬падения для натриевых смазок, изготавливаемых на основе жирных кислот или жиров, составляет приблизительно от 165 до 175 °С. Верхний температурный предел эксплуатации — около 120 °С. Предложены продукты с различной структурой волокон: коротковолокнистые и длинноволокнистые; в последних размеры волокон достигают 1x100 мкм, что в некоторой степени объясняет весьма высокую величи¬ну допустимой нагрузки при применении в передаточных механизмах. Пластичные смазки этого типа обладают чрезвычайно высокими антикоррозийными параметрами лишь при малом содержании воды; однако их главный недостаток состоит в том, что в присутствии большего количества воды растворимость натриевых мыл возрастает, что в первую очередь приводит к образованию геля, резко повышающему эффективную вязкость, и впоследствии — к b>разрушению структуры в целом.

2.1.6. Прочие мыла

Смазки на алюминиевой мыльной основе обычно изготавливают из произведенных промышленным способом алюминиевых мыл, как правило, на основе стеарата алюминия. Вероятно, впервые смазки подобного типа были предложены Ледерером (Lederer) в 1933 г. Температуры каплепадения не превышают 120 °С, верхний температурный предел находится в интервале от 80 до 90 °С, при температуре выше 90 °С смазки проявляют тенденцию к гелеобразованию. Для данных мыл типичный размер частиц составляет менее 0,1x0,1 мкм, что в некоторой степени объясняет довольно низкую величину сопротивления сдвигу и выраженному тиксотропному поведению продуктов. Алюминиевые смазки, как правило, являются очень прозрачными и гладкими. Они обладают высокой водостойкостью и хорошей адгезией, однако их в значительной степени вытеснили литиевые смазки, что отчасти обусловлено тем, что для получения пластичных продуктов на заключительном этапе процесса изготовления алюминиевые смазки нельзя перемешивать, а необходимо выливать продукт в емкость и выдерживать несколько часов для охлаждения.
Пластичные смазки на основе бариевых мыл обладают высокой водостойкостью и сопротивлением сдвигу; смазки на основе свинцового мыла имеют преимущества по таким параметрам, как величина допустимой нагрузки и защита от износа. Тем не менее оба типа смазок в настоящее время практически не применяются, главным образом по причинам, связанным с их токсичностью..

2.1.7. Смешанные катионные мыла М 1 Х/М 2 Х

Смеси на основе мыльных смазок, содержащих различные катионы, главным образом литий-кальциевые, кальций-натриевые и натрий-алюминиевые, называют также смазками на смешанных мылах. Их свойства зависят главным образом от количественного соотношения двух или более типов мыла. Литий-кальциевые смазки обладают повышенной водостойкостью и зачастую повышенным сопротивлением сдвигу по сравнению с чисто литиевыми смазками. Если доля кальциевого мыла не превышает 20 % масс, то их температуры каплепадения близки к аналогичным величинам для чисто литиевого мыла и находятся в интервале от 170 до 180 °С (рис. 1), а фрикционные характеристики и защита от износа улучшены по сравнению с аналогичными параметрами для чисто литиевых смазок. Некоторые кальций-литиевые смазки имеют улучшенные рабочие характеристики по сравнению со смазками на основе 12-гидроксистеарата кальция.

Литий-кальциевые смазки получили широкое распространение в качестве специализированных многоцелевых смазок. Пластичные смазки, изготовленные главным образом на основе стеаратов натрия и алюминия, описанные подробно Бонером, использовали в качестве заменителей литиевых смазок, например, в бывшей ГДР. Сообщалось, что характеристики литий-висмутовых смазок улучшены по сравнению с характеристиками традиционных литиевых смазок (в том числе содержащих висмутовые присадки) по параметрам механической стабильности и применения при высоких температурах. Процесс изготовления смазок на основе смешанных катионных мыл, как правило, является одностадийным, поскольку стабильность смесей конечных продуктов не всегда является удовлетворительной.

2.1.8 Смешанные анионные мыла МХ 1 /МХ 2

Поскольку кислотные компоненты большинства простейших смазок на мыльной основе имеют животное или растительное происхождение, их уже можно считать смазками на смешанной анионной мыльной основе. И все же для тонкой доработки многоцелевых смазок и специализированных многоцелевых пластичных смазок, особенно при использовании сравнительно чистой 12-гидроксистераиновой кислоты, зачастую Необходимо замещение малых количеств преобладающей кислоты дополнительной кислотой, например бегеновой, нафтеновой или стеариновой.

2.2. Комплексные мыла

С дополнительными солями неорганических кислот (например, борной и фосфорной), или с карбоновыми кислотами с короткой углеродной цепью (например, уксусной кислотой), или с дикарбоновыми кислотами (например, азелаиновой и себациновой, или с более сложными кислотами (например, с кислотами димерного ряда, все из которых являются производными растительных масел, простые мыла могут образовывать некоторые типы комплексных мыл. Выражение «некоторые типы» использовано в данном случае потому, что в физико-химическом смысле комплексы, образованные по механизму, описанному Ю. Л. Ищуком для моновалентных катионов, таких как Li+, можно рассматривать также как аддукты, а комплексы катионов, таких как Са2+ и А13+, образованные по механизму, описанному Полищуком, можно также рассматривать как основу для отдельного типа смешанного мыла. Добавление дополнительных солей всегда приводит, с одной стороны, к увеличению температуры каплепадения с 50 до приблизительно 100 °С и к уменьшению маслоотделения, что в первую очередь обусловлено повышенной концентрацией загустителя, а с другой стороны, по той же причине, — к уменьшению стабильности при низких температурах. Благодаря улучшенным характеристикам смазки на основе комплексного мыла нашли широкое применение, и в настоящее время их доля составляет около 20% от всех представленных на рынке пластичных смазок.

2.2.1. Литиевые комплексные мыла

Верхний температурный предел для них находится в интервале от 160 до 180 °С; кроме того, некоторые смазки на основе мыл, содержащих комплексы лития, по своим характеристикам аналогичны соответствующим продуктам на основе простых мыл, однако из-за множества возможных дополнительных солей не все их характеристики поддаются обобщению. Из многих существующих составов наиболее распространены композиции на основе 12-гидроксистеариновой и азелаиновой кислот (форм. 3). Этот комплекс был предложен в 1974 г. Первый комплекс на основе 12-гидроксистеариновой и уксусной кислот был запатентован еще в 1947 г. Комплексные литиевые мыла с наилучшей несущей способностью содержат борную или фосфорную кислоту. По размеру волокон такие комплексные мыла незначительно отличаются от простых мыл, при этом размер их волокон не претерпевает существенных изменений при обычном сдвиге (рис. 2). Подобные смазки имели наивысшие температуры каплепадения до тех пор, пока не появились сообщения о том, что введение дополнительных органических кислот придает смазкам сравнимые характеристики по параметрам каплепадения. Кроме азелаиновой и борной, систематически исследуют возможность применения других кислот (табл. 4).

Систему на основе сочетания 12-гидроксистеариновой и азелаиновой кислот исследовали с точки зрения процесса производства и влияния ПАВ, аналогичным образом рассматривали также себациновую кислоту, главным образом с точки зрения стехиометрии. В 1998 г. был опубликован обзор публикаций по разработкам в области комплексных смазок в 90-е гг.

Таблица 4. Литиевые комплексные мыла
+
Адипат лития
Азелат лития
Димерат лития
Себацинат лития
Терефталат лития
···
Борат лития
Фосфат лития

Интерес к комплексным литиевым мылам велик, о чем свидетельствует множество патентов, представленных в каталоге Chemical Abstracts Selects, поскольку доля комплексных литиевых пластичных смазок составляет около 10% и они являются самыми распространенными из комплексных смазок. Тематика исследований варьирует от практических направлений, например оптимизации спецификаций для автомобильных смазок, до более фундаментальных, таких как уточнение механизма образования комплексов в процессе производства при помощи ИК-Фурье спектроскопии или применения высокомолекулярных соединений, таких как додеканедиоиковая кислота, которые прежде не применялись в индустрии пластичных смазок; кроме того, проводятся эксперименты чисто исследовательского характера, целью которых является сбор информации о потенциальных свойствах новых компонентов для производства смазок, например полиангидридов.

2.2.2. Кальциевые комплексные мыла

Все кальциевые комплексные смазки содержат уксусную кислоту в качестве дополнительной кислоты (форм. 4). Комплекс данного типа впервые был описан в 1940 г. Кальциевые комплексные смазки обладают высокой прочностью на сдвиг и водостойкостью, низким уровнем маслоотделения и хорошим уровнем допустимой нагрузки. Верхний температурный предел применения составляет 160 °С. Из-за образования кетонов, описанного в традиционных методиках органического синтеза, при температуре выше 120 °С возможно выраженное уплотнение. Тем не менее, процесс уплотнения смазки можно замедлить при помощи полимерных модификаторов структуры.

2.2.3. Комплексные мыла на основе сульфоната кальция

Конкурентоспособные смазки на основе данного комплекса впервые были предложены в 1985 г. Первоначально они содержали полученные in situ перенасыщенный основаниями сульфонат кальция и кальциевые соли других сульфонатов, 12-гидроксистеариновой кислоты и борной кислоты. Характеристики комплекса можно улучшить, заменив борат кальция на фосфат (форм. 5). Полищук опубликовал обзор истории кальциевых смазок, включая период максимального интереса к ним, связанного с разработкой новой системы загустителя; кроме того, опубликован обзор по их усовершенствованию на протяжении первого десятилетия от начала их доступности потребителю. Эти смазки обладают чрезвычайно высокими антикоррозийными характеристиками и высокой прочностью на сдвиг, а по значению допустимой нагрузки сравнимы лишь со смазками на основе других мыл, содержащих большое количество присадок. Температуры каплепадения таких смазок превышают 220 °С, однако верхний температурный предел применения составляет приблизительно 160 °С. Тем не менее, некоторые марки способны работать в течение нескольких часов при температурах до 250 °С. Значение комплексных смазок на основе сульфоната кальция за последние пять лет существенно возросло. В настоящее время выпускаются даже смазки пищевой категории. Природа комплексов и структура содержащегося в них карбоната кальция до сих пор является предметом дискуссий, пересыщенные основаниями карбоксилаты предложены в качестве потенциальных заменителей соответствующих сульфонатов.

2.2.4. Алюминиевые комплексные мыла

В настоящее время широко применяют только один из возможных комплексов алюминия, который включает стеарат и бензоат алюминия (форм. 6) и был впервые запатентован в 1952 г. Комплексные алюминиевые смазки такого типа обладают высокой водостойкостью и хорошими низкотемпературными характеристиками. В последние годы их значение уменьшилось, однако предпринимались попытки исследований в целях выяснения механизма образования мыл, регулирования процесса, расширения области применения, что в перспективе может вернуть этим смазкам привлекательность для потребителя. Такая перспектива реальна для смазок пищевых категорий и биоразлагаемых смазок.


2.2.5. Другие комплексные мыла

Смазки на основе натриевых комплексных мыл нашли применение благодаря возможности использования при высоких относительных скоростях, однако подобно простым мылам они теряют свое значение из-за ограниченной водостойкости; бариевые комплексные мыла, так же как и простые мыла, практически полностью вытеснены с рынка. Титановые комплексные смазки запатентованы в 1993 г. Они основаны на 12-гидроксистеариновой и терефталевой кислотах (форм. 7). Из их свойств более всего заслуживает упоминания хорошая характеристика по допустимой нагрузке.

2.3. Другие органические загустители

Из всевозможных мылоподобных солей только натриевые и кальциевые соли стеариламидотерефталевой кислоты (форм. 8) находят техническое применение. Они были запатентованы в 1954 г. и предложены для применения в многоцелевых смазках в 1957 г. Температуры каплепадения для смазок такого типа достигают 300 °С, а верхний рабочий температурный предел достигает 180 °С. Несмотря на то, что они обладают эффектом загущения простых мыльных смазок, по своему поведению они аналогичны комплексным смазкам, что делает их ценными многоцелевыми смазками. В последнее время их подвергли повторным исследованиям и рекомендовали для различных областей применения. Эти загустители являются самыми дорогостоящими; предпочтительно их использование с синтетическими базовыми маслами. Описаны комплексные мыла, включающие терефталат или бензоат; кроме того, исследованы комплексы стеарата алюминия с терефталатами.

2.4. Неионные органические загустители

Из довольно большого количества теоретически приемлемых соединений широкое промышленное распространение получили только олигомочевины, обычно называемые полимочевинами.

2.4.1. Димочевины и тетрамочевины

Олигомочевины в качестве загустителей были предложены в 1954 г. Продукты реакции одной молекулы MDI (ди-4,4"-изоцианатфенилметан — форм. 9) или других диизоцианатов с двумя молекулами моноаминов называют димочевинами (форм. 10). Тетрамочевины (форм. 11) являются продуктами реакции двух молекул диизоцианата с одной молекулой диамина и двумя молекулами моноамина. В зависимости от требуемых рабочих характеристик продукта, применяют алифатические или ароматические амины или их смеси. При избытке диизоцианата трехмерные структуры формируются вдоль связующих мостиков, подобных биуретовым (форм. 12). Представлен подробный обзор систем, содержащих олигомочевину в качестве загустителя, с точки зрения их характеристик в сравнении с характеристиками смазок на основе комплексных мыл и зависимости этих характеристик от используемого базового масла. Верхний температурный рабочий предел для смазок на основе олигомочевины определяется не столько стабильностью загустителя, разложение которого обычно начинается при температуре немного ниже 250 °С, сколько стабильностью базового масла. Поэтому характеристики этих смазок предпочтительнее, чем характеристики смазок на мыльной основе, для которых рабочие температуры превышают 180 °С. При перегреве олигомочевинной (полимочевинной) смазки на основе полиалкиленгиколей происходит распад, продуктами которого в идеальном случае являются только газообразные вещества. Несмотря на то, что тетрамочевины также обладают некоторыми преимуществами, преобладает тенденция к применению димочевин. Определить, являются ли характеристики продуктов, содержащих димочевины на основе алифатических, ациклических или ароматических аминов, улучшенными при стандартных условиях нелегко — это показывают исследования толщины пленок и отклика на добавление присадок типа ЕР .

Полимочевинные комплексные смазки, содержащие ацетат кальция, были предложены в 1974 г.; затем появились другие смазки, содержащие карбонат и другие дополнительные соли; эти продукты до сих пор предпочтительны в некоторых областях применения. Полимочевинные комплексные смазки называют также полиуретановыми смазками, или полиуретановыми комплексными смазками, однако эти названия следует зарезервировать для полимочевинных смазок, в которых амины частично замещены спиртами. В 1995 г. был представлен волокнистый продукт. Несмотря на то, что при высоких температурах смазки на мыльной основе не могут конкурировать с полимочевинными смазками, при температурах ниже 180 °С литиевые комплексы, например, обладают по меньшей мере равными с ними характеристиками. Загустители, подобные карбаматам (форм. 13), являются родственными по отношению к олигомочевинам и простым мылам и обладают характеристиками, промежуточными для этих двух групп. Это справедливо также для смесей полимочевинных смазок с простыми или комплексными мыльными смазками. На тех же основаниях, что и смазки, подобные карбаматам, эти смеси можно отнести к смазкам на основе «мочевинного мыла».


2.4.2. Другие неионные органические загустители

Полимерные перфторированные углеводороды — измельчаемый до микронных размеров порошкообразный политетрафторэтилен (ПТФЭ) обычно используют в качестве загустителей для смазок, применяемых при температурах свыше 220 °С с верхним рабочим температурным пределом около 270 °С. Для подобных областей применения в качестве базовых масел следует выбирать их жидкие олигомеры или, предпочтительнее, соответствующие перфторалкиленовые эфиры. Такие полимеры, как полиамиды или полиэтилены, применяют главным образом в качестве присадок.

2.5. Неорганические загустители

Для применения в смазочных маслах неорганические загустители необходимо обработать реакционно-способными органическими соединениями концентрацией от 5 до 10 %масс. Только такая обработка позволяет им функционировать в качестве олеофильных загустителей, без этого они будут подобны наполнителям, загустителям и твердым смазкам, которые лишь при концентрации свыше примерно 40 %масс. образуют пасты. Кроме данных гидрофобных агентов, для гелеобразования необходимы дополнительные полярные активаторы, например ацетон, этанол или более безопасный в использовании пропиленкарбонат. Их применяют при содержании 10 % масс. относительно загустителя. Сами загустители стабильны при температурах до 300 °С; получаемые смеси или гели применяют при рабочих температурах до 200 °С в случаях, когда нет необходимости в усиленном сопротивлении сдвигу. Это отчасти вызвано тем, что диаметр исходных частиц составляет лишь около 0,05 мкм. Склонность смазок с неорганическим загустителем к затвердеванию и маслоотделению при хранении и их чувствительность к полярным присадкам в некоторой степени можно нивелировать путем добавления функциональных полимерных агентов. Это подтверждают исследования с использованием окиси алюминия, которые являются в большей степени теоретическими.

2.5.1. Глины

Глины (точнее, бентонитовые алюмосиликаты, главным образом смектиты, монтмориллонит и гекторит являются важнейшими неорганическими загустителями. Обычно их обрабатывают четвертичными аммониевыми основаниями (например, хлоридом триметилстеариламмония) и вышеупомянутыми активаторами.

2.5.2. Высокодисперсная кремниевая кислота

Высокодисперсную кремниевую кислоту получают путем сжигания тетрахлорида кремния в пламени гремучего газа: более приемлемой в качестве загустителя она становится после обработки такими веществами, как силаны, силазаны или силоксаны (рис. 3).

Одним из преимуществ данных продуктов является малая зависимость их консистенции от температуры. Вместе с подходящими базовыми маслами и активаторами они образуют гели (от белых до прозрачных), применяемые в медицине и пищевой промышленности.

2.6. Прочие загустители

В целом неорганические и органические пигменты всех типов можно использовать в качестве загустителей или в качестве наполнителей. Граница их применения в качестве присадок для смазочных масел является нечеткой. В промышленном масштабе иногда используют только такие неорганические материалы, как сажа и коллоидный графит, а также органические фталоцианины. Хотя в принципе возможно изготовление смазок на основе сочетания всех типов загустителей, на практике применяют лишь отдельные смеси мыл с комплексными мылами, или мыл с глинами и олигомочевинами.

2.7. Временно загущенные жидкости

При определенных условиях вязкость жидкостей и суспензий твердых веществ в жидкостях значительно увеличивается (табл.5).

Таблица 5. Временно загущенные жидкости Магнитные жидкостити
1. Суспензии частиц феррита в инертных жидкостях
2. Сила магнитного поля
3. Акустические и быстровращающиеся механизмы

Электрореологические жидкости
1. Суспензии силикатов в силиконовых маслах
2. Напряжение
3. Гидравлические затворы, амортизаторы, вязкостные муфты

Жидкие кристаллы
1. Соединения, образующие смектические В-фазы
2. Давление-температура
3. Гидравлические затворы, муфты 1 - сырой материал; 2 - причина затвердевание; 3 - применение.
Некоторые жидкокристаллические системы применимы в качестве смазывающих материалов в случаях, когда происходят перепады давления или температуры. Некоторые растворы, способные образовывать жидкие кристаллы в ограниченном интервале температур, по характеристикам сравнимы с консистентными смазками, а отдельные жидкие кристаллы в концентрированных точечных контактах даже их превышают.
Электрореологические и электровязкостные поля, суспензии измельченных до микронных размеров высокополяризуемых и гидрофильных пористых твердых веществ, первоначально - силикагель в силиконовом масле с водой в качестве инициатора; в дальнейшем - полиуретаны без инициатора в углеводородах характеризуются чрезвычайным увеличением эффективной вязкости при воздействии электрических полей. Первые практические применения, предложенные Уинслоу {Winslow), относятся к 1942 г. В последние годы сообщают о расширении их применения в гидравлических затворах, демпферах и муфтах, а также о прогрессе в области научных разработок.
Магнитореологические жидкости, микронные суспензии переходных элементов, главным образом ферритов, проявляют аналогичные свойства в магнитных полях. Оба типа жидкостей называют также «умными жидкостями». Они содержат от 20 до 60% твердых частиц, образующих более или менее разветвленные цепи при приложении полей; таким образом, они проявляют свойства бингамовских пластиков. Повышение усилия сдвига приводит в первую очередь к растяжению, затем - к разрыву цепей, состоящих из частиц, хотя равновесная рекомбинация частей цепи позволяет жидкости сохранять эффективную вязкость даже при большой скорости сдвига. Вопрос о том, могут ли смазочные эмульсии или даже пены иметь смазочный потенциал, сравнимый с потенциалом пластичной смазки, остается открытым. Сообщалось об исследовании возможности применения эмульсий для литиевых смазок. Результаты исследования оказались многообещающими с точки зрения испытаний на износ методом теста Тимкена, однако это не подтвердилось при испытании на четырехшариковой машине.

Роман Маслов.
По материалам зарубежных изданий.

Промышленное оборудование, техника и бытовые приборы требуют регулярного технического обслуживания. Износ их элементов – подшипников или направляющих – приводит к дорогостоящему ремонту и простою.

Предотвратить коррозию, снизить износ элементов оборудования можно при использовании специальных смазочных материалов. Многофункциональная смазка на основе полимочевины эффективно снижает трение и износ металлических деталей, работающих даже при высоких температурах.

Термостойкая смазка на основе полимочевины EFELE MG-251 – оптимальный выбор для промышленного использования

Пластичная термостойкая смазка EFELE MG-251 от компании "Эффективный Элемент" – универсальный материал для обслуживания узлов техники и оборудования.

Данный материал предназначен, прежде всего, для подшипников качения и скольжения, направляющих качения и скольжения. Он предотвращает образование коррозии, исключает попадания влаги и пыли в узлы трения. Материал работает при температурах до +180 °C, не выгорает и не течет.

Термостойкая смазка на основе полимочевины EFELE MG-251 используется для следующих применений:

  • В оборудовании сталелитейной, цементной и текстильной промышленности.
  • В оборудовании по добыче и переработке полезных ископаемых.
  • В оборудовании по производству строительных материалов.
  • В подшипниках направляющих роликов машин непрерывного литья заготовок.
  • В системах транспортировки на металлургических заводах.
  • В подшипниках печей, подверженных высоким температурам, охлаждающих установок, конвейерных систем.
  • В узлах текстильных машин.
  • В вентиляторах обдува, электромоторах.

Состав материала

Многофункциональная термостойкая смазка EFELE MG-251 – это состав, созданный на основе нефтяных масел. В качестве загустителя в нем используется полимочевина.

Этот органический полимер придает смазке дополнительные свойства и улучшенные характеристики: термостойкость и повышенную износостойкость.

Смазочные материалы на минеральной основе состоят из недорогих компонентов, просты в производстве, поэтому выгодно отличаются по цене от синтетических и комбинированных смазок. Данный тип материалов хорошо подходит для металлических элементов, но совместим не со всеми пластмассами и эластомерами.

При недостаточно прочном слое, образованном смазочными составами, появляется вероятность перегрева трущихся элементов с увеличением их линейных размеров и заклиниванием. При взаимном перемещении этих элементов возникают повреждения поверхностей – задиры. Для предотвращения этого явления и снижения износа подшипников и направляющих в состав введены противозадирные (ЕР) присадки.

Пластичная смазка EFELE имеет ряд достоинств:

  • Устойчива к высоким температурам. Смазка работает при температурах до +180 °C.
  • Не вымывается водой, не вступает в реакцию с химически агрессивными веществами.
  • Имеет оптимальное соотношение цены и качества.
  • Обладает высокими противозадирными и противоизносными свойствами.
  • Защищает металлические поверхности от коррозии.
  • Имеет мягкую консистенцию и хорошую прокачиваемость.
  • Характеризуется низкой испаряемостью.

Термостойкая смазка для подшипников и направляющих эффективно снижает трение при повышенных нагрузках. Долгий срок ее службы в узлах позволяет сократить расход смазочных материалов и увеличить интервал между обслуживанием оборудования.

Способы нанесения

Смазки разных марок смешивать не рекомендуется – это может привести к ухудшению их рабочих свойств и выходу из строя механизма. Поэтому перед нанесением необходимо тщательно удалить остатки прежней смазки с помощью специального очистителя или иными способами.

Состав наносится на подшипники или направляющие при помощи кисти, шпателя или любого другого инструмента. Излишки нанесенного материала легко удаляются мягким материалом или ветошью.

Этот материал имеет достаточно мягкую консистенцию, которая соответствует классу 1,5 по NLGI. Он хорошо прокачивается, поэтому пригоден также для использования в автоматических и централизованных системах подачи смазочного материала.

Термостойкая смазка на основе полимочевины предназначена для пар трения металл – металл. В то же время она может применяться с большинством пластмасс и эластомеров. Однако перед ее нанесением на уплотнительные материалы необходимо провести тест на совместимость.

Универсальный смазочный материал EFELE выпускается в нескольких вариантах фасовки: в компактных тубах по 400 грамм, ведрах массой по 5 или 18 килограмм или больших бочках по 180 кг.

Условия хранения и срок годности

Материал можно использовать в течение 48 месяцев от даты производства, указанной на упаковке. Состав необходимо оберегать от попадания в него влаги, атмосферных осадков, воздействия прямых солнечных лучей и нагрева выше +40 °C. Не рекомендуется его хранить вблизи кислот, баллонов с кислородом и другими окислителями, сжатыми и сжиженными газами, легкогорючими веществами.

Многофункциональная термостойкая смазка на основе полимочевины EFELE MG-251 эффективно снижает трение подшипников и направляющих, повышает рабочий ресурс узлов и их надежность, позволяет сократить производственные расходы на обслуживание оборудования. Материал обладает высокими эксплуатационными характеристиками и оптимальным соотношением цена – качество.