Как накрутить электронный спидометр. Как сделать электронный спидометр

Добрый день и удачной охоты, всем котам и кошечкам!
А самое главное:
С днем рождения Кот!
Пусть живет и здравствует наш "РадиоКот"! Ура товарищи (ну или господа)!

Глава 1. Немного предистории, или как я люблю отечественный Автопром.

После того, как на моей машине, а машина прямо скажем почти эксклюзивная (в смысле запчасти фиг найдешь), благополучно скончался очередной спидометр, то ли седьмой, то ли восьмой, я решил замутить электронный девайс, чтоб и скорость показывал и километры щелкал.
Как обычно, начал поиск того, что уже натворили собратья по разум и коллеги по несчастью обладания данным типа авто. Пролистав не одну страницу и посетив не один форум, обнаружил что ничего подходящего для моего авто нет, либо девайс собран на PICе, у меня даже программатора нет и приходится просить друзей-знакомых, да и AVRки мне как-то роднее, либо состоит из 2х отдельных блоков, и у всех значения пробега пишутся во внутреннюю EEPROM, что не есть гут. Пораскинув мозгами, не широко так, чтобы потом можно было собрать в кучу, решился на отчаянный шаг - лепить самому. Что из этого получилось - решать вам, многоуважаемые коты.

Фото 1. Общий вид:

Фото 2. Основной блок:


Фото 3. Датчик ДСА-9 + "двигло":


Глава 2. О выборе компонентов, или "я его слепила из того, что было".

Итак, за источник сигнала о продвижении авто по тернистому пути наших автодорог был выбран ДСА-9, имеющий: 6 импульсов на 1 метр пути, выход ОК и резьбовое соединение М22 х не помню на сколько, как раз по размеру, НО можно использовать любой датчик скорости с 6имп/метр, в зависимости от авто.
С проциком было труднее. Любимой меге48 не хватало пары ног, но тут на глаза попалась старая макетка с мегой16, что ж так тому и быть. Итого: МП=ATmega16-16PI
С выбором тактовой частоты долго мучаться не пришлось, после не больших подсчетов выяснилось, что период повторения импульсов при скорости 250 км/ч составляет 2,4 мс, или 2400 тиков при тактовой частоте в 1 МГц, маловато будет, было решено использовать кварц на 8 МГц, это уже 19200 тиков процессора, а для удобства подсчета, с помощью таймера Т1, использовать "предделитель на 8".
Для отображения всего, что будет измерятся и подсчитыватся предназначены:
KingDright BA56-12GWA (можно любые с ОА) - для отображения текущей прыткости
МЭЛТ MT-08S2A-2YLG (опять же можно любой 8х2 LCD с аналогичным контроллером и тактовой не ниже 250 кГц) - для подсчета того, что будет пройдено по тем направлениям, что в России гордо именуется дорогами.
Ну и AT24C04B (наследство от той самой макетки, но можно любую из серии 24Схх), чтобы "помнить" от тех незабываемых километрах пути.

Глава 3. О самом главном, или без теории ни туды, и ни сюды.

Переходим, собственно, к методике определения скорости. Как всем известно, если автомобиль движется, то с датчика скорости поступают импульсы, если никуда не движется - то и импульсов тоже не дождетесь! И что самое поразительное - частота (или кому удобнее - период повторения) прямо пропорциональна (обратно пропорциональна, для периода повторения) скорости движения, вот тут-то, не при котах будь она упомянута, собака и порылась. Что такое частота - это количество импульсов в секунду (просто гениально, спасибо Герцу) N(в секунду)=Fп, поэтому получаем:

V=Fп/6 (м/сек) (мы же помним, что на 1 метр приходится 6 импульсов)

Но минуточку, где вы видели спидометры со шкалой "М/СЕК"? Да и ГАИшники, (ДАИшники - это чтобы для тех, кто в Украине проживает, было понятно) штрафуют за лишние км/час. Отсюда вывод - надо пересчитать, а как? Все гениальное просто: умножаем на 3600 (это столько секунд в 1 часе) и делим на 1000 (столько метров в 1 км) после сложнейших математических преобразований получаем волшебную формулу:

V=0,6*Fп (км/час) - то что доктор прописал.

Из это формулы следует гениальное (жаль, что не я первый додумался) умозаключение - если организовать "временные ворота" длительностью 0,6 сек, в которые проталкивать импульсы от датчика, на выходе получим скорость! 1 импульс - 0,6 км/час, 10 импульсов - 6 км/час, 100 импульсов - 60 км/час и т.д. Но, опять это "НО", как сказал один из главных героев любимого фильма из детства "Айболит-66" - "Нормальные герои всегда идут в обход", вот этим путем пойдем и мы, т.е. заменим в формуле Fп на Тп (оно же 1/Fп), в результате получим:

V=0,6/Тп (км/час)

Возникает законный вопрос - "ЗАЧЕМ?". Напрашивается еще одна цитата: "А я объясню!" ("Ирония судьбы, или с легким паром"). Дело в том, что как любой цифровой прибор, нашему спидометру присущи те же недостатки - погрешность. Может кто помнит, обычно пишут: "+/- 2 знака мл.разряда" (например). Так вот, чтобы уменьшить, всякие там, погрешности умные люди придумали "складывать и умножать" (шучу), накапливать и усреднять.
Теперь посмотрим, сколько нужно времени, чтобы усреднить 2 показания, ну скажем на скорости 60 км/ч.
При первом способе получается: 2 временных отрезка по 0,6 сек - итого 1,2 сек, авто при этом проедет примерно 33м. (временем выполнения сложения-деления можно пренебречь)
Второй способ нам дает: 2 интервала по 10 мс - итого 0,02 сек, авто проедет - 0,33м.
Вот поэтому в программе происходит накопление и усреднение 8-ми отсчетов скорости. Почему 8? Просто удобнее усреднять, не мне - микропроцику.
Тогда зачем я тут подробно описывал первый способ расчета? А чтоб было, вдруг кому-то понадобится!
Что? Забыл про одометр? Ну, там все просто: считаем импульсы, делим на 6 - получаем метры, потом делим на сто - сотни метров (нужны для учета суточного пробега), еще на 10 получили - км. Как вы поняли в девайсе всего два счетчика пробега: полный и суточный.
Опять же, количество счетчиков ограничено только моей фантазией (или ее отсутствием) и теми самыми 19200 тиками (по секрету скажу - тиков ушло примерно 1/3), можно конечно добавить счетчиков, прицепить часы на DS1307 и считать км за 1 час, скажем, или расстояние от работы до магазина с пивом, но зачем?

Глава 4. Описание работы, или "а оно вам надо?"

Основная часть схемы изображена на рис.1.
И так, что у нас в наличии:
таймеры: Т0, Т1, Т2 - отлично,
аппаратный TWI - пригодится,
1 свободная нога от АЦП - вполне достаточно,
есть еще ноги для организации внешних прерываний,
ну еще куча всего - оно нам не пригодится, по крайней мере в этом проекте.

Основную работу выполняет Т1, заполняет время между 2-мя нарастающими фронтами от приходящих импульсов датчика скорости, импульсами 1МГц (считать удобно: 1 импульс - 1 мкс) попутно подсчитывая их (импульсы от датчика). Работает он в режиме ICR, и использует 2-а прерывания, собственно Input Capture1 Interrupt Vector и Overflow1 Interrupt Vector, второй нужен только для расчета скоростей ниже 10 км/ч, к сожалению на таких скоростях Т1 успевает переполняться и не один раз, поэтому и переменная 3-х байтовая.
На счетчике Т2, работающем в нормальном режиме, организовано формирование интервалов времени для динамического отображения информации на 7-ми сегментных индикаторах и вывода данных на LCD (здесь все понятно, пояснить нечего).
Т0 - тоже, ничего особенного режим Fast PWM, управляет ключем регулирующим яркость свечения индикаторов. АЦП - меряет напругу на переменном резисторе R7, выравнивает результат влево, и записывает его в OCR0.
Ну что еще? Гальваническая развязка входов МК от бортовой сети авто, так проще, ключ на элементах VT5,VT6 (если кому-то больше нравятся полевики, пожалуйста - можно и на полевике) нужен только для того, чтобы процик успел записать данные по километражу в 24С04, после выключения зажигания. Забыл пояснить Vп - цепь питания постоянно находящаяся под напряжение ботовой сети, Vз - цепь питания, на которой напряжение бортовой сети появляется после включения зажигания и соответственно пропадающее после отключения оного.

Спидометром называют устройство для измерения скорости передвижения транспортного средства. В случае, когда ваш спидометр по каким-либо причинам пришел в негодность, не обязательно идти в магазин и покупать новый прибор. Можно сделать его самостоятельно! Главное выяснить, как сделать спидометр, и смело приступать к работе.

Виды спидометров

Существует два вида спидометров:

  • механические
  • электронные.

Что касается механического спидометра, то в основе его устройства лежит вращение магнитного диска, которое происходит за счет движения трансмиссии. Алюминиевая катушка за счет действия магнитных полей увлекается за диском, однако ее удерживает возвратная пружина. Именно от жесткости этой пружины зависит положение стрелок на доске приборов. Но, как сделать стрелку спидометра, чтобы при таких условиях она показывала точные значения? Ответ один – это сделать практически невозможно, поскольку будет крайне сложно добиться правильных показаний. И даже заводские спидометры имеют погрешность в измерениях, которая достигает 10 %. Но вы можете без проблем взять любой другой поломанный спидометр, и использовать его стрелку с пружиной.

Тогда выясним, как сделать электронный спидометр. Поскольку у него погрешность гораздо ниже, а детали необходимые для изготовления проще достать, то его можно изготовить в домашних условиях. В основе электронного спидометра лежит измеритель числа импульсов, которые поступают от датчика скорости. Для его изготовления вам потребуется:

  • графический дисплей от старого сотового телефона;
  • светодиоды для подсветки;
  • конденсатор большой емкости;
  • микроконтроллер;
  • стабилизатор напряжения;
  • маломощные резисторы;
  • подстроечный резистор;
  • кварцевый резонатор.

Все детали можно легко приобрести в магазине или на рынке радиотоваров. Теперь необходимо узнать алгоритм действий, как сделать спидометр своими руками.

  1. В первую очередь понадобится разработать самостоятельно или же скачать в интернете подробную схему построения электронного спидометра. После этого ее следует собрать и спаять. А также проверить с помощью тестера качество соединения припаянных деталей.
  2. Затем вам понадобится приобрести датчик скорости и установить его на колесо или в специальное крепление на коробке передач вашего автотранспортного средства. Но, вначале необходимо будет рассчитать точное количество импульсов на 1 километр пробега. Чтобы произвести данный расчет необходимо измерить длину окружности колеса: один оборот означает один импульс датчика. Затем, основываясь на полученных данных, нужно рассчитать параметр устройства.
  3. Далее понадобится сделать прошивку микроконтроллера и протестировать работу электронного спидометра. После этого спидометр можно будет подключать к автотранспортному средству.
  4. Когда монтаж будет выполнен, следует проверить его работоспособность. Если будут обнаружены проблемы в его работе, то просто перепрограммируйте микроконтроллер или измените схему.

Найти схему устройства, а также подробные советы, как сделать подсветку спидометра, можно

Так можно назвать эту конструкцию, потому что одновременно с индикацией скорости движения она подсчитывает и пройденное расстояние, как это делают спидометры мотоциклов и автомобилей. Схема спидометра показана на рисунке.

Датчиком в нем является выключатель SА1, обозначенный на схеме несколько необычно. Это обозначение принадлежит геркону — герметизированному контакту. Геркон представляет собой запаянную стеклянную колбу, внутри которой размещены два контакта — концы их находятся друг над другом на небольшом расстоянии. В исходном состоянии контакты разомкнуты. Но стоит приблизить к геркону постоянный магнит так, чтобы контакты оказались в его поле (рис. б), как концы контактов намагнитятся, притянутся друг к другу и замкнутся. При удалении магнита контакты вновь размыкаются (рис. а).

Установив геркон на передней вилке велосипеда и прикрепив магнит к спицам колеса (рис. в), получим датчик скорости. При вращении колеса магнит будет проходить вблизи геркона и магнитным полем замыкать его контакты. За каждый оборот колеса контакты замкнутся один раз. Чем больше скорость вращения колеса, а значит, скорость движения велосипеда, тем чаще будут замыкаться контакты геркона. Остается подсчитать число замыканий в единицу времени и определить скорость. А зная длину окружности колеса, нетрудно определить и пройденный путь. Но делать эти подсчеты будет электроника. Итак, вернемся к схеме устройства. Контакты датчика SА1 подключены к зажимам ХТ1 и ХТ2. Периодически замыкаясь, контакты соединяют левый по схеме вывод конденсатора С1 с общим проводом (плюс питания). При этом каждый раз конденсатор, заряжающийся в перерывах между замыканиями через резисторы R1 и R2, разряжается через резистор R2 и контакты. В итоге в момент размыкания контактов на резисторе R2 появляется импульс напряжения отрицательной полярности. Через диод VD2 он подается на специальное формирующее устройство, собранное на транзисторах VT1, VТ2. Это ждущий мультивибратор, нужен он вот для чего.

Длительность замыкания контактов геркона и длительность пауз между замыканиями непостоянна и зависит от скорости вращения колеса. Так же непостоянна будет и длительность импульсов, выделяющихся на резисторе R2. «Обрабатывать» такие импульсы сложно, поэтому и поставлен формирователь импульсов — ждущий мультивибратор. Независимо от колебаний длительности и амплитуды входных импульсов выходные будут строго постоянны. Длительность их зависит от емкости конденсатора С2, амплитуда — от напряжения питания, подаваемого на ждущий мультивибратор. Частота же следования импульсов определяется частотой замыкания контактов геркона.

Выходные импульсы мультивибратора, снимаемые с резистора R8, поступают далее на каскад, выполненный на транзисторе VТЗ,— это эмиттерный повторитель. Амплитуда импульсов на эмиттере транзистора практически равна амплитуде импульсов на базе. При каждом импульсе через резистор R9 и стрелочный индикатор РА1 протекает ток, и стрелка индикатора отклоняется. Чем чаще следуют импульсы, тем больше средний ток через индикатор, тем больше угол отклонения стрелки, свидетельствующий об увеличении скорости движения велосипеда.

Но ведь в промежутках между импульсами стрелка может возвращаться на нулевую отметку шкалы, иначе говоря, стрелка может колебаться, затрудняя отсчет показаний. Чтобы этого не происходило, параллельно индикатору поставлен оксидный (раньше называли электролитический) конденсатор СЗ. Он заряжается во время каждого импульса и в паузах между импульсами сохраняет напряжение. Стрелка индикатора не успевает возвращаться на нуль, и колебания ее едва заметны (если, конечно, стабильна скорость движения велосипеда). Предельная скорость, которую может измерить спидометр, зависит от тока полного отклонения стрелки индикатора и сопротивления резистора R9 (поэтому он и обозначен знаком подбора параметра — «звездочкой»).
Теперь об определении пройденного расстояния. Как вы уже знаете, оно зависит от длины окружности колеса велосипеда и числа его оборотов, то есть числа импульсов, поступивших с датчика. Эти импульсы и нужно подсчитать. Делается это с помощью каскада на транзисторе VТ4.
На базу транзистора поступают импульсы с эмиттерного повторителя через резистор R10 (он ограничивает ток базы и подбирается в зависимости от коэффициента передачи используемого транзистора). При каждом импульсе транзистор VТ4 открывается и подключает электромеханический счетчик В1 к источнику питания GВ1 (естественно, когда питание включено выключателем SА2). Сколько импульсов поступит, на столько единиц изменятся показания счетчика. Остается умножить это значение на длину окружности колеса — и получится цифра пройденного расстояния.
Хорошо, если счетчик имеет кнопку сброса показаний, тогда достаточно делать это перед каждым этапом и по прохождении этапа заносить показания в блокнот. Если же кнопки сброса нет, придется записывать показания счетчика перед каждым этапом и по ним определять протяженность того или иного отрезка пути.

Питается спидометр от источника напряжением 9 В. Поскольку оно со временем падает (источник истощается), для питания самого спидометра применен простейший стабилизатор напряжения, состоящий из стабилитрона VD1 и резистора R11. Напряжение на стабилитроне будет около 5,6 В даже при изменении питающего напряжения на 1,5—2 В.

Какие детали понадобятся для этого прибора? Геркон желательно взять с возможно большей чувствительностью и небольших габаритов, например, КЭМ-1А. Магнит тоже должен быть небольшой, но достаточно сильный, чтобы он мог замыкать контакты геркона на расстоянии не ближе 10 мм. Устанавливая эти детали, помните, что при вращении колеса центр магнита должен проходить точно напротив контактов (как правило, они расположены посередине колбы).

А как быть, если геркона нет? Выход простой — воспользоваться любыми электрическими контактами, способными замыкаться при вращении колеса. Это может быть, например, микровыключатель кнопочный, на кнопку которого будет надавливать установленная на колесе металлическая пластина. Подойдет и такой вариант — на вилке прикрепите пружинящую пластину, изолировав ее от корпуса велосипеда, а на спицах установите такую же пластину, надежно соединенную с корпусом. При вращении колеса пластины будут касаться друг друга один раз за оборот и замыкать цепь конденсатора С1 прибора. Все резисторы — МЛТ-0,25, за исключением R11 — он МЛТ-0,5. Оксидные конденсаторы — К50-6, но подойдут К50-3 или другие, на номинальное напряжение не ниже указанного на схеме. Вместо диода Д9Б можно использовать любой другой диод из серии Д9 (либо из устаревшей серии Д2). Диод Д226Д (он защищает транзистор VТ4 от экстратоков, возникающих из-за индуктивной нагрузки — обмотки счетчика) можно заменить любым другим из серий Д226 или Д7.

Транзисторы VT1, VТ2 — любые из серий МП39—МП42. Транзистор VТЗ должен быть обязательно кремниевый, структуры p-n-p с возможно меньшим обратным током коллектора. Поэтому вместо КТ361А наиболее подходит КТ347А, но в крайнем случае допустимо поставить МП115. При последней замене через стрелочный индикатор может протекать начальный ток, вызывающий заметное отклонение стрелки. Снизить его можно только подбором транзистора с меньшим обратным током коллектора. Если же такой возможности нет, придется учитывать это отклонение на малых скоростях движения и вносить поправку в показания спидометра.

Транзистор VТ4 желательно применить серий МП25, МП26 — они допускают больший ток коллектора. В крайнем случае подойдет МП42Б.
Стрелочный индикатор — любого типа, с током полного отклонения стрелки от 100 мкА до 1 мА и рассчитанный на работу в условиях вибрации и в горизонтальном положении. Электромеханический счетчик — МЭС54, паспорт РС2.720.002 или РС2.720.004 (он более экономичен). Подойдут и другие счетчики небольших габаритов, работающие при напряжении 2—4 В и потребляющие возможно меньший ток.

Источником питания могут быть две батареи 3336 или шесть элементов 373, соединенные последовательно — все зависит от габаритов корпуса, который удастся подобрать для конструкции. Налаживание прибора начинают с проверки напряжения на стабилитроне. Оно должно быть около 5,6 В. Если оно намного меньше, нужно измерить ток через стабилитрон и установить его подбором резистора R11 примерно равным 3—4 мА.
Затем проверяют спидометр. Периодически замыкая входные зажимы пинцетом, убеждаются в отклонении стрелки индикатора. Подключив к зажимам кнопочный выключатель, нажимают на его кнопку с частотой примерно три раза в секунду, что соответствует скорости движения велосипеда около 20 км/ч. Подбором резистора R9 добиваются отклонения стрелки индикатора на конечную отметку шкалы. Более точно нужное сопротивление резистора можно установить во время контрольных гонок на дистанции известной протяженности.

Можно поступить и так. Установив датчик на заднее колесо и перевернув велосипед вверх колесами, вращают педали с постоянной скоростью, равной примерно 20 км/ч. Впаяв вместо постоянного резистора R9 переменный сопротивлением 22 кОм, устанавливают им стрелку индикатора на конечную отметку шкалы. Измеряют получившиееся сопротивление и впаивают в устройство резистор с таким сопротивлением.
В последнюю очередь подбором резистора R10 устанавливают ток через счетчик, несколько превышающий его ток срабатывания (с учетом возможного снижения напряжения питания до 7 В).

Также для замера пробега можно использовать любой ненужный микрокалькулятор. Для этого нужно аккуратно подпаять провод от геркона к кнопке (=) и замерить длину окружности колеса. Например, длина окружности 1метр 75см. Вводим в калькуляторе 1.75 и нажимаем (+) теперь можно ехать, на калькуляторе будет отображаться пробег в метрах.

СПРАВКА! У этого спидометра-одометра нет ничего общего, кроме принципа работы и некоторых функций, со спидометром-одометром Уважаемого МАМЕДА. Прибор был создан в 2004 году и немного гулял интернетом вместе с тахометром, так и не найдя на то время поддержки, видимо из-за дефицита и цены на микроконтроллер. Выводы делайте сами!






Прибор измеряет скорость в диапазоне 0-999 км в час, а также имеет 2 счетчики пробега - это общий и суточный пробег. Суточный одометр считает не только сотни, но и десятки метров, а также еще и тысячи километров, что можно назвать особенностью прибора. Управление всеми функциями возложено на одну единственную кнопку. Индикация выполнена на 7-ми сегментных светодиодных индикаторах: 3-х значный без точки для скорости, и два 3-х значных (или 6-ти значный) с точкой для счетчиков пробега. Прибор откалиброван под 6-ти импульсный датчик скорости и на соотношение пробега 6 импульсов на 1 метр пути.

Подробнее о работе прибора: Когда зажигание выключено, индикаторы погашены и ток потребления ничтожно маленький. Если включить зажигание, прибор включает все сегменты индикаторов, для самодиагностики (сразу будет видно, если какой сегмент неисправен). Далее через пару секунд прибор начинает индикацию скорости и ранее выбранного пробега, Коротким нажатием на кнопку переключается режим индикации суточного или общего пробега. Когда на дисплее суточный пробег, длинное нажатие (более 2 сек) обнуляет счетчик суточного пробега. После выключения зажигания прибор на несколько секунд, отображает слово "ЗАПИСЬ" и все значения одометров записываются в энергонезависимую память EEPROM, поэтому даже отключение АКБ не вызовет сброса одометра.

Каждый счетчик имеет свой формат:
Общий одометр ХХХХХХ (младший разряд 1 километр) 6 знаков, без точки.
Суточный одометр ХХХХ.ХХ (младший разряд 10 метров), 6 знаков, горит 4-я точка

Этот прибор откалиброван для датчика того, что имеет на 1 метр 6 импульсов, или равняется 1 метр на 1 оборот. Эта формула подходит для большинства автомобилей. (Для примера! Спидометр изготовлен для Японского автомобиля, у которого 0.62 оборота равна 1 метру (или 1оборот 1 миля), и что бы не нарушать формулу есть датчик 10 импульсов на 1 метр (0.62 оборота =1 метр = 6 импульсов, или 1 оборот = 1 миля = 10 импульсов).
Прибор, также может быть откалиброван для работы с практически любым датчиком и соотношением пробега к импульсам. Это возможно выполнить путем правки исходного текста.
Скопировать исходный текст в программу "MPLAB IDE", отредактировать и скомпилировать новый исправленный HEX файл.

ВАЖНО!!!
Кварц лучше ставить, KX-3HT 10.0 MHz. Это термостабильный резонатор рабочая температура: от -40 до 85 °C, он дороже в несколько раз.
На светодиодах для равномерной подсветки надписей, спилить линзы и заматывать поверхность любым способом, доступный для вас.

Можно изготовить спидометр на светодиодах. Устройство получилось довольно оригинальное, а процесс сборки не такой уж и сложный. Работать устройство может благодаря датчику ABS, именно он определяет скорость. Работает такой датчик очень просто, при прохождении напротив него металлического предмета он генерирует электрический импульс, который затем идет на электронику . Далее на основе частоты этих импульсов происходит расчет скорости движения автомобиля или скорости вращения двигателя. Благодаря такой схеме можно собрать и тахометр, как это сделал автор.

Сигналы с датчика необходимо преобразовать в напряжение, для этих целей используется LM2917. При увеличении напряжения будут последовательно включаться 30 светодиодов, которые подключаются через три микросхемы типа LM3914.

Конкретной в этой статье автор заменил датчик ABS на шаговый двигатель, ведь он тоже может генерировать импульсы. Помимо этого такой двигатель вырабатывает еще и напряжение, которое растет при увеличении скорости. В связи с этим необходимость использования регулятора напряжения LM2917 отпала.

Материалы и инструменты для изготовления:
- шаговый двигатель (можно найти в струйном принтере);
- провода;
- паяльник с припоем;
- микросхемы LM3914;
- подстроечный потенциометр на 47 кОм;
- 31 светодиод;
- плотная бумага для создания дисплея (картон);
- два резистора на 1 кОм;
- три резистора 2.2 кОм;
- электролитический конденсатор 470 мкФ/25В;
- два полипропиленовых конденсатора на 100 нФ;
- ножницы и другие мелочи.



Процесс изготовления спидометра:

Шаг первый. Устанавливаем датчик скорости
Для того чтобы сделать датчик можно использовать инфракрасные детекторы и светодиоды, различные сенсоры и так далее. Автор использовал для этих целей шаговый двигатель от струйного принтера. Из двух был выбран самый большой, который вырабатывает больше всего мощности и сигналов. Самое сложное - соединить двигатель с тросиком, то есть поставить шаговый двигатель вместо прежнего стрелочного спидометра.



Для того чтобы соединить оба вала, был использован кусок медной пластины, которая была вырезана под нужный размер. Она вставляется в пазы и таким образом обеспечивается отличная связь между валами. Сам двигатель нужно также хорошо закрепить, поскольку он тяжелый и будет скакать по салону при езде, а это может нарушить конструкцию. В корпусе моторчика можно просверлить отверстие и затем прикрутить его в нужном месте с помощью болта с гайкой.







Шаг второй. Электронная схема
После установки шагового двигателя появится 4 провода, которые нужно правильно подключить. Первый провод автор взял в качестве сигнального, а второй в качестве земли. При предварительном тестировании двигатель вырабатывает порядка 48 В. Если подключить мотор к трансмиссии и раскрутить до максимально возможного значения, он выдает 28 В. При этом можно сделать вывод, что напряжение возрастает линейно к скорости вращения, а это очень хорошо и такого напряжения хватит для работы спидометра.



Напряжение 12 В подается от аккумулятора, а земля от трансмиссии. Сигнал формируется шаговым двигателем. Пятый вход микросхемы LM3914 должен будет выдерживать напряжение порядка 35 В. Для калибровки сигнала используется подстроечный потенциометр на 45 кОм. Калибруется спидометр с помощью GPS, который есть в телефоне или навигаторе.


Микросхемы LM3914 являются драйверами светодиодного дисплея. Каждый из этих драйверов нужен для управления десятью светодиодами, это может быть как сегментный режим, так и точечный. Режимы переключаются по приложенной инструкции. Что касается контроллера 7809 (9В), то он регулирует напряжение.

Шаг третий Сборка спидометра
Светодиодов всего должно быть 31 штука, свет выбирается индивидуально, главное, чтобы они были яркими. Автор использовал яркие светодиоды белого цвета. Можно сделать ленту разноцветной, к примеру, к концу поставить красные, что будет говорить о высокой скорости движения, а вначале зеленые или синие светодиоды.















Первый светодиод должен непрерывно гореть при подключении питания +12В. Остальные же 30 будут включаться последовательно при росте скорости автомобиля. Основа для светодиодов делается из картона, напротив них вырезаются прямоугольные отсеки, на которые затем приклеивается более тонкая бумага. При работе светодиодов свет будет проходить только через тонкую бумагу, образовывая эффект, который можно увидеть на фото. Бумагу можно покрасить в любой цвет. Естественно впоследствии вся эта конструкция ставится вместо внутренностей старого стрелочного спидометра.

Между диодами нужно сделать перегородки, чтобы свет не распространялся по всей ленте. Лучше всего использовать алюминий, он будет отлично отражать свет.