Никель-кадмиевые аккумуляторы. Никель-металл-гидридный (Ni-MH) аккумулятор Аккумуляторные батарейки никель кадмиевые

Благодаря совершенствованию производства Ni-Cd-батареи сегодня применяются в большинстве портативных электронных устройств. Приемлемая стоимость и высокие эксплуатационные показатели сделали представленную разновидность аккумуляторов популярной. Такие устройства сегодня широко применяются в инструментах, фотоаппаратах, плеерах и т. д. Чтобы батарея прослужила долго, необходимо узнать, как заряжать Ni- Cd-аккумуляторы . Придерживаясь правил эксплуатации подобных устройств, можно значительно продлить срок их службы.

Основные характеристики

Чтобы понять, как заряжать Ni- Cd-аккумуляторы , необходимо ознакомиться с особенностями подобных приборов. Их изобрел В. Юнгнер еще в далеком 1899 году. Однако их производство было тогда слишком затратным. Технологии совершенствовались. Сегодня в продаже представлены простые в эксплуатации и относительно недорогие батареи никель-кадмиевого типа.

Представленные устройства требуют, чтобы заряд происходил быстро, а разряд медленно. Причем опустошение емкости батареи необходимо выполнять полностью. Подзарядка производится импульсными токами. Этих параметров следует придерживаться на протяжении всего срока эксплуатации устройства. Зная, Ni- Cd, можно продлить срок его службы на несколько лет. При этом подобные батареи эксплуатируются даже в самых тяжелых условиях. Особенностью представленных аккумуляторов является «эффект памяти». Если периодически не разряжать батарею полностью, на пластинах ее элементов будут формироваться крупные кристаллы. Они снижают емкость аккумулятора.

Преимущества

Чтобы понять, как правильно заряжать Ni-Cd-аккумуляторы шуруповерта, фотоаппарата, камеры и прочих портативных приборов, необходимо ознакомиться с технологией этого процесса. Она простая и не требует особых знаний и умений от пользователя. Даже после длительного хранения батареи ее можно быстро зарядить снова. Это одно из преимуществ представленных устройств, которые делают их востребованными.

Никель-кадмиевые батареи обладают большим количеством циклов заряда и разряда. В зависимости от производителя и условий эксплуатации этот показатель может достигать более 1 тысячи циклов. Преимуществом Ni-Cd-батареи является ее выносливость и возможность работы в нагруженных условиях. Даже при эксплуатации ее на морозе оборудование будет работать исправно. Его емкость в таких условиях не меняется. При любой степени зарядки аккумулятор можно будет хранить длительное время. Немаловажным преимуществом его является низкая стоимость.

Недостатки

Одним из недостатков представленных устройств является факт, что пользователь обязательно должен изучить, как правильно заряжать Ni- Cd-аккумуляторы. Представленным батареям, как уже говорилось выше, присущ «эффект памяти». Поэтому пользователь должен периодически проводить профилактические мероприятия по его устранению.

Энергетическая плотность представленных аккумуляторов будет несколько ниже, чем у других разновидностей автономных источников питания. К тому же при изготовлении этих приборов применяются токсичные, небезопасные для экологии и здоровья людей материалы. Утилизация подобных веществ требует дополнительных затрат. Поэтому в некоторых странах применение подобных аккумуляторов ограничено.

После длительного хранения Ni- Cd -батареи требуют проведения цикла заряда. Это связано с высокой скоростью саморазряда. Это также является недостатком их конструкции. Однако, зная, как правильно заряжать Ni- Cd-аккумуляторы , правильно их эксплуатировать, можно обеспечить свою технику автономным источником питания на долгие годы.

Разновидности зарядных устройств

Чтобы правильно заряжать аккумулятор никель-кадмиевого типа, нужно применять специальное оборудование. Чаще всего оно поставляется в комплекте с батареей. Если же зарядного устройства по каким-то причинам нет, можно приобрести его отдельно. В продаже сегодня представлены автоматические и реверсивные импульсные разновидности. Применяя первый тип устройств, пользователю не обязательно знать, до какого напряжения заряжать Ni- Cd-аккумуляторы . Процесс выполняется в автоматическом режиме. При этом одновременно можно заряжать или разряжать до 4 батареек.

При помощи специального переключателя устройство устанавливается в режим разрядки. При этом цветовой индикатор будет светиться желтым цветом. Когда эта процедура будет выполнена, прибор самостоятельно переключается в режим зарядки. Загорится красный индикатор. Когда аккумулятор наберет требуемую емкость, устройство перестанет подавать на батарею ток. При этом индикатор загорится зеленым светом. Реверсивные относятся к группе профессионального оборудования. Они способны выполнять несколько циклов зарядки и разрядки с разной длительностью.

Специальные и универсальные зарядные устройства

Многих пользователей интересует вопрос о том, как заряжать аккумулятор шуруповерта Ni- Cd типа. В этом случае не подойдет обычный прибор, рассчитанный на пальчиковые батарейки. В комплекте с шуруповертом чаще всего поставляется специальное зарядное устройство. Именно его следует применять при обслуживании батареи. Если же зарядного устройства нет, следует приобрести оборудование для аккумуляторов представленного типа. При этом можно будет зарядить только батарею шуруповерта. Если в эксплуатации имеются батареи различного типа, стоит приобрести универсальное оборудование. Оно позволит обслуживать автономные источники энергии практически для всех устройств (камеры, шуруповерта и даже АКБ). Например, сможет заряжать Ni-Cd-аккумуляторы iMAX B6. Это простой и полезный в хозяйстве прибор.

Разрядка прессованной батареи

Особой конструкцией характеризуются прессованные Ni- и выполнять разрядку представленных устройств, зависит от их внутреннего сопротивления. На этот показатель влияют некоторые конструкционные особенности. Для длительной работы оборудования применяются аккумуляторы дискового типа. Они имеют плоские электроды достаточной толщины. В процессе разрядки их напряжение медленно падает до 1,1 В. Это можно проверить при помощи построения графика кривой.

Если батарею продолжить разряжать до показателя 1 В, ее разрядная емкость составит 5-10% от первоначального значения. Если ток увеличить до 0,2 С, существенно снижается напряжение. Также это касается и емкости батареи. Это объясняется невозможностью разрядить массу по всей поверхности электрода равномерно. Поэтому сегодня толщину их снижают. При этом в конструкции дисковой батареи присутствует 4 электрода. Их можно в этом случае разряжать током 0,6 С.

Цилиндрические батареи

Сегодня широко применяются батареи с металлокерамическими электродами. Они обладают малым сопротивлением и обеспечивают высокие энергетические показатели устройства. Напряжение заряженного Ni- Cd-аккумулятора этого типа удерживается на уровне 1,2 В до потери 90% заданной емкости. Около 3% ее теряется при последующем разряде с 1,1 до 1 В. Представленный тип батарей допускается разряжать током 3-5 С.

Электроды рулонного типа установлены в цилиндрических аккумуляторах. Их можно разряжать током с более высокими показателями, который находится на уровне 7-10 С. Показатель емкости будет максимальным при температуре +20 ºС. При ее увеличении это значение несущественно меняется. Если температура снизится до 0 ºС и ниже, разрядная емкость уменьшается прямопропорционально приросту разрядного тока. Как заряжать Ni- Cd-аккумуляторы, разновидности которых представлены в продаже, необходимо рассмотреть подробно.

Общие правила зарядки

При совершении зарядки никель-кадмиевого аккумулятора крайне важно ограничивать излишний ток, поступающий на электроды. Это необходимо из-за роста внутри устройства при таком процессе давления. При зарядке будет выделяться кислород. Это влияет на коэффициент использования тока, который будет снижаться. Существуют определенные требования, которые объясняют, как заряжать Ni- Cd-аккумуляторы. Парамерты процесса учитывают производители специального оборудования. Зарядные устройства в процессе своей работы сообщают батарее 160% от номинального значения емкости. Интервал температур на протяжении всего процесса должен оставаться в рамках от 0 до +40 ºС.

Режим стандартной зарядки

Производители обязательно указывают в инструкции, сколько заряжать Ni- Cd-аккумулятор и каким током это нужно делать. Чаще всего режим выполнения этого процесса стандартный для большинства разновидностей батарей. Если аккумулятор имеет напряжение 1 В, его зарядка должна выполняться в течение 14-16 часов. При этом ток должен быть 0,1 С.

В некоторых случаях характеристики процесса могут немного отличаться. На это влияют конструкционные особенности устройства, а также увеличенная закладка активной массы. Это необходимо для наращивания емкости батареи.

Пользователя также может интересовать, каким током заряжать аккумулятор Ni- Cd . В этом случае есть два варианта. В первом случае ток будет постоянным в течение всего процесса. Второй вариант позволяет длительно заряжать аккумулятор без риска его повреждения. Схема предполагает применение ступенчатого или плавного снижения тока. На первой стадии он будет значительно превышать показатель 0,1 С.

Ускоренная зарядка

Существуют и другие способы, которые приемлют Ni- Cd-аккумуляторы. Как заряжать батарею этого тип в ускоренном режиме? Здесь существует целая система. Производители увеличивают скорость этого процесса благодаря выпуску особых устройств. Они могут заряжаться при повышенных показателях тока. В этом случае прибор обладает особой системой контроля. Она предупреждает сильный перезаряд аккумулятора. Такую систему может иметь либо сама батарея, либо ее зарядное устройство.

Цилиндрические разновидности устройств заряжают током постоянного типа, величина которого составляет 0,2 С. Процесс при этом будет длиться всего 6-7 часов. В некоторых случаях допускается заряжать батарею током 0,3 С в течение 3-4 часов. В этом случае контроль процесса крайне необходим. При ускоренном выполнении процедуры показатель перезаряда должен составлять не более 120-140% емкости. Существуют даже такие аккумуляторы, которые можно будет зарядить полностью всего за 1 час.

Прекращение зарядки

Изучая вопрос того, как заряжать Ni- Cd-аккумуляторы, необходимо рассмотреть завершение процесса. После того как ток перестает поступать на электроды, внутри батареи давление все еще продолжает расти. Этот процесс происходит из-за окисления на электродах гидроксильных ионов.

В течение некоторого времени происходит постепенное уравнение скорости выделения кислорода и поглощения на обоих электродах. Это приводит к постепенному понижению давления внутри аккумулятора. Если перезаряд был существенным, этот процесс будет выполняться медленнее.

Настройка режима

Чтобы правильно зарядить Ni- Cd-аккумулятор , необходимо знать правила настройки оборудования (если они предусмотрены производителем). Номинальная емкость батареи должна иметь ток заряда до 2 С. Необходимо выбрать тип импульса. Он может быть Normal, Re-Flex или Flex. Порог чувствительности (понижение давления) должен составлять 7-10 мВ. Его еще называют Delta Peak. Его лучше выставлять на минимальном уровне. Ток подкачки требуется установить в диапазоне 50-100 мА-ч. Чтобы иметь возможность полноценно использовать мощность аккумулятора, нужно выполнять зарядку большим током. Если же требуется его максимальная мощность, аккумулятор заряжают малым током в нормальном режиме. Рассмотрев, как заряжать Ni- Cd-аккумуляторы, каждый пользователь сможет выполнить этот процесс правильно.

В течение целых пятидесяти лет портативные устройства для автономной работы могли полагаться исключительно на никель-кадмиевые источники питания. Но кадмий очень токсичный материал, и в 1990-х на смену никель-кадмиевой технологии пришла более экологичная никель-металл-гидридная. По сути эти технологии очень схожи, и большинство характеристик никель-кадмиевых аккумуляторов передались по наследству никель-металл-гидридным. Но тем не менее, для некоторых применений никель-кадмиевые аккумуляторы остаются незаменимыми и используются по сей день.

1. Никель-кадмиевые аккумуляторы (NiCd)

Изобретенный Вальдмаром Юнгнером в 1899 году, никель-кадмиевый аккумулятор имел несколько преимуществ по сравнению со свинцово-кислотным, единственным существовавшим тогда аккумулятором, однако был более дорогим из-за стоимости материалов. Развитие этой технологии было довольно медленным, но в 1932 году был сделан значительный прорыв - в качестве электрода стал использоваться пористый материал с активным веществом внутри. Дальнейшее усовершенствование было сделано в 1947 году и решило проблему газопоглощения, что позволило создать современную герметичную необслуживаемую никель-кадмиевую батарею.

На протяжении многих лет именно NiCd батареи служили в качестве источников питания для двухсторонних радиостанций, экстренной медицинской техники, профессиональных видеокамер и электроинструмента. В конце 1980-х были разработаны ультраемкие NiCd аккумуляторы, которые потрясли мир своей емкостью, на 60% превышающей показатель стандартной батареи. Это было достигнуто благодаря размещению большего количества активного вещества в батарее, но добавились и недостатки - повысилось внутреннее сопротивление и уменьшилось количество циклов заряда/разряда.

NiCd стандарт остается одним из самых надежных и непритязательных среди аккумуляторных батарей, и авиационная отрасль остается верной этой системе. Тем не менее, долговечность этих аккумуляторов зависит от надлежащего обслуживания. NiCd, и отчасти NiMH аккумуляторы, подвержены эффекту “памяти”, который приводит к потере емкости, если периодически не делать полный цикл разряда. При нарушении рекомендованного режима зарядки аккумулятор будто помнит, что в предыдущие циклы работы его емкость не была использована полностью, и при разряде отдает электроэнергию только до определенного уровня. (Смотрите: Как восстановить никелевый аккумулятор ). В таблице 1 перечислены преимущества и недостатки стандартного никель-кадмиевого аккумулятора.

Преимущества Надежный; большое количество циклов при правильном обслуживании
Единственный аккумулятор, способный к ультрабыстрой зарядке с минимальным стрессом
Хорошие нагрузочные характеристики, прощает их преувеличение
Длительный срок хранения; возможность хранения в разряженном состоянии
Отсутствие специальных требований к хранению и транспортировке
Хорошая производительность при низких температурах
Самая низкая стоимость одного цикла работы среди всех аккумуляторов
Доступен в широком диапазоне размеров и вариантов исполнения
Недостатки Относительно низкая удельная энергоемкость в сравнении с более новыми системами
Эффект “памяти”; необходимость периодического обслуживания для его избежания
Кадмий является токсичным материалом, необходима специальная утилизация
Высокий саморазряд; нуждается в подзарядке после хранения
Низкое напряжение ячейки в 1,2 вольта, требует построения многоячеечных систем для обеспечения высокого напряжения

Таблица 1: Преимущества и недостатки никель-кадмиевых батарей.

2. Никель-металл-гидридные аккумуляторы (NiMH)

Исследования никель-металл-гидридной технологии начались еще в 1967 году. Однако нестабильность металл-гидрида тормозила разработку, что в свою очередь привело к развитию никель-водородной (NiH) системы. Новые гидридные сплавы, обнаруженные в 1980-х, решили проблемы с безопасностью, и позволили создать аккумулятор с удельной энергоемкостью на 40% большей, чем у стандартного никель-кадмиевого.

Никель-металл-гидридные аккумуляторы не лишены недостатков. Например, их процесс зарядки более сложен, чем у NiCd. С саморазрядом в 20% за первые сутки и последующей ежемесячной в 10%, NiMH занимают одну из лидирующих позиций в своем классе. Модифицируя гидридный сплав, можно добиться снижения саморазряда и коррозии, но это добавит недостаток в виде уменьшения удельной энергоемкости. Но в случае использования в электротранспорте, эти модификации весьма полезны, так как повышают надежность и увеличивают срок службы батарей.

3. Использование в потребительском сегменте

NiMH батареи в данный момент являются одними из самых легкодоступных. Такие гиганты отрасли как Panasonic, Energizer, Duracell и Rayovac признали необходимость присутствия на рынке недорогого и долговечного аккумулятора, и предлагают никель-металл-гидридные источники питания разных типоразмеров, в частности АА и ААА. Производителями тратятся большие усилия, чтобы отвоевать часть рынка у щелочных батарей.

В этом сегменте рынка никель-металл-гидридные батареи являются альтернативой перезаряжаемым щелочным батареям , которые появились еще в 1990 году, но из-за ограниченного жизненного цикла и слабых нагрузочных характеристик не снискали успеха.

В таблице 2 сравниваются удельная энергоемкость, напряжение, саморазряд и время работы батареек и аккумуляторов потребительского сегмента. Представленные в АА, ААА и других типоразмерах, эти источники питания могут использоваться в портативных устройствах. Даже если у них может немного различается номинальный вольтаж, состояние разряда, как правило, наступает при одинаковом для всех фактическом значении напряжения в 1 В. Эта широта значений напряжения допустима, так как портативные устройства имеют некоторую гибкость в плане диапазона напряжений. Главное – необходимо вместе использовать только однотипные электрические элементы. Проблемы безопасности и несовместимость напряжения препятствуют развитию литий-ионных батарей в АА и ААА типоразмере.

Таблица 2: Сравнение различных батарей типоразмера АА.

* Eneloop является торговой маркой корпорации Sanyo, основанной на NiMH системе.

Высокий показатель саморазряда NiMH является причиной продолжающейся озабоченности потребителей. Фонарь или портативное устройство с батареей NiMH разрядится, если не пользоваться им несколько недель. Предложение заряжать устройство перед каждым использованием навряд ли найдет понимание, особенно в случае с фонарями, которые позиционируются как источники резервного освещения. Преимущество щелочной батареи со сроком хранения в 10 лет тут видится бесспорным.

В никель-металл-гидридной батарее от Panasonic и Sanyo под торговой маркой Eneloop удалось значительно уменьшить саморазряд. Eneloop может храниться без подзарядки в шесть раз дольше чем обычная NiMH. Но недостатком такой улучшенной батареи является немного меньшая удельная энергоемкость.

В таблице 3 приведены преимущества и недостатки никель-металл-гидридной электрохимической системы. В таблице не учтены характеристики Eneloop и других потребительских торговых марок.

Преимущества На 30-40 процентов большая емкость по сравнению с NiCd
Менее склонны к эффекту “памяти”, могут быть восстановлены
Простые требования к хранению и транспортировке; отсутствие регулирования этих процессов
Экологически чистые; содержат только умеренно токсичные материалы
Содержание никеля делает утилизацию самоокупающейся
Широкий диапазон рабочих температур
Недостатки Ограниченный срок службы; глубокие разряды способствуют ее уменьшению
Сложный алгоритм зарядки; чувствительны к перезаряду
Особые требования к режиму подзарядки
Выделяют тепло во время быстрой зарядки и разряда мощной нагрузкой
Высокий саморазряд
Кулоновская эффективность на уровне 65% (для сравнения у литий-ионных - 99%)

Таблица 3: Преимущества и недостатки NiMH батарей.

4. Железо-никелевые аккумуляторы (NiFe)

После изобретения в 1899 году никель-кадмиевого аккумулятора шведский инженер Вальдмар Юнгнер продолжил исследования и пытался заменить дорогой кадмий более дешевым железом. Но низкая эффективность заряда и чрезмерное газообразование водорода заставили его отказаться от дальнейшего развития NiFe батареи. Он даже не стал патентовать эту технологию.

Железо-никелевый аккумулятор (NiFe) использует в качестве катода гидрат окиси никеля, анода - железо, а электролита - водный раствор гидроксида калия. Ячейка такого аккумулятора генерирует напряжение в 1,2 В. NiFe устойчив к излишнему перезаряду и глубокому разряду; может эксплуатироваться в качестве резервного источника питания в течение более чем 20 лет. Устойчивость к вибрациям и высоким температурам сделали этот аккумулятор самым используемым в горной промышленности в Европе; также он нашел свое применение для обеспечения питания железнодорожной сигнализации, также используется как тяговой аккумулятор для погрузчиков. Можно отметить, что во время Второй мировой войны именно железо-никелевые батареи использовались в немецкой ракете “Фау-2”.

NiFe имеет низкую удельную мощность - примерно 50 Вт/кг. Также к недостаткам стоит отнести плохую производительность при низких температурах и высокий показатель саморазряда (20-40 процентов в месяц). Именно это, вкупе с высокой стоимостью производства, побуждает производителей оставаться верными свинцово-кислотным батареям.

Но железо-никелевая электрохимическая система активно развивается и в недалеком будущем способна стать альтернативой свинцово-кислотной в некоторых отраслях. Перспективно выглядят экспериментальная модель ламельной конструкции, в ней удалось снизить саморазряд аккумулятора, он стал практически невосприимчив к пагубному воздействию пере- и недозарядки, а его срок службы ожидается на уровне 50 лет, что сопоставимо с 12-летним сроком службы свинцово-кислотной батареи в режиме работы при глубоких циклических разрядах. Ожидаемая цена такой NiFe батареи будет сравнима с ценой литий-ионной, и всего в четыре раза превышать цену свинцово-кислотной.

NiFe аккумуляторы, равно как и NiCd и NiMH , требуют особых правил зарядки - кривая напряжения имеет синусоидальную форму. Соответственно, использовать зарядное устройство для свинцово-кислотного или литий-ионного аккумулятора не выйдет, это даже может навредить. Как и все батареи на основе никеля, NiFe боятся перезаряда - он вызывает разложение воды в электролите и приводит к ее потере.

Сниженную в результате неправильной эксплуатации емкость такого аккумулятора можно восстановить путем приложения высоких токов разрядки (соразмерных значению емкости аккумулятора). Данную процедуру необходимо проводить до трех раз с длительностью периода разряда в 30 минут. Также следует следить за температурой электролита - она не должна превышать 46°С.

5. Никель-цинковые аккумуляторы (NiZn)

Никель-цинковый аккумулятор похож на никель-кадмиевый тем, что использует щелочной электролит и никелевый электрод, но отличается по напряжению - NiZn обеспечивает 1,65 В на ячейку, в то время как NiCd и NiMH имеют показатель в 1,20 В на ячейку. Заряжать NiZn аккумулятор необходимо постоянным током с значением напряжения 1,9 В на ячейку, также стоит помнить, что этот вид аккумуляторов не рассчитан для работы в режиме подзарядки. Удельная энергоемкость составляет 100Вт/кг, а количество возможных циклов - 200-300 раз. NiZn не имеет в своем составе токсичных материалов и может быть легко утилизирован. Выпускается в различных типоразмерах, в том числе в АА.

В 1901 году Томас Эдисон получил патент США на перезаряжаемую никель-цинковую батарею. Позже его разработки были усовершенствованны ирландским химиком Джеймсом Драммом, который установил эти аккумуляторы на автомотрисы, которые курсировали по маршруту Дублин-Брей с 1932 по 1948 год. NiZn не получил должного развития из-за сильного саморазряда и короткого жизненного цикла, вызванного образованиями дендритов, что также часто приводило к короткому замыканию. Но совершенствование состава электролита уменьшило эту проблему, что дало повод снова рассматривать NiZn для коммерческого использования. Низкая стоимость, высокая выходная мощность и широкий диапазон рабочих температур делают эту электрохимическую систему крайне привлекательной.

6. Никель-водородные аккумуляторы (NiH)

Когда в 1967 началась разработка никель-металл-гидридных батарей, исследователи столкнулись с нестабильностью гидритов металла, что вызвало сдвиг в сторону развития никель-водородного (NiH) аккумулятора. Ячейка такого аккумулятора включает в себя инкапсулированный в сосуд электролит, никелевый и водородный (водород заключен в стальной баллон под давлением в 8207 бар) электроды.

Данная статья про Никель-металлогидридные (Ni-MH) аккумуляторы уже давно является классикой на просторах российского интернета. Рекомендую ознакомиться …

Никель-металлогидридные (Ni-MH) аккумуляторы по своей конструкции являются аналогами никель-кадмиевых (Ni-Cd) аккумуляторов, а по электрохимическим процессам — никель-водородных аккумуляторов. Удельная энергия Ni-MH аккумулятора существенно выше удельной энергии Ni-Cd и водородных аккумуляторов (Ni-H2)

ВИДЕО: Аккумуляторы никель-металлгидридные (NiMH)

Сравнительные характеристики аккумуляторов

Параметры Ni-Cd Ni-H2 Ni-MH
Номинальное напряжение, V 1.2 1.2 1.2
Удельная энергия: Втч/кг | Втч/л 20-40
60-120
40-55
60-80
50-80
100-270
Срок службы: годы | циклы 1-5
500-1000
2-7
2000-3000
1-5
500-2000
Саморазряд, % 20-30
(за 28 сут.)
20-30
(за 1 сут.)
20-40
(за 28 сут.)
Рабочая температура, °С -50 — +60 -20 — +30 -40 — +60

***Большой разброс некоторых параметров в таблице вызван различным назначением (конструкциями) аккумуляторов. Кроме того, в таблице не учитываются данные по современным аккумуляторам с низким саморазрядом

История Ni-MH аккумулятора

Разработка никель-металл-гидридных (Ni-MH) аккумуляторных батарей началась в 50-70-х гг прошлого века. В результате был создан новый способ сохранения водорода в никель-водородных батареях, которые использовались в космических аппаратах. В новом элементе водород накапливался в сплавах определенных металлов. Сплавы, абсорбирующие водород в объеме в 1000 раз больше их собственного объема, были найдены в 1960-х годах. Эти сплавы состоят из двух или нескольких металлов, один из которых абсорбирует водород, а другой является катализатором, способствующим диффузии атомов водорода в решетку металла. Количество возможных комбинаций применяемых металлов практически не ограничено, что дает возможность оптимизировать свойства сплава. Для создания Ni-MH аккумуляторов потребовалось создание сплавов, работоспособных при малом давлении водорода и комнатной температуре. В настоящее время работа по созданию новых сплавов и технологий их обработки продолжается во всем мире. Сплавы никеля с металлами редкоземельной группы могут обеспечить до 2000 циклов заряда-разряда аккумулятора при понижении емкости отрицательного электрода не более чем на 30 %. Первый Ni-MH аккумулятор, в котором в качестве основного активного материала металлгидридного электрода применялся сплав LaNi5, был запатентован Биллом в 1975 г. В ранних экспериментах с металлгидридными сплавами, никель-металлгидридные аккумуляторы работали нестабильно, и требуемой емкости батарей достичь не получалось. Поэтому промышленное использование Ni-MH аккумуляторов началось только в середине 80-х годов после создания сплава La-Ni-Co, позволяющего электрохимически обратимо абсорбировать водород на протяжении более 100 циклов. С тех пор конструкция Ni-MH аккумуляторных батарей непрерывно совершенствовалась в сторону увеличения их энергетической плотности. Замена отрицательного электрода позволила повысить в 1,3-2 раза закладку активных масс положительного электрода, который и определяет емкость аккумулятора. Поэтому Ni-MH аккумуляторы имеют по сравнению с Ni-Cd аккумуляторами значительно более высокими удельными энергетическими характеристиками. Успех распространению никель-металлгидридных аккумуляторных батарей обеспечили, высокая энергетическая плотность и нетоксичностъ материалов, используемых при их производстве.

Основные процессы Ni-MH аккумуляторов

В Ni-MH аккумуляторах в качестве положительного электрода используется оксидно-никелевый электрод, как и в никель-кадмиевом аккумуляторе, а электрод из сплава никеля с редкоземельными металлами, поглощающий водород, используется вместо отрицательного кадмиевого электрода. На положительном оксидно-никелевом электроде Ni-MH аккумулятора протекает реакция:

Ni(OH) 2 + OH- → NiOOH + H 2 O + e — (заряд) NiOOH + H 2 O + e — → Ni(OH) 2 + OH — (разряд)

На отрицательном электроде металл с абсорбированным водородом превращается в металлгидрид:

M + H 2 O + e — → MH + OH- (заряд) MH + OH — → M + H 2 O + e — (разряд)

Общая реакция в Ni-MH аккумуляторе записывается в следующем виде:

Ni(OH) 2 + M → NiOOH + MH (заряд) NiOOH + MH → Ni(OH) 2 + M (разряд)

Электролит в основной токообразующей реакции не участвует. После сообщения 70-80 % емкости и при перезаряде на оксидно-никелевом электроде начинает выделяться кислород,

2OH- → 1/2O 2 + H2O + 2e — (перезаряд)

который восстанавливается на отрицательном электроде:

1/2O 2 + H 2 O + 2e — → 2OH — (перезаряд)

Две последние реакции обеспечивают замкнутый кислородный цикл. При восстановлении кислорода обеспечивается еще и дополнительное повышение емкости металлгидридного электрода за счет образования группы ОН — .

Конструкция электродов Ni-MH аккумуляторов

Металлводородный электрод

Главным материалом, определяющим характеристики Ni-MH аккумулятора, является водород-абсорбирующий сплав, который может поглощать объем водорода, в 1000 раз превышающий свой собственный объем. Самое большое распространение получили сплавы типа LaNi5, в которых часть никеля заменена марганцем, кобальтом и алюминием для увеличения стабильности и активности сплава. Для уменьшения стоимости некоторые фирмы-производители вместо лантана применяют миш-металл (Мm, который представляет собой смесь редкоземельных элементов, их соотношение в смеси близко к соотношению в природных рудах), включающий кроме лантана также церий, празеодим и неодим. При зарядно-разрядном циклировании имеет место расширение и сжатие на 15-25% кристаллической решетки водородабсорбирующих сплавов из-за абсорбции и десорбции водорода. Такие изменения ведут к образованию трещин в сплаве из-за увеличения внутреннего напряжения. Образование трещин вызывает увеличение площади поверхности, которая подвергается коррозии при взаимодействии со щелочным электролитом. По этим причинам разрядная емкость отрицательного электрода постепенно понижается. В аккумуляторе с ограниченным количеством электролита, это порождает проблемы, связанные с перераспределением электролита. Коррозия сплава приводит к химической пассивности поверхности из-за образования стойких к коррозии оксидов и гидроксидов, которые повышают перенапряжение основной токообразующей реакции металлогидридного электрода. Образование продуктов коррозии происходит с потреблением кислорода и водорода из раствора электролита, что, в свою очередь, вызывает снижение количества электролита в аккумуляторе и повышение его внутреннего сопротивления. Для замедления нежелательных процессов диспергирования и коррозии сплавов, определяющих срок службы Ni-MH аккумуляторов, применяются (помимо оптимизации состава и режима производства сплава) два основных метода. Первый метод заключается в микрокапсулировании частиц сплава, т.е. в покрытии их поверхности тонким пористым слоем (5-10 %) — по массе никеля или меди. Второй метод, нашедший наиболее широкое применение в настоящее время, заключается в обработке поверхности частиц сплава в щелочных растворах с формированием защитных пленок, проницаемых для водорода.

Оксидноникелевый электрод

Оксидно-никелевые электроды в массовом производстве изготавливаются в следующих конструктивных модификациях: ламельные, безламельные спеченные (металлокерамические) и прессованные, включая таблеточные. В последние годы начинают использоваться безламельные войлочные и пенополимерные электроды.

Ламельные электроды

Ламельные электроды представляют собой набор объединенных между собой перфорированных коробочек (ламелей), произведенных из тонкой (толщиной 0,1 мм) никелированной стальной ленты.

Спеченные (металлокерамические) электроды

электроды данного типа состоят из пористой (с пористостью не менее 70%) металлокерамической основы, в порах которой располагается активная масса. Основу изготовляют из карбонильного никелевого мелкодисперсного порошка, который в смеси с карбонатом аммония или карбамидом (60-65% никеля, остальное — наполнитель) напрессовывают, накатывают или напыляют на стальную или никелевую сетку. Затем сетку с порошком подвергают термообработке в восстановительной атмосфере (обычно в атмосфере водорода) при температуре 800-960 °С, при этом карбонат аммония или карбамид разлагается и улетучивается, а никель спекается. Полученные таким образом основы имеют толщину 1-2,3 мм, пористость 80-85% и радиус пор 5-20 мкм. Основу поочередно пропитывают концентрированным раствором нитрата никеля или сульфата никеля и нагретым до 60-90 °С раствором щелочи, которая побуждает осаждение оксидов и гидроксидов никеля. В настоящее время используется также электрохимический метод пропитки, при котором электрод подвергается катодной обработке в растворе нитрата никеля. Из-за образования водорода раствор в порах пластины подщелачивается, что приводит к осаждению оксидов и гидроксидов никеля в порах пластины. К разновидностям спеченных электродов причисляют фольговые электроды. Электроды производят нанесением на тонкую (0,05 мм) перфорированную никелевую ленту с двух сторон, методом пульверизации, спиртовой эмульсии никелевого карбонильного порошка, содержащей связующие вещества, спеканием и дальнейшей химической или электрохимической пропиткой реагентами. Толщина электрода составляет 0,4-0,6 мм.

Прессованные электроды

Прессованные электроды изготавливают методом напрессовки под давлением 35-60 МПа активной массы на сетку или стальную перфорированную ленту. Активная масса состоит из гидроксида никеля, гидроксида кобальта, графита и связующего вещества.

Металловойлочные электроды

Металловойлочные электроды имеют высокопористую основу, сделанную из никелевых или углеродных волокон. Пористость этих основ — 95 % и более. Войлочный электрод выполнен на базе никелированного полимерного или углеграфитового фетра. Толщина электрода в зависимости от его предназначения находится в диапазоне 0,8-10 мм. Активная масса вносится в войлок разными методами в зависимости от его плотности. Вместо войлока может использоваться пеноникель , получаемый никелированием пенополиуретана с последующим отжигом в восстановительной среде. В высокопористую среду вносятся обычно методом намазки паста, содержащая гидроксид никеля, и связующее. После этого основа с пастой сушится и вальцуется. Войлочные и пенополимерные электроды характеризуются высокой удельной емкостью и большим ресурсом.

Конструкция Ni-MH аккумуляторов

Ni-MH аккумуляторы цилиндрической формы

Положительный и отрицательный электроды, разделенные сепаратором, свернуты в виде рулона, который вставлен в корпус и закрыт герметизирующей крышкой с прокладкой (рисунок 1). Крышка имеет предохранительный клапан, срабатывающий при давлении 2-4 МПа в случае сбоя при эксплуатации аккумулятора.

Рис.1. Конструкция никель-металлгидридного (Ni-MH) аккумулятора: 1-корпус, 2-крышка, 3-калпачок клапана, 4-клапан, 5-колектор положительного электрода, 6-изоляционное кольцо, 7-отрецательный электрод, 8-сепаротор, 9-положительный электрод, 10-изолятор.

Ni-MH аккумуляторы призматической формы

В призматических Ni-MH аккумуляторах положительные и отрицательные электроды размещены поочередно, а между ними размещается сепаратор. Блок электродов вставлен в металлический или пластмассовый корпус и закрыт герметизирующей крышкой. На крышке как правило устанавливается клапан или датчик давления (рисунок 2).

Рис.2. Конструкция Ni-MH аккумулятора: 1-корпус, 2-крышка, 3-калпачок клапана, 4-клапан, 5-изоляционная прокладка, 6-изолятор, 7-отрецательный электрод, 8-сепаротор, 9-положительный электрод.

В Ni-MH аккумуляторах используется щелочной электролит, состоящий из КОН с добавкой LiOH. В качестве сепаратора в Ni-MH аккумуляторах применяются нетканые полипропилен и полиамид толщиной 0,12-0,25 мм, обработанные смачивателем.

Положительный электрод

В Ni-MH аккумуляторах применяются положительные оксидно-никелевые электроды, аналогичные используемым в Ni-Cd аккумуляторах. В Ni-MH аккумуляторах в основном применяются металлокерамические, а в последние годы — войлочные и пенополимерные электроды (см. выше).

Отрицательный электрод

Практическое применение в Ni-MH аккумуляторах нашли пять конструкций отрицательного металлогидридного электрода (см. выше): — ламельная, когда порошок водород-абсорбирующего сплава со связующим веществом или без связующего, запрессован в никелевую сетку; — пеноникелевая, когда паста со сплавом и связующим веществом вводится в поры пеноникелевой основы, а потом сушится и прессуется (вальцуется); — фольговая, когда паста со сплавом и связующим веществом наносится на перфорированную никелевую или стальную никелированную фольгу, а потом сушится и прессуется; — вальцованная, когда порошок активной массы, состоящей из сплава и связующего вещества, наносится вальцеванием (прокаткой) на растяжную никелевую решетку или медную сетку; — спеченная, когда порошок сплава напрессовывается на никелевую сетку и после этого спекается в атмосфере водорода. Удельные емкости металлогидридных электродов разных конструкций близки по значению и определяются, в основном, емкостью применяемого сплава.

Характеристики Ni-MH аккумуляторов. Электрические характеристики

Напряжение разомкнутой цепи

Значение напряжения разомкнутой цепи Uр.ц. Ni-MH-системы точно определить тяжело вследствие зависимости равновесного потенциала оксидно-никелевого электрода от степени окисленности никеля, а также зависимости равновесного потенциала металлогидридного электрода от степени насыщения его водородом. Через 24 часа после заряда аккумулятора, напряжение разомкнутой цепи заряженного Ni-MH аккумулятора находится в интервале 1,30-1,35В.

Номинальное разрядное напряжение

Uр при нормированном токе разряда Iр = 0,1-0,2С (С — номинальная емкость аккумулятора) при 25°С составляет 1,2-1,25В, обычное конечное напряжение — 1В. Напряжение уменьшается с ростом нагрузки (см. рисунок 3)

Рис.3. Разрядные характеристики Ni-MH аккумулятора при температуре 20°С и разных нормированных токах нагрузки: 1-0,2С; 2-1С; 3-2С; 4-3С

Ёмкость аккумуляторов

С повышением нагрузки (уменьшение времени разряда) и при понижении температуры емкость Ni-MH аккумулятора уменьшается (рисунок 4). Особенно заметно действие снижения температуры на емкость при больших скоростях разряда и при температурах ниже 0°С.

Рис.4. Зависимость разрядной емкости Ni-MH аккумулятора от температуры при разных токах разряда: 1-0,2С; 2-1С; 3-3С

Сохранность и срок службы Ni-MH аккумуляторов

При хранении происходит саморазряд Ni-MH аккумулятора. По прошествии месяца при комнатной температуре потеря емкости составляет 20-30%, а при дальнейшем хранении потери уменьшаются до 3-7% в месяц. Скорость саморазряда повышается при увеличении температуры (см. рисунок 5).

Рис.5. Зависимость разрядной емкости Ni-MH аккумулятора от времени хранения при разных температурах: 1-0°С; 2-20°С; 3-40°С

Зарядка Ni-MH аккумулятора

Наработка (число разрядно-зарядных циклов) и срок службы Ni-MH аккумулятора в значительной мере определяются условиями эксплуатации. Наработка понижается с увеличением глубины и скорости разряда. Наработка зависит от скорости заряда и способа контроля его окончания. В зависимости от типа Ni-MH аккумуляторов, режима работы и условий эксплуатации аккумуляторы обеспечивают от 500 до 1800 разрядно-зарядных циклов при глубине разряда 80% и имеют срок службы (в среднем) от 3 до 5 лет.

Для обеспечения надежной работы Ni-MH аккумулятора в течение гарантированного срока нужно соблюдать рекомендации и инструкцию производителя. Наибольшее внимание следует уделить температурному режиму. Желательно избегать переразрядов (ниже 1В) и коротких замыканий. Рекомендуется использовать Ni-MH аккумуляторы по назначению, избегать сочетания бывших в употреблении и неиспользованных аккумуляторов, не припаивать непосредственно к аккумулятору провода или прочие части. Ni-MH аккумуляторы более чувствительны к перезаряду, чем Ni-Cd. Перезаряд может привести к тепловому разгону. Зарядка как правило производится током Iз=0,1С на протяжении 15 часов. Компенсационный подзаряд производят током Iз=0,01-0,03С на протяжении 30 часов и более. Ускоренный (за 4 — 5 часов) и быстрый (за 1 час) заряды возможны для Ni-MH аккумуляторов, имеющих высокоактивные электроды. При таких зарядах процесс контролируется по изменению температуры ΔТ и напряжения ΔU и другим параметрам. Быстрый заряд применяется, например, для Ni-MH аккумуляторов, питающих ноутбуки, сотовые телефоны, электрические инструменты, хотя в ноутбуках и сотовых телефонах сейчас в основном используются литий-ионные и литий-полимерные аккумуляторы. Рекомендуется также трехступенчатый способ заряда: первый этап быстрого заряда (1С и выше), заряд со скоростью 0,1С в течение 0,5-1 ч для заключительной подзарядки, и заряд со скоростью 0,05-0,02С в качестве компенсационного подзаряда. Информация о способах заряда Ni-MH аккумуляторов обычно содержится в инструкциях фирмы-производителя, а рекомендуемый ток зарядки указан на корпусе аккумулятора. Зарядное напряжение Uз при Iз=0,3-1С лежит в интервале 1,4-1,5В. По причине выделения кислорода на положительном электроде, количество электричества преданного при заряде (Qз) больше разрядной емкости (Ср). При этом отдача по емкости (100 Ср/Qз) составляет 75-80% и 85-90% соответственно для дисковых и цилиндрических Ni-MH аккумуляторов.

Контроль заряда и разряда

Для исключения перезаряда Ni-MH аккумуляторных батарей могут применятся следующие методы контроля заряда с соответствующими датчиками, устанавливаемыми в аккумуляторные батареи или зарядные устройства:

    • метод прекращения заряда по абсолютной температуре Тmax. Температура батареи постоянно контролируется во время процесса заряда, а при достижении максимального значения быстрый заряд прерывается;
    • метод прекращения заряда по скорости изменения температуры ΔT/Δt. При применении этого метода крутизна температурной кривой аккумуляторной батареи постоянно контролируется во время процесса заряда, а когда этот параметр становится выше определенно установленного значения, заряд прерывается;
    • метод прекращения заряда по отрицательной дельте напряжения -ΔU. В конце заряда аккумулятора при осуществлении кислородного цикла начинает повышаться его температура, приводя к уменьшению напряжения;
    • метод прекращения заряда по максимальному времени заряда t;
    • метод прекращения заряда по максимальному давлению Pmax. Используется обычно в призматических аккумуляторах больших размеров и емкости. Уровень допустимого давления в призматическом аккумуляторе зависит от его конструкции и лежит в интервале 0,05-0,8 МПа;
    • метод прекращения заряда по максимальному напряжению Umax. Применяется для отключения заряда аккумуляторов с высоким внутренним сопротивлением, которое появляется в конце срока службы из-за недостатка электролита или при пониженной температуре.

При применении метода Тmax аккумуляторная батарея может быть слишком перезаряжена, если температура окружающей среды понижается, либо батарея может получить недостаточно заряда, если температура окружающей среды значительно повышается. Метод ΔT/Δt может применяться очень эффективно для прекращения заряда при низких температурах окружающей среды. Но если при более высоких температурах применять только этот метод, то аккумуляторы внутри аккумуляторных батарей будут подвергаться нагреванию до нежелательно высоких температур до того, как может быть достигнуто значение ΔT/Δt для отключения. Для определенного значения ΔT/Δt может быть получена большая входная емкость при более низкой температуре окружающей среды, чем при более высокой температуре. В начале заряда аккумуляторной батареи (как и в конце заряда) происходит быстрое повышение температуры, что может привести к преждевременному отключению заряда при применении метода ΔT/Δt. Для исключения этого разработчики зарядных устройств используют таймеры начальной задержки срабатывания датчика при методе ΔT/Δt. Метод -ΔU является эффективным для прекращения заряда при низких температурах окружающей среды, а не при повышенных температурах. В этом смысле метод похож на метод ΔT/Δt. Для обеспечения прекращения заряда в тех случаях, когда непредвиденные обстоятельства препятствуют нормальному прерыванию заряда, рекомендуется также использовать контроль по таймеру, регулирующему длительность операции заряда (метод t). Таким образом, для быстрого заряда аккумуляторных батарей нормированными токами 0,5-1С при температурах 0-50 °С целесообразно применять одновременно методы Тmax (с температурой отключения 50-60 °С в зависимости от конструкции аккумуляторов и батарей), -ΔU (5-15 мВ на аккумулятор), t (обычно для получения 120 % номинальной емкости) и Umax (1,6-1,8 В на аккумулятор). Вместо метода -ΔU может использоваться метод ΔT/Δt (1-2 °С/мин) с таймером начальной задержки (5-10 мин). Про контроль заряда так же см. соответствуюшую статью После проведения быстрого заряда аккумуляторной батареи, в зарядных устройствах предусматривают переключение их на подзаряд нормированным током 0,1С — 0,2С в течение определенного времени. Для Ni-MH аккумуляторов не рекомендуется заряд при постоянном напряжении, так как может произойти «тепловой выход из строя» аккумуляторов. Это связано с тем, что в конце заряда происходит повышение тока, который пропорционален разности между напряжением электропитания и напряжением аккумулятора, а напряжение аккумулятора в конце заряда понижается из-за повышения температуры. При низких температурах скорость заряда должна быть уменьшена. В противном случае кислород не успеет рекомбинироваться, что приведет к росту давления в аккумуляторе. Для эксплуатации в таких условиях рекомендуются Ni-MH аккумуляторы с высокопористыми электродами.

Достоинства и недостатки Ni-MH аккумуляторов

Значительное увеличение удельных энергетических параметров не единственное достоинство Ni-MH аккумуляторов перед Ni-Cd аккумуляторами. Отказ от кадмия означает также переход к более экологически чистым производствам. Легче решается и проблема утилизации вышедших из строя аккумуляторов. Эти достоинства Ni-MH аккумуляторов определили более быстрый рост объемов их производства у всех ведущих мировых аккумуляторных компаний по сравнению с Ni-Cd аккумуляторами.

У Ni-MH аккумуляторов нет «эффекта памяти», свойственного Ni-Cd аккумуляторам из-за образования никелата в отрицательном кадмиевом электроде. Однако эффекты, связанные с перезарядом оксидно-никелевого электрода, сохраняются. Уменьшение разрядного напряжения, наблюдаемое при частых и долгих перезарядах так же, как и у Ni-Cd аккумуляторов, может быть устранено при периодическом осуществлении нескольких разрядов до 1В — 0.9В. Такие разряды достаточно проводить 1 раз в месяц. Однако никель-металлогидридные аккумуляторы уступают никель-кадмиевым, которые они призваны заменить, по некоторым эксплуатационным характеристикам:

    • Ni-MH аккумуляторы эффективно работают в более узком интервале рабочих токов, что связано с ограниченной десорбцией водорода металлгидридного электрода при очень высоких скоростях разряда;
    • Ni-MH аккумуляторы имеют более узкий температурный диапазон эксплуатации: большая их часть неработоспособна при температуре ниже -10 °С и выше +40 °С, хотя в отдельных сериях аккумуляторов корректировка рецептур обеспечила расширение температурных границ;
    • в течении заряда Ni-MH аккумуляторов выделяется больше теплоты, чем при заряде Ni-Cd аккумуляторов, поэтому в целях предупреждения перегрева батареи из Ni-MH аккумуляторов в процессе быстрого заряда и/или значительного перезаряда в них устанавливают термо-предохранители или термо-реле, которые располагают на стенке одного из аккумуляторов в центральной части батареи (это относится к промышленным аккумуляторным сборкам);
    • Ni-MH аккумуляторы имеют повышенный саморазряд, что определяется неизбежностью реакции водорода, растворенного в электролите, с положительным оксидно-никелевым электродом (но, благодаря использованию специальных сплавов отрицательного электрода, получилось достигнуть снижения скорости саморазряда до величин, близких к показателям для Ni-Cd аккумуляторов);
    • опасность перегрева при заряде одного из Ni-MH аккумуляторов батареи, а также переполюсования аккумулятора с меньшей емкостью при разряде батареи, возрастает с рассогласованием параметров аккумуляторов в результате продолжительного циклирования, поэтому создание батарей более чем из 10 аккумуляторов не рекомендуется всеми производителями;
    • потери емкости отрицательного электрода, которые имеют место в Ni-MH аккумуляторе при разряде ниже 0 В, необратимы, что выдвигает более жесткие требования к подбору аккумуляторов в батарее и контролю процесса разряда, чем в случае использования Ni-Cd аккумуляторов, как правило рекомендуется разряд до 1 В/ак в батареях незначительного напряжения и до 1,1 В/ак в батарее из 7-10 аккумуляторов.

Как уже отмечалось ранее, деградация Ni-MH аккумуляторов определяется прежде всего понижением при циклировании сорбирующей способности отрицательного электрода. В цикле заряда-разряда происходит изменение объема кристаллической решетки сплава, что приводит к образованию трещин и последующей коррозии при реакции с электролитом. Образование продуктов коррозии происходит с поглощением кислорода и водорода, в результате чего уменьшается общее количество электролита и повышается внутреннее сопротивление аккумулятора. Следует заметить, что характеристики Ni-MH аккумуляторов существенно зависят от сплава отрицательного электрода и технологии обработки сплава для повышения стабильности его состава и структуры. Это вынуждает изготовителей аккумуляторов внимательно относиться к выбору поставщиков сплава, а потребителей аккумуляторов — к выбору компании-изготовителя.

По материалам сайтов pоwеrinfо.ru, «Чип и Дип»

Исследования в области никель-металлгидридных батарей начались в 1970х годах как совершенствование никель-водородных батарей, поскольку вес и объем никель-водородных батарей не удовлетворял производителей (водород в этих батареях находился под высоким давлением, что требовало прочного и тяжелого стального корпуса). Использование водорода в виде гидридов металлов позволило снизить вес и объем батарей, также снизилась и опасность взрыва батареи при перегреве.

Начиная с 1980х была существенно улучшена технология производства NiMH батарей и началось коммерческое использование в различных областях. Успеху NiNH батарей способствовала увеличенная емкость (на 40% по сравнению с NiCd), использование материалов, годных к вторичной переработке («дружественность» природной среде), а также весьма длительных срок службы, часто превышающий показатели NiCd аккумуляторов.

Преимущества и недостатки NiMH аккумуляторов

Преимущества

・ бОльшая емкость - на 40% и более, чем обычные NiCd батареи
・ намного меньшая выраженность эффекта «памяти» по сравнению с никель-кадмиевыми аккумуляторами - циклы обслуживания батареи можно проводить в 2-3 раза реже
・ простая возможность транспортировки - авиакомпании перевозят без всяких предварительных условий
・ экологически безопасны - возможна переработка

Недостатки

・ ограниченное время жизни батареи - обычно около 500-700 циклов полного заряда/разряда (хотя в зависимости от режимов работы и внутреннего устройства могут быть различия в разы).
・ эффект памяти - NiMH батареи требуют периодической тренировки (цикла полного разряда/заряда аккумулятора)
・ Относительно малый срок хранения батарей - обычно не более 3х лет при хранении в разряженном состоянии, после чего теряются основные характеристики. Хранение в прохладных условиях при частичном заряде в 40-60% замедляют процесс старения батарей.
・ Высокий саморазряд батарей
・ Ограниченная мощностная емкость - при превышении допустимых нагрузок уменьшается время жизни батарей.
・ Требуется специальное зарядное устройство со стадийным алгоритмом заряда, поскольку при заряде выделяется большое количество тепла и никель-металлгидридные батареи прохо переносят перезаряд.
・ Плохая переносимость высоких температур (свыше 25-30 по Цельсию)

Конструкция NiMH аккумуляторов и АКБ

Современные никель-металлгидридные аккумуляторы имеют внутреннюю конструкцию, схожую с конструкцией никель-кадмиевых аккумуляторов. Положительный оксидно-никелевый электрод, щелочной электролит и расчетное давление водорода совпадают в обеих аккумуляторных системах. Различны только отрицательные электроды: у никель-кадмиевых аккумуляторов – кадмиевый электрод, у никель-металлгидридных – электрод на базе сплава поглощающих водород металлов.

В современных никель-металлгидридных аккумуляторах используется состав водородоадсорбирующего сплава вида AB2 и AB5. Другие сплавы вида AB или A2B не получили широкого распространения. Что же обозначают загадочные буквы A и B в составе сплава? – Под символом A скрывается металл (или смесь металлов), при образовании гидридов которых выделяется тепло. Соответственно, символ B обозначает металл, который реагирует с водородом эндотермически.

Для отрицательных электродов типа AB5 используется смесь редкоземельных элементов группы лантана (компонент А) и никель с примесями других металлов (кобальт, алюминий, марганец) – компонент B. Для электродов типа AB2 используются титан и никель с примесями циркония, ванадия, железа, марганца, хрома.

Никель-металлгидридные аккумуляторы с электродами типа AB5 имеют большее распространение из-за лучших показателей циклируемости, несмотря на то, что аккумуляторы с электродами типа AB2 более дешевы, имеют большую емкость и лучшие мощностные показатели.

В процессе циклирования происходит колебания объема отрицательного электрода до 15-25% от исходного за счет поглощения/выделения водорода. В результате колебаний объема возникает большое количество микротрещин в материале электрода. Это явление объясняет, почему для нового никель-металлгидридного аккумулятора необходимо произвести несколько «тренировочных» циклов заряда/разряда для приведения значений мощности и емкости аккумулятора к номинальным. Также у образования микротрещин есть и отрицательная сторона – увеличивается площадь поверхности электрода, которая подвергается коррозии с расходованием электролита, что приводит к постепенному увеличению внутреннего сопротивления элемента и снижению емкости. Для уменьшения скорости коррозийных процессов рекомендуется хранить никель-металлгидридные аккумуляторы в заряженном состоянии.

Отрицательный электрод имеет избыточную емкость по отношению к положительному как по перезаряду, так и по переразряду для обеспечения приемлемого уровня выделения водорода. Из-за коррозии сплава постепенно уменьшается емкость по перезаряду отрицательного электрода. Как только избыточная емкость по перезаряду исчерпается, на отрицательном электроде в конце заряда начнет выделяться большое количество водорода, что приведет к стравливанию избыточного количества водорода через клапаны элемента, «выкипанию» электролита и выходу аккумулятора из строя. Поэтому для заряда никель-металлгидридных аккумуляторов необходимо специальное зарядное усройство, учитывающее специфику поведения аккумулятора для избегания опасности саморазрушения аккумуляторного элемента. При сборе батареи аккумуляторов необходимо предусмотреть хорошую вентиляцию элементов и не курить рядом с заряжающейся никель-металлгидридной батареей большой емкости.

Со временем в результате циклирования возрастает и саморазряд аккумулятора за счет появления больших пор в материале сепаратора и образовании электрического соединения между пластинами электродов. Эта проблема может быть временно решена путем нескольких циклов глубокого разряда аккумулятора с последующим полным зарядом.

При заряде никель-металлгидридных аккумуляторов выделяется достаточно большое количество тепла, особенно в конце заряда, что является одним из признаков необходимости завершения заряда. При собирании нескольких аккумуляторных элементов в батарею необходима система контроля параметров батареи (BMS), а также наличие терморазмыкающихся токопроводящих соединительных перемычек между частью аккумуляторных элементов. Также желательно соединять аккумуляторы в батарее путем точечной сварки перемычек, а не пайки.

Разряд никель-металлгидридных аккумуляторов при низких температурах лимитируется тем фактом, что эта реакция эндотермическая и на отрицательном электроде образуется вода, разбавляющая электролит, что приводит к высокой вероятности замерзания электролита. Поэтому, чем меньше температура окружающей среды, тем меньше отдаваемая мощность и емкость аккумулятора. Напротив, при повышенной температуре в процессе разряда разрядная емкость никель-металлгидридного аккумулятора будет максимальной.

Знание конструкции и принципов работы позволит с большим пониманием отнестись к процессу эксплуатации никель-металлгидридных аккумуляторов. Надеюсь, информация, почерпнутая в статье, позволит продлить жизнь вашей аккумуляторной батареи и избежать возможных опасных последствий из-за недопонимания принципов безопасного использования никель-металлгидридных аккумуляторов.

Разрядные характеристики NiMH-аккумуляторов при различных
токах разряда при температуре окружающей среды 20 °С


изображение взято с www.compress.ru/Article.aspx?id=16846&iid=781

Никель-металлгидридная батарейка Duracell

изображение взято с www.3dnews.ru/digital/1battery/index8.htm

P.P.S.
Схема перспективного направления создания биполярных аккумуляторных батарей

схема взятя с Биполярные свинцово-кислотные батареи

Сравнительная таблица параметров различных типов аккумуляторов

NiCd NiMH Lead Acid Li-ion Li-ion polymer Reusable
Alkaline
Энергетическая плотность (W*час/кг) 45-80 60-120 30-50 110-160 100-130 80 (начальная)
Внутреннее сопротивление
(включая внутренние схемы), мОм
100-200
при 6В
200-300
при 6В
<100
при 12В
150-250
при 7.2В
200-300
при 7.2В
200-2000
при 6В
Число циклов заряда/разряда (при снижении до 80% от начальной емкости) 1500 300-500 200-300 500-1000 300-500 50
(до 50%)
Время быстрого заряда 1 час типовое 2-4 часа 8-16 часа 2-4 часа 2-4 часа 2-3 часа
Устойчивость к перезаряду средняя низкая высокая очень низкая низкая средняя
Саморазряд / месяц (при комнатной температуре) 20% 30% 5% 10% ~10% 0.3%
Напряжение элемента (номинальное) 1.25В 1.25В 3.6В 3.6В 1.5В
Ток нагрузки
- пиковый
- оптимальный
20C
1C
5C
0.5C и ниже
5C
0.2C
>2C
1C и ниже
>2C
1C и ниже
0.5C
0.2C и ниже
Температура при эксплуатации (только разряд) -40 to
60°C
-20 to
60°C
-20 to
60°C
-20 to
60°C
0 to
60°C
0 to
65°C
Требования к обслуживанию Через 30 – 60 дней Через 60 – 90 дней Через 3 – 6 месяцев Не требуется Не требуется Не требуется
Типовая цена
(US$, только для сравнения)
$50
(7.2В)
$60
(7.2В)
$25
(6В)
$100
(7.2В)
$100
(7.2В)
$5
(9В)
Цена на цикл (US$) $0.04 $0.12 $0.10 $0.14 $0.29 $0.10-0.50
Начало коммерческого использования 1950 1990 1970 1991 1999 1992

таблица взята с

Во второй половине двадцатого века одними из лучших перезаряжаемых химических источников тока были аккумуляторные батареи, изготовленные по никель-кадмиевой технологии. Они до сих пор широко применяются в различных сферах благодаря своей надежности и непритязательности.

Содрежание

Что такое никель кадмиевый аккумулятор

Никель-кадмиевые батареи являются гальваническими перезаряжаемыми источниками тока, которые были изобретены в 1899 году в Швеции Вальдмаром Юнгнером. До 1932 года их практическое использование было очень ограниченным из-за дороговизны используемых металлов в сравнении со свинцово-кислотными АКБ.

Усовершенствование технологии их производства привело к значительному улучшению их эксплуатационных характеристик и позволило в 1947 году создать герметичный необслуживаемый АКБ с отличными параметрами.

Принцип работы и устройство Ni-Cd аккумулятора

Электрическую энергию эти АКБ производят благодаря обратимому процессу взаимодействия кадмия (Cd) с оксидом-гидроксидом никеля (NiOOH) и водой, в результате которого образуется гидроксид никеля Ni(OH)2 и гидроксид кадмия Cd(OH)2, обуславливающий появление электродвижущей силы.

Ni-Cd АКБ выпускаются в герметичных корпусах, в которых размещены электроды, разделенные нейтральным сепаратором, содержащие никель и кадмий, находящиеся в растворе желеобразного щелочного электролита (как правило, гидроксид калия, KOH).

Положительный электрод представляет собой стальную сетку или фольгу, покрытую пастой оксид-гидроксида никеля, смешанную с проводящим материалом

Отрицательный электрод - это стальная сетка (фольга) с впрессованным пористым кадмием.

Один никель кадмиевый элемент способен выдавать напряжение около 1,2 вольта, поэтому для увеличения напряжения и мощности батарей в их конструкции применяется множество параллельно соединенных электродов, разделенных сепараторами.

Технические характеристики и какие бывают Ni-Cd АКБ

Ni-Cd батареи имеют следующие технические характеристики:

  • напряжение разряда одного элемента – около 0,9-1 вольт;
  • номинальное напряжение элемента – 1,2 v, для получения напряжений 12v и 24v применяют последовательное соединение нескольких элементов;
  • напряжение полного заряда – 1,5-1,8 вольт;
  • рабочая температура: от -50 до +40 градусов;
  • количество циклов заряда-разряда: от 100 до 1000 (в самых современных батареях – до 2000), в зависимости от используемой технологии;
  • уровень саморазряда: от 8 до 30% в первый месяц после полного заряда;
  • удельная энергоемкость – до 65 Вт*час/килограмм;
  • срок эксплуатации – около 10 лет.

Ni-Cd АКБ выпускают в различных корпусах стандартных типоразмеров и в нестандартном исполнении, в том числе в дисковом, герметическом виде.

Где используются никель кадмиевые АКБ

Эти батареи применяются в устройствах, которые потребляют большой ток, а также испытывают высокие нагрузки при эксплуатации в следующих случаях:

  • на троллейбусах и трамваях;
  • на электрокарах;
  • на морском и речном транспорте;
  • в вертолетах и самолетах;
  • в электроинструментах (шуруповерты, дрели, электроотвертки и прочие);
  • электробритвы;
  • в военной технике;
  • переносных радиостанциях;
  • в игрушках на радиоуправлении;
  • в фонарях для дайвинга.

В настоящее время из-за ужесточения экологических требований большинство аккумуляторов популярных типоразмеров ( , и другие) выпускается по никель-металлогидридной и литий-ионной технологиям. Вместе с тем, в эксплуатации еще находится множество Ni Cd АКБ различных типоразмеров, выпущенных несколько лет назад.

Ni-Cd элементы имеют продолжительный срок эксплуатации, который порой превышает 10 лет и поэтому еще можно встретить этот вид батарей во множестве электронных устройств, кроме тех, которые перечислены выше.

Плюсы и минусы Ni-Cd аккумулятора

Этот вид элементов питания имеет следующие положительные характеристики:

  • большой срок эксплуатации и число циклов заряда-разряда;
  • продолжительный срок службы и хранения;
  • возможность быстрой зарядки;
  • способность выдерживать большие нагрузки и низкие температуры;
  • сохранение работоспособности в самых неблагоприятных условиях эксплуатации;
  • невысокая стоимость;
  • возможность хранить эти батареи в разряженном состоянии до 5 лет;
  • средняя устойчивость к перезаряду.

В то же время, никель кадмиевые источники питания имеют ряд недостатков:

  • наличие эффекта памяти, проявляющийся в потере емкости при зарядке АКБ, не дожидаясь полного разряда;
  • необходимость профилактических работ (несколько циклов заряда-разряда) по набору полной емкости;
  • полное восстановление АКБ после долговременного хранения требует трех-четырех циклов полного заряда-разряда;
  • большой саморазряд (около 10% в первый месяц хранения), приводящий к практически полному разряду батареи за год хранения;
  • невысокая энергетическая плотность по сравнению с другими элементами питания;
  • высокая токсичность кадмия, из-за которой они запрещены в ряде стран, в том числе в ЕС, необходимость проводить утилизацию таких АКБ на специальном оборудовании;
  • больший вес по сравнению с современными батареями.

Отличие Ni-Cd от Li-Ion или Ni-Mh источников

Батареи с активными компонентами, включающими никель и кадмий, имеют ряд отличий от более современных литий-ионных и никель-металлогидридных источников электроэнергии:

  • Ni-Cd элементы, в отличие от и вариантов, имеют эффект памяти, обладают меньшей удельной емкостью при одинаковых размерах;
  • NiCd источники более неприхотливы, сохраняют работоспособность при очень низких температурах, во много раз более устойчивы к перезаряду и сильному разряду;
  • Li-Ion и Ni-Mh аккумуляторы стоят дороже, бояться перезаряда и сильного разряда, но имеют меньший саморазряд;
  • срок эксплуатации и хранения Li-Ion аккумуляторов (2-3 года) в разы меньше, чем Ni Cd изделий (8-10 лет);
  • никель-кадмиевые источники быстро теряют емкость при использовании в буферном режиме (например, в UPS). Хотя их можно после этого полностью восстановить путем глубокого разряда и заряда, лучше не использовать Ni Cd изделия в устройствах, где осуществляется их постоянная подзарядка;
  • одинаковость режима заряда Ni-Cd и Ni-Mh батарей позволяет использовать одни и те же зарядные устройства, но при этом нужно учитывать тот факт, что у никель-кадмиевых АКБ более выражен эффект памяти.

Исходя из имеющихся отличий, нельзя сделать однозначный вывод о том, какие АКБ лучше, поскольку у всех элементов есть и сильные и слабые стороны.

Правила эксплуатации

В ходе эксплуатации в Ni Cd источниках питания происходит ряд изменений, которые приводят к постепенному ухудшению характеристик и, в конечном итоге, к утрате работоспособности:

  • уменьшается полезная площадь и масса электродов;
  • изменяется состав и объем электролита;
  • происходит распад сепаратора и органических примесей;
  • утрачивается вода и кислород;
  • появляются утечки тока, связанные с ростом дендритов кадмия на пластинах.

Для того, чтобы максимально уменьшить повреждения батареи, возникающие при ее эксплуатации и хранении, необходимо избегать неблагоприятных воздействий на АКБ, которые связаны со следующими факторами:

  • заряд не полностью заряженной батареи приводит к обратимой утрате ее емкости из-за уменьшения общей площади активного вещества в результате кристаллообразования;
  • регулярный сильный перезаряд, который приводит к перегреву, увеличенному газообразованию, утрате воды в электролите и разрушает электроды (особенно анод) и сепаратор;
  • недозаряд, приводящий к преждевременному истощению батареи;
  • долговременная эксплуатация при очень низких температурах приводит к изменению состава и объема электролита, увеличивается внутреннее сопротивление АКБ и ухудшаются ее эксплуатационные характеристики, в частности падает емкость.

При сильном увеличении давления внутри батареи в результате быстрого заряда большим током и сильной деградации кадмиевого катода в АКБ может выделяться избыточный водород, что приводит к резкому увеличению давления, которое может деформировать корпус, нарушает плотность сборки, увеличивает внутреннее сопротивление и уменьшает рабочее напряжение.

В АКБ, оборудованных аварийным клапаном сброса давления, опасность деформации можно предотвратить, но необратимых изменений химического состава батареи избежать невозможно.

Зарядку Ni Cd аккумуляторов нужно производить током 10% (при необходимости быстрого заряда в специальных АКБ – током до 100% за 1 час) величины их емкости (например, 100 мА при емкости 1000 mAh) в течение 14-16 часов. Самый лучший режим их разряда – током, равным 20% от емкости батареи.

Как восстановить Ni Cd аккумулятор

Никель кадмиевые источники питания в случае потери емкости можно практически полностью восстановить с помощью полного разряда (до 1 вольта на элемент) и последующего заряда в стандартном режиме. Такую тренировку аккумуляторов можно повторить несколько раз для наиболее полного восстановления их емкости.

В случае невозможности произвести восстановление АКБ путем разряда и заряда, можно попробовать их восстановить с помощью воздействия короткими токовыми импульсами (величиной в десятки раз больше емкости восстанавливаемого элемента) на протяжении нескольких секунд. Это воздействие устраняет внутреннее замыкание в элементах батареи, возникающее из-за нарастания дендритов путем их выжигания сильным током. Существуют специальные промышленные активаторы, которые осуществляют такое воздействие.

Полное восстановление первоначальной емкости таких батарей невозможно из-за необратимого изменения состава и свойств электролита, а также деградации пластин, но дает возможность продлить срок эксплуатации.

Методика восстановления в домашних условиях заключается в проведении следующих действий:

  • проводом сечением не менее 1,5 квадратных миллиметров соединяют минус восстанавливаемого элемента с катодом мощной батареи, например автомобильной или из UPS;
  • к аноду (плюсу) одной из батарей надежно прикрепляется второй провод;
  • на протяжении 3-4 секунд свободным концом второго провода быстро касаются свободной плюсовой клеммы (с частотой 2-3 касания в секунду). При этом необходимо не допускать приваривания проводов в месте соединения;
  • вольтметром производится проверка напряжения на восстанавливаемом источнике, при его отсутствии делается еще один восстановительный цикл;;
  • при появлении электродвижущей силы на АКБ, она ставиться на зарядку;

Кроме того, можно попытаться разрушить дендриты в АКБ путем их заморозки на 2-3 часа с последующим их резким отстукиванием. При замораживании дендриты становятся хрупкими и разрушаются от ударного воздействия, что теоретически может помочь избавиться от них.

Существуют и более экстремальные способы восстановления, связанные с добавлением дистиллированной воды в старые элементы путем высверливания их корпуса. Но полноценное обеспечение герметичности таких элементов в последующем очень проблематично. Поэтому не стоит экономить и подвергать здоровье риску отравления соединениями кадмия из-за выигрыша нескольких циклов работы.

Хранение и утилизация

Хранить никель кадмиевые батареи лучше в разряженном состоянии при низкой температуре в сухом месте. Чем меньше температура хранения таких АКБ, тем меньше у них саморазряд. Качественные модели могут храниться до 5 лет без существенного ущерба техническим характеристикам. Для ввода их в эксплуатацию достаточно провести их зарядку.

Вредные вещества, содержащиеся в одной батарее АА, способны загрязнить около 20 квадратных метров территории. Для безопасной утилизации Ni Cd аккумуляторов, их нужно сдавать в пункты переработки, откуда их переправляют на заводы, где их должны разрушать в специальных герметизированных печах, оборудованных фильтрами, улавливающими токсичные вещества.

Вам так же может быть интересно

Эксплуатация автомобильного аккумулятора с неполным зарядом может очень негативно отразиться на эксплуатационных характеристиках АКБ.

Из года в год аккумуляторы продолжают выталкивать обычные батарейки с рынка. Это происходит мз-за

Все батарейки делятся на множество типов. В быту их называют по-разному, однако современная классификация

Яркие, привлекательные внешне аккумуляторы, навевающие мысли о гонках Формула-1, красочные расцветки, эргономичные формы, это