Как заряжать Ni-Cd-аккумуляторы: описание процесса. Что нужно знать про никель-кадмиевые аккумуляторы Основные характеристики и преимущества


Основные типы аккумуляторов:

Ni-Cd Никель-кадмиевые аккумуляторы

Для аккумуляторного инструмента никель-кадмиевые аккумуляторы являются фактическим стандартом. Инженерам хорошо известны их достоинства и недостатки, в частности Ni-Cd Никель-кадмиевые аккумуляторы содержат кадмий – тяжёлый металл повышенной токсичности.

У никель-кадмиевых аккумуляторов есть так называемый «эффект памяти» суть которого сводится к тому, что при заряде не полностью разряженного аккумулятора его новый разряд возможен только до того уровня, с которого его зарядили. Другими словами аккумулятор «помнит» уровень остаточного заряда, с которого его полностью зарядили.

Итак, при заряде не полностью разряженного Ni-Cd аккумулятора происходит уменьшение его ёмкости.

Существует несколько способов борьбы с этим явлением. Опишем только самый простой и надёжный способ.

При использовании аккумуляторного инструмента с Ni-Cd аккумуляторными батареями следует придерживаться простого правила: заряжать только полностью разряженные аккумуляторы.

Рекомендуется хранить Ni-Cd Никель-кадмиевые аккумуляторные батареи в разряженном состоянии, желательно чтобы разряд не был глубоким, в противном случае это может вызвать необратимые процессы в батарее.

Плюсы Ni-Cd Никель-кадмиевых аккумуляторов

  • Низкая цена Ni-Cd Никель-кадмиевых аккумуляторов
  • Возможность отдавать наибольший ток нагрузки
  • Возможность быстрого заряда аккумуляторной батареи
  • Сохранение высокой ёмкости аккумулятора до -20°C
  • Большое количество циклов заряда-разряда. При правильной эксплуатации подобные аккумуляторы отлично работают и допускают до 1000 циклов заряда-разряда и более

Минусы Ni-Cd Никель-кадмиевых аккумуляторов

  • Относительно высокий уровень саморазряда – Ni-Cd Никель-кадмиевый аккумулятор теряет порядка 8-10% своей ёмкости в первые сутки после полного заряда.
  • Во время хранения Ni-Cd Никель-кадмиевый аккумулятор теряет порядка 8-10% заряда каждый месяц
  • После длительного хранения ёмкость Ni-Cd Никель-кадмиевого аккумулятора восстанавливается после 5 циклов разряда-заряда.
  • Для продления срока службы Ni-Cd Никель-кадмиевого аккумулятора рекомендуется каждый раз полностью его разряжать для предотвращения проявления «эффекта памяти»

Ni-MH Никель-металлогидридные аккумуляторы

Эти аккумуляторы предлагаются на рынке как менее токсичные (по сравнению с Ni-Cd Никель-кадмиевыми аккумуляторами) и более экологически безопасные, как в производстве, так и при утилизации.

На практике Ni-MH Никель-металлогидридные аккумуляторы действительно демонстрируют весьма большую ёмкость при габаритах и массе, несколько меньших, чем у стандартных Ni-Cd Никель-кадмиевых аккумуляторов.

Благодаря практически полному отказу от применения токсичных тяжелых металлов в конструкции Ni-MH Никель-металлогидридных аккумуляторов последние после использования могут быть утилизованы вполне безопасно и без экологических последствий.

У никель-металлогидридных аккумуляторов несколько снижен «эффект памяти». На практике «эффект памяти» практически незаметен из-за высокого саморазряда этих аккумуляторов.

При эксплуатации Ni-MH Никель-металлогидридных аккумуляторов желательно разряжать их в процессе работы не полностью.

Хранить Ni-MH Никель-металлогидридные аккумуляторы следует в заряженном состоянии. При длительных (более месяца) перерывах в работе аккумуляторы следует перезаряжать.

Плюсы Ni-MH Никель-металлогидридных аккумуляторов

  • Нетоксичные аккумуляторы
  • Меньший «эффект памяти»
  • Хорошая работоспособность при низкой температуре
  • Большая ёмкость по сравнению с Ni-Cd Никель-кадмиевыми аккумуляторами

Минусы Ni-MH Никель-металлогидридных аккумуляторов

  • Более дорогой тип аккумуляторов
  • Величина саморазряда примерно в 1.5 раза выше по сравнению с Ni-Cd Никель-кадмиевыми аккумуляторами
  • После 200-300 циклов разряда-заряда рабочая ёмкость Ni-MH Никель-металлогидридных аккумуляторов несколько снижается
  • Батареи Ni-MH Никель-металлогидридных аккумуляторов имеют ограниченный срок службы

Li-Ion Литий-ионные аккумуляторы

Несомненным достоинством литий-ионных аккумуляторов является практически незаметный «эффект памяти».

Благодаря этому замечательному свойству Li-Ion аккумулятор можно заряжать или подзаряжать по мере необходимости, исходя из потребностей. Например, можно подзарядить не полностью разряженный литий-ионный аккумулятор перед важной, ответственной или продолжительной работой.

К сожалению эти аккумуляторы являются наиболее дорогими аккумуляторными батареями. Кроме того литий-ионные аккумуляторы имеют ограниченный срок службы, независящий от числа циклов разряд-заряд.

Резюмируя можно предположить, что литий-ионные аккумуляторы лучше всего пригодны для случаев постоянной интенсивной эксплуатации аккумуляторного инструмента.

Плюсы Li-Ion Литий-ионных аккумуляторов

  • Отсутствует «эффект памяти» и поэтому появляется возможность заряжать и подзаряжать аккумулятор по мере необходимости
  • Высокая ёмкость Li-Ion Литий-ионных аккумуляторов
  • Небольшая масса Li-Ion Литий-ионных аккумуляторов
  • Рекордно-низкий уровень саморазряда – не более 5% в месяц
  • Возможность быстрого заряда Li-Ion Литий-ионных аккумуляторов

Минусы Li-Ion Литий-ионных аккумуляторов

  • Высокая стоимость Li-Ion Литий-ионных аккумуляторов
  • Сокращается время работы при температуре ниже нуля градусов Цельсия
  • Ограниченный срок службы

Примечание

Из практики эксплуатации Li-Ion Литий-ионных аккумуляторов в телефонах, фотокамерах и т.д. можно отметить, что эти аккумуляторы служат в среднем от 4 до 6 лет и выдерживают за это время около 250-300 циклов разряда-заряда. При этом абсолютно точно замечено: больше циклов разряд-заряд – короче срок службы Li-Ion Литий-ионных аккумуляторов!

Следите за новостями в нашей группе Вконтакте

На современном этапе существует множество аккумуляторов, которые имеют разный химический состав и, по причине присутствия в них тех или иных элементов, свои характерные особенности и преимущества в эксплуатации. Никель-кадмиевые аккумуляторы появились давно. Но до сих пор являются популярными и нужными в разных сферах человеческой деятельности.

Из истории создания

Первые щелочные Ni-Сd аккумуляторы появились еще в конце ХХ века. Их изобрел шведский ученый Вальдмар Юнгнер, в качестве положительного заряда использовав никель, а кадмий - в качестве отрицательного. Несмотря на очевидную пользу этого изобретения, по тем временам массовое производство таких батарей было весьма дорогостоящим и энергоемким. Поэтому было отложено на промежуток почти в 50 лет.

30-е годы прошлого столетия замечательны тем, что именно тогда была создана техника внедрения химически активных материалов пластин на пористый электрод, покрытый никелем. Массовое же производство Ni-Cd аккумуляторов началось после 50-х годов.

Основные характеристики и преимущества

Никель-кадмиевые аккумуляторы, в большинстве случаев, имеют цилиндрическую форму. Поэтому в простонародье их часто называют «банками». Есть и плоские Ni батарейки - например, для часов. Все зарядные элементы такого типа имеют сравнительно небольшую емкость, если сопоставлять их с (Ni-MH), появившимися значительно позже с целью усовершенствования Ni-Cd аккумуляторов.

Однако более низкие показатели емкости не являются тем недостатком, который мог бы стать причиной для того, чтобы старый добрый кадмиевый аккумулятор был окончательно снят с производства. Один из его несомненных плюсов - это то, что при эксплулатации он нагревается не так быстро, как MH. Это значительно снижает риск его перегрева и преждевременного выхода из строя.

Более медленный процесс нагревания Ni-Cd обусловлен тем, что химические реакции, протекающие внутри них, являются эндотермическими. Иными словами, выделяемое во время реакций тепло поглощается внутри. Что касается MH, они отличаются от кадмиевых экзотермическими реакциями с выделением большого количества тепла. В связи с этим MH нагреваются гораздо быстрее и могут «перегореть», если вовремя не прекратить их использование.

Ni-Сd аккумуляторы имеют плотный металлический корпус, отличающийся повышенной прочностью и хорошей герметичностью. Они способны устоять при любых химических реакциях внутри и выдержать большое давление газов даже в самых худших условиях. Вплоть до понижения температуры до -40°С. Никель кадмиевые-аккумуляторы не подвержены риску самовозгорания, в отличие от современных .

Среди них есть мощные и надежные промышленные аккумуляторы Ni, которые могут полноценно работать в течение 20-25 лет. И, несмотря на то, что на смену этим АКБ уже давно пришли MH и литиевые с большей емкостью, Ni-Cd аккумуляторы продолжают активно применяться и по сей день.

Если говорить о ценовой категории, стоимость Ni-Cd значительно ниже, чем у других батарей. Это также является одним из их основных плюсов.

Сфера применения

Небольшие Ni-Cd аккумуляторы широко используются для питания различной бытовой техники и аппаратуры, преимущественно, в тех случаях, когда тот или иной прибор потребляет большое количество тока. Стандартные «банки» до сих пор обеспечивают работу электродрелей и шуруповертов. Элементы больших размеров незаменимы в общественном транспорте. Например, в троллейбусах или трамваях с целью питания цепей их управления, в судоходном деле и особенно в сфере авиации как бортовые вторичные источники тока.

Особенности эксплуатации

Поскольку Ni-Cd аккумуляторы заметно нагреваются, только если они заряжены полностью, большая часть устройств «понимает» это в качестве сигнала, по которому следует прекращать процесс зарядки. Для того чтобы они работали дольше, их рекомендуется быстро заряжать, а использовать - до полного разряда: в отличие от MH, никель-кадмиевые аккумуляторы глубокой разрядки не боятся.

Этот вид АКБ - единственный из элементов питания, которые рекомендуется хранить полностью разряженными, в то время, как MH следует хранить заряженными полностью, и им периодически нужна проверка напряжения на выходе. Такая разница, при существенном отличии в эксплуатации, безусловно, является еще одним очевидным пунктом в пользу Ni-Cd.

При долгом хранении без использования в разряженном виде с батарейками не случится ничего страшного. Но, чтобы привести их в рабочее состояние, нужно два-три раза провести им полный цикл «заряд-разряд». Лучше делать это незадолго до применения, можно за сутки, и тогда никель-кадмиевые аккумуляторы будут работать с оптимальной токоотдачей.

Любой Ni-Cd, применяемый в быту, при его питании током небольшой величины и периодической неполной разрядкой может значительно потерять емкость, что создает впечатление полного выхода АКБ из строя. Если Ni-Cd долгое время находился на подзарядке, например, в устройстве с постоянным питанием, он тоже лишится определенного показателя ёмкости, хотя уровень его напряжения, при этом, будет верным.

Это значит, что использовать Ni-Cd в режиме постоянной подпитки и «недоразряда» не стоит, а если такое все же произошло с батарейкой, одного цикла глубокой разрядки с последующим полным зарядом будет достаточно для того, чтобы емкость была восстановлена.

Такой эффект называется «эффектом памяти» и возникает, когда не до конца разряженная батарея подвергалась подзарядке раньше, чем она разрядится полностью. Дело в том, что при производстве никель-кадмиевых аккумуляторов используются так называемые прессованные электроды. Это очень удобно, так как «прессовка» высокотехнологична и обходится дешевле. Но именно ее химический состав склонен к «эффекту памяти» - иными словами, к появлению в электрохимическом составе АКБ «лишнего» двойного электрического слоя в виде крупных кристаллов, что обусловливает снижение напряжения.

Именно поэтому Ni-Cd элементы так «любят» полный и глубокий разряд, после которого, «очистив память», они могут долгое время работать полноценно.

Восстановление никель-кадмиевого аккумулятора

Восстановление водой

Можно попробовать провести восстановление работоспособности Ni-Cd аккумуляторов с помощью самого обычного электролита в виде дистилированной воды.

Для этого понадобится несколько нехитрых инструментов и приспособлений:

  • паяльная кислота ;
  • одноразовый шприц ;
    паяльник ;
  • немного дистилированной воды .

Обычно аккумуляторный блок, находящийся внутри дрели или шуруповерта, выглядит как связка из нескольких металлических «банок», обернутых плотной бумагой. Для того чтобы понять, какая «банка» в связке самая слабая, нужно вначале измерить напряжение на полюсах каждого элемента. Как проверить напряжение? Очень просто, с помощью мультиметра или тестера. Чаще всего, показатель напряжения у самых слабых «банок» близок или равен нулю.

Для того чтобы начать процесс восстановления, нужно просверлить в батарейке небольшое отверстие, предварительно освободив ее от бумаги или этикетки. Сделать это можно с помощью шуруповерта, используя острый саморез №16. Важно позаботиться о том, чтобы не повредить внутренность аккумулятора, а просверлить только его внешнюю оболочку.

В данном случае стоит отметить еще одно несомненное преимущество: в таких батареях, вследствие их конструкции, повышенной герметичности и особенности протекающих химических реакций, не происходит самопроизвольного возгорания. Поэтому любительские методы возвращения никель-кадмиевых элементов к жизни являются безопасными, в отличие от проведения подобного рода манипуляций с современными литиевыми батареями, склонными к взрывам и вздутиям.

В одноразовый шприц набирается 1 мл дистилированной воды, и АКБ постепенно заполняется ею. При этом важно не торопиться, следить за тем, чтобы вода постепенно проникала внутрь батареи. Дистилированная вода нужна для возвращения и создания необходимой плотности электролита внутри АКБ. После того как вода будет залита, отверстие закрывается паяльной кислотой, которая берется на спичку, и запаивается хорошо разогретым паяльником.

Некоторые умельцы утверждают, что, если вместо дистилированной воды залить внутрь батареи электролит от шахтерских фонариков, АКБ будет работать гораздо лучше и дольше.

В заключение нужно снова провести замеры напряжения мультиметром и поставить аккумулятор на зарядку. Конечно, паяная батарея прослужит недолго, но это может помочь выиграть какое-то время перед приобретением новой.

Восстановление методом запзаппинга

Для никель-кадмиевых аккумуляторов существует проверенный, но весьма рискованный метод восстановления, который называется запзаппинг. Суть его заключается в том, что батарейки подвергаются коротким разрядам очень высоких токов, в десятки раз превышающих норму. Каждый элемент в буквальном смысле слова «прожигается» короткосекундными токовыми импульсами в 10, 20 ампер и выше.

Запзаппинг требует хорошей подготовки любителя электроники и соблюдения техники безопасности в виде защитных очков и, желательно, спецодежды. Утверждается, что он восстанавливает элементы, не употреблявшиеся 20 лет и более. Следует помнить о том, что запзаппинг применим исключительно к никель-кадмиевым аккумуляторам. Восстановление Ni-MH аккумуляторов таким способом проводить не рекомендуется.

Цикл разряд-заряд

Для того чтобы устранить «эффект памяти» , нужно разрядить АКБ до 0,8-1 вольта, после чего полностью зарядить ее снова . Если батарея не восстанавливалась в течение долгого времени, таких циклов можно провести несколько, а для минимизации «эффекта памяти» тренировать батарею таким образом желательно раз в месяц.

Что же касается популярного «школьного» метода, подразумевающего заморозку NiСd или NiMH аккумуляторов в морозильной камере - невзирая на то, что эффективность этого способа весьма сомнительна, в сети можно найти большое количество информации о «восстановлении» батареек путем помещения их в холодильник. На самом деле, лучше применить способ восстановления элементов дистиллированной водой - по крайней мере, в данном случае шансов реанимировать их будет гораздо больше.

Итак, никель-кадмиевые аккумуляторы не уступают современным батареям по ряду преимуществ своих технических характеристик. Они по-прежнему надежные, прочные, недорогие и максимально безопасны в применении.

Никель-кадмиевый аккумулятор (Ni-Cd Аккумуляторы) – это источник тока химического происхождения. Основные компоненты: гидроксид никеля, небольшое содержание порошка графита (не более 8%), электролитический элемент гидроксид лития. Анодом выступает гидроксид кадмия или вещество в порошкообразной консистенции. Аккумуляторы ni-cd ламельного типа способны прослужить до 25-ти лет, а обычные выдерживают от 100 до 900 циклов последовательной разрядки/зарядки.

Как заряжать никель-кадмиевые аккумуляторы?

Для восполнения электропотенциала элементов питания используются автоматические и реверсивно-импульстные зарядки. Первый вид относится к бытовым устройствам: простой в изготовлении, недорогой, может одновременно заряжать 2-4 элемента. Второй вид (профессиональный) способен не только заряжать, но и поддерживать рабочий потенциал батарей.

Аккумулятор никель-кадмиевый «помнит» граничный нижний уровень разряда, достигая которого перестаёт функционировать. Поэтому рекомендуется выполнить полную разрядку (до U=1В). Контролируйте температуру, так как при достижении 50°С элемент питания выйдет из строя.

При зарядке используют большой ток. Когда стоит задание применить максимальную мощность аккумулятора, заряжать его лучше малым током. Для ускоренного режима зарядки выбирают ступенчатую подачу тока (10% – средним током, 80% – большим током и оставшиеся 10% – минимальным током).

В батарейках никель-кадмиевых напряжение поднимается до конкретного уровня, а затем закрепляется на этом значении. При полной зарядке U снижается.

Как восстановить никель-кадмиевый аккумулятор

При полной разрядке аккумулятор ni-cd перестаёт реагировать на зарядку. Существует способ восстановления его работоспособности.

При работе элемента питания меняется механическая прочность и количество положительного электрод. Следствием процесса является ухудшение связи между электродом и активной массой. Результат: резкое снижение ёмкости и проводимости, а затем – устранение контакта между двумя электродами.

Ёмкость падает по причине сращивания кристаллов, возникающего при перезаряде. Плюс увеличивается самостоятельный разряд, особенно при длительном хранении.

Батареи никель-кадмиевые восстанавливаются при резком воздействии (по типу касаний, 2-3 раза в секунду) током высокого значения. Это вызовет дробление крупных кристаллов, обновление ёмкости и уменьшение собственного разряда. После этого элементы питания можно заряжать стандартными способом.

Никель-кадмиевые аккумуляторы или литий-ионные аккумуляторы

Если никель-кадмиевый аккумулятор купить, хорошо попользоваться им и положить на хранение, то это не приведёт к порче батареи. А литий-ионные аналоги перед хранением следует зарядить.

Ni-Cd

Радует

  • Маленькая стоимость.
  • Быстрый заряд и работа при высоком токе нагрузки.
  • Многоразовая зарядка (обязательно «с нуля»).
  • Использование при температуре до -20°С.

Огорчает

  • Высокий сброс заряд.
  • При долгом бездействии потребуется до 5-ти восстановительных циклов заряда/разряда.
  • Чтобы исключить «память», желательно каждый раз добиваться полной разрядки батареи.

Аккумуляторы автомобильные никель-кадмиевые часто используются для переносного электроинструмента.

Li-Ion

Радует

  • Нет «эффекта памяти», поэтому батарею можно подзаряжать в любое время.
  • Подходит для постоянного использования, на хранение можно оставлять, когда заряда остаётся около 50%.
  • Разряжается очень медленно (до5% за 30 дней), облдет хорошей ёмкостью и быстро восстанавливает свой потенциал.

Огорчает

  • Не подходит для долгой работы при минусовых температурах.
  • Требует больших финансовых затрат, чем батарея никель-кадмиевая.
  • Имеет ограниченный временной ресурс использования.

Применяемые в цифровых фотоаппаратах, камерах, электронных микроскопах, сотовых телефонах, литий-ионные аккумуляторы прослужат до 5-ти лет.

Этой статьёй мы открываем новое для нашего сайта направление: тестирование аккумуляторов и гальванических элементов (или, выражаясь простым языком, батареек).

Несмотря на то, что всё большую популярность приобретают литий-ионные аккумуляторы, специфичные для каждой конкретной модели устройства, рынок стандартных элементов питания общего назначения до сих пор очень велик – от них питается масса различных изделий, начиная от детских игрушек и заканчивая недорогими фотоаппаратами и профессиональными фотовспышками. Велик и ассортимент этих элементов – батарейки и аккумуляторы разных типов, емкостей, размеров, торговых марок, качества изготовления...

На первых порах мы не ставим перед собой цель объять всё богатство элементов питания – мы ограничимся лишь наиболее стандартными и распространёнными из них: цилиндрическими батарейками и никелевыми аккумуляторами.

Данная же статья призвана познакомить вас с некоторыми базовыми понятиями, касающимися исследуемых нами элементов питания, а также с методикой тестирования и используемым нами оборудованием. Впрочем, многие теоретические и практические вопросы мы будем обсуждать и в последующих статьях, посвящённых уже конкретным элементам питания – тем более, что делать это на "живых примерах" много удобнее и нагляднее.

Типы аккумуляторов и гальванических элементов

Батарейки с солевым электролитом

Батарейки с солевым электролитом, они же цинк-углеродные (впрочем, в отличие от щелочных батареек, на упаковках солевых производители обычно просто не указывают их химию) – самые дешёвые химические источники тока из имеющихся в продаже: стоимость одной батарейки колеблется от четырёх-пяти до восьми-десяти рублей, в зависимости от марки.


Представляет собой такая батарейка цинковый цилиндрический контейнер (служащий одновременно и корпусом, и "минусом" батарейки), в центре которого находится угольный электрод ("плюс"). Вокруг анода размещён слой диоксида марганца, а оставшееся пространство между ним и стенками контейнера заполнено пастой из хлорида аммония и хлорида цинка, разведённых в воде. Состав этой пасты может варьироваться: в маломощных батарейках в ней доминирует хлорид аммония, а в более ёмких (обычно обозначаемых производителями как "Heavy Duty") – хлорид цинка.

При работе батарейки цинк, из которого сделан её корпус, постепенно окисляется, в результате чего в нём могут появиться прорехи – тогда электролит из батарейки вытечет, что может привести к порче устройства, в которое она установлена. Впрочем, такие проблемы были характерны в основном для отечественных батареек времён существования СССР, современные же надёжно упаковываются в дополнительную внешнюю оболочку и "текут" очень редко. Тем не менее, надолго оставлять в устройстве севшие батарейки не стоит.

Как уже упоминалось выше, химический состав электролита солевых батареек может немного варьироваться – в "мощной" версии используется электролит с преобладанием хлорида цинка. Впрочем, слово "мощный" применительно к ним можно писать разве что в кавычках – ни одна из разновидностей солевых батареек на сколь-нибудь серьёзную нагрузку не рассчитана: в фонаре их хватит на четверть часа, а в фотоаппарате может не хватить даже на выдвижение объектива. Удел солевых батареек – пульты дистанционного управления, часы да электронные термометры, то есть устройства, энергопотребление которых укладывается в единицы, в крайнем случае в десятки миллиампер.

Батарейки с щелочным электролитом

Следующий тип батареек – щелочные, или марганцевые батарейки. Некоторые не слишком грамотные продавцы и даже производители называют их "алкалиновыми" – это слегка искажённая калька с английского "alkaline", то есть "щёлочь".


Цены на щелочные батарейки варьируются от десяти до сорока-пятидесяти рублей (впрочем, большинство их типов укладываются в диапазон до 25 рублей, выделяются только отдельные модели повышенной мощности), а отличить от солевых их можно по обычно присутствующей в том или ином виде надписи "Alkaline" на упаковке (а иногда – и прямо в названии, например, "GP Super Alkaline" или "TDK Power Alkaline").

Отрицательный полюс щелочной батарейки состоит из цинкового порошка – по сравнению с цинковым корпусом солевых элементов, использование порошка позволяет увеличить скорость протекания химических реакций, а значит, и отдаваемый батарейкой ток. Положительный полюс – из диоксида марганца. Основным же отличием от солевых батареек является тип электролита: в щелочных в его качестве используется гидроксид калия.

Щелочные батарейки хорошо подходят для устройств с энергопотреблением от десятков до нескольких сотен миллиампер – при ёмкости порядка 2...3 А*ч они обеспечивают вполне разумное время работы. К сожалению, есть у них и существенный минус: большое внутреннее сопротивление. Если нагрузить батарейку действительно большим током, её напряжение сильно просядет, а значительная часть энергии будет расходоваться на нагрев самой батарейки – в результате эффективная ёмкость щелочных батареек сильно зависит от нагрузки. Скажем, если при разряде током 0,025 А нам удастся получить от батарейки 3 А*ч, то при токе 0,25 А реальная ёмкость упадёт уже до 2 А*ч, а при токе 1 А – и вовсе ниже 1 А*ч.

Тем не менее, какое-то время щелочная батарейка может работать и при большой нагрузке, просто это время сравнительно невелико. Скажем, если на солевых батарейках современный цифровой фотоаппарат может даже не включиться, то одного комплекта щелочных ему хватит на полчаса работы.

Кстати, если уж вы вынуждены использовать в фотоаппарате щелочные батарейки – купите сразу два комплекта и периодически меняйте их местами, это позволит немного продлить их жизнь: если разряженной большим током батарейке дать немного "отлежаться", она частично восстановит заряд и сможет проработать ещё немного. Минут пять.

Литиевые батарейки

Последний из широко распространённых типов батареек – литиевые. Как правило, они рассчитаны на напряжение, кратное 3 В, поэтому большинство типов литиевых батареек с полуторавольтовыми солевыми и щелочными не взаимозаменяемы. Такие батарейки широко используются в часах, а также – реже – в фототехнике.


Впрочем, существуют и литиевые батарейки на напряжение 1,5 В, выполненные в стандартных форм-факторах АА и ААА – их можно использовать в любой технике, рассчитанной на обычные солевые или щелочные батарейки. Основное преимущество литиевых батареек заключается в меньшем внутреннем сопротивлении по сравнению со щелочными: их ёмкость мало зависит от тока нагрузки. Поэтому, хотя при малом токе что щелочная, что литиевая батарейки имеют одинаковую ёмкость 3 А*ч, если поставить их в цифровой фотоаппарат, потребляющий 1 А, то щелочные "умрут" минут через тридцать, а вот литиевые проживут почти три часа.

Минусом литиевых батареек является высокая стоимость: мало того, что дорог сам литий, так ещё и в связи с опасностью его воспламенения при попадании воды конструкция батарейки оказывается заметно сложнее по сравнению с щелочными. В результате одна литиевая батарейка стоит 100-150 рублей, то есть в три-пять раз дороже очень хорошей щелочной. Примерно столько же стоит Ni-MH аккумулятор, обладающий сходными с литиевыми батарейками разрядными характеристиками, но способный пережить несколько сотен циклов заряд-разряд – поэтому покупка литиевых батареек оправдана лишь в том случае, когда вам негде, некогда или нечем зарядить обычные аккумуляторы.

Да, раз уж зашла речь о циклах заряда, необходимо сказать, что пытаться заряжать литиевые батарейки категорически нельзя! Если обычная щелочная или солевая батарейка при попытке её зарядить может, как максимум, просто вытечь, то герметичные литиевые батарейки при заряде взрываются.

Также, помимо хороших разрядных характеристик, у литиевых батареек есть ещё два преимущества, как правило, не очень существенных: долговечность (допустимый срок хранения достигает 15 лет, при этом батарейка потеряет всего 10 % ёмкости) и способность работать при отрицательных температурах, когда у солевых и щелочных батареек попросту замерзает электролит.

Никель-кадмиевые (Ni-Cd) аккумуляторы

Основной же альтернативой батарейкам являются аккумуляторы – источники тока, химические процессы в которых обратимы: при подключении аккумулятора к нагрузке они идут в одном направлении, а при приложении к нему напряжения – в обратном. Таким образом, если батарейку после использования приходится выбрасывать и приобретать новую, то аккумулятор можно зарядить до его полной (или почти полной) исходной ёмкости.

Рассматривать мы будем аккумуляторы, используемые в лёгкой бытовой электронной аппаратуре – поэтому тяжёлые (и в прямом, и в переносном смысле) свинцово-кислотные аккумуляторы, встречающиеся в автомобилях, блоках бесперебойного питания и других устройствах с большим энергопотреблением и без особых ограничений на вес и габариты, сразу остаются за бортом нашей сегодняшней статьи. А вот различным типам никелевых аккумуляторов внимания мы уделим много больше...

Первые никелевые – точнее говоря, никель-кадмиевые – аккумуляторы были созданы шведским учёным Вальдемаром Юнгером (Waldmar Jungner) аж в 1899 году, однако на тот момент были относительно дороги, да к тому же не являлись герметичными: при зарядке аккумулятор выделял газ. Лишь в середине прошлого века удалось создать никель-кадмиевую батарею с замкнутым циклом: выделяющиеся при зарядке газы поглощались самим же аккумулятором.

Никель-кадмиевые аккумуляторы надёжны и долговечны (их можно хранить до пяти лет, а заряжать – при правильном использовании – до 1000 раз), хорошо работают при низких температурах и легко выдерживают большие токи разряда, могут заряжаться как малыми, так и большими токами.

Минусов у них, впрочем, тоже немало. Во-первых, относительно маленькая плотность энергии (то есть отношение ёмкости элемента к его объёму), во-вторых, заметный ток саморазряда (после нескольких месяцев хранения аккумулятор перед использованием потребуется заново зарядить), в-третьих, использование в конструкции ядовитого кадмия, и, в-четвёртых, эффект памяти.

На последнем стоит остановиться подробнее, так как при разговоре об аккумуляторах мы его ещё не раз вспомним. Эффект памяти является следствием нарушения внутренней структуры аккумулятора: в нём начинают расти кристаллы, уменьшающие эффективную поверхность и, соответственно, ёмкость аккумулятора. Своё название эффект получил из-за того, что особенно быстро кристаллы растут при неполной разрядке аккумулятора: он как бы помнит, до какого уровня его разряжали в прошлый раз – если аккумулятор был разряжен, скажем, только на 25 %, то очередная зарядка восстановит его ёмкость не до 100 %, а меньше. Для борьбы с эффектом памяти аккумулятор рекомендуется перед зарядкой разряжать полностью – это разрушает образующиеся кристаллы и восстанавливает ёмкость аккумулятора. Среди доступных типов аккумуляторов именно никель-кадмиевые наиболее подвержены эффекту памяти.

Тем не менее, в некоторых случаях использование никель-кадмиевых аккумуляторов оправдано и сейчас – благодаря низкой стоимости, долговечности и возможности зарядки при низких температурах без отрицательных последствий для аккумулятора.

Никель-металлгидридные (Ni-MH) аккумуляторы

Несмотря на близкое соседство на полках магазинах, в историческом плане между Ni-Cd и Ni-MH аккумуляторами лежит пропасть: последние были разработаны лишь в 1980-х годах. Интересно, что изначально исследовалась возможность хранения водорода для никель-водородных батарей, применяемых в космической технике, но в результате мы получили и один из самых распространённых в быту типов аккумуляторов.

В отличие от никель-кадмиевых батарей, никель-металлгидридные не содержат тяжёлых металлов, а значит, безвредны для окружающей среды и не требуют специальной переработки при утилизации. Впрочем, это далеко не единственный их плюс: с точки зрения потребителей, то есть нас с вами, куда важнее, что при тех же размерах Ni-MH аккумуляторы имеют в два-три раза большую ёмкость – для наиболее распространённых аккумуляторов формата AA она доходит уже до 2500-2700 мА*ч против 800-1000 мА*ч у никель-кадмиевых.

Более того, Ni-MH аккумуляторы ещё и практически не страдают от эффекта памяти. Точнее говоря, производители год за годом уменьшают его влияние – и поэтому, хотя теоретически эффект присутствуют и в Ni-MH аккумуляторах, на практике у современных моделей он незначителен. Впрочем, мы не будем полагаться во всём на производителей и в одной из наших следующих статей попробуем сами оценить влияние эффекта памяти.

К сожалению, у Ni-MH аккумуляторов есть и свои проблемы. Во-первых, они имеют больший ток саморазряда (впрочем, об этом мы ещё раз поговорим чуть ниже) по сравнению с Ni-Cd, во-вторых, хотя число циклов перезарядки также может достигать 1000, падение ёмкости аккумулятора может наблюдаться уже после 200-300 циклов, в-третьих, слишком большие разрядные токи и зарядка при низких температурах заметно сокращают жизнь аккумулятора.

Тем не менее, по совокупности характеристик – стоимости, надёжности, ёмкости, простоте обслуживания – на данный момент Ni-MH аккумуляторы являются одними из лучших, что и обусловило их применение в огромной массе бытовых устройств.

В последнее время в продаже появились также так называемые "Ready To Use" ("готовы к использованию") Ni-MH аккумуляторы. От обычных они отличаются малым током саморазряда – производитель уверяет, что за полгода аккумулятор потеряет не более 10 % ёмкости, а за год – не более 15 % (для сравнения, обычный Ni-MH аккумулятор за месяц сядет на 20...30 %, а за год – в ноль). Отсюда и название: будучи заряженными ещё производителем, эти аккумуляторы не успеют полностью разрядиться до того, как вы купите их в магазине, а значит, их можно будет использовать без предварительной зарядки, сразу после покупки. Минусом таких аккумуляторов является меньшая ёмкость – элемент формата AA имеет ёмкость 2000...2100 мА*ч против 2600...2700 мА*ч для обычных Ni-MH аккумуляторов.

Зарядные устройства для Ni-Cd и Ni-MH аккумуляторов

Принципы заряда Ni-Cd и Ni-MH аккумуляторов во многом схожи – по этой причине современные зарядные устройства, как правило, поддерживают сразу оба типа. Методы же заряда и, соответственно, типы зарядных устройств можно разделить на четыре группы. При этом во всех случаях мы будем указывать зарядный ток через ёмкость аккумулятора: например, рекомендация заряжать током величиной "0,1С" означает, что аккумулятору ёмкостью 2700 мА*ч в такой схеме соответствует ток 270 мА (0,1*2700 = 270), а аккумулятору ёмкостью 1400 мА*ч – 140 мА.

Медленный заряд током 0,1C

Этот метод основан на том, что современные аккумуляторы легко выдерживают перезаряд (то есть попытку "залить" в них больше энергии, чем аккумулятор может хранить), если зарядный ток не превышает величины 0,1C. Если ток превышает эту величину, аккумулятор при перезаряде может выйти из строя.

Соответственно, слаботочное зарядное устройство не нуждается в каком-либо контроле окончания заряда: ничего страшного в избыточной его продолжительности нет, аккумулятор просто рассеет лишнюю энергию в виде тепла. Соответствующие зарядные устройства дёшевы и весьма широко распространены. Для зарядки аккумулятора достаточно оставить его в таком ЗУ на время не менее 1,6*C/I, где C – ёмкость аккумулятора, I – зарядный ток. Скажем, если мы берём ЗУ с током 200 мА, то аккумулятор ёмкостью 2700 мА*ч гарантированно зарядится за 1,6*2700/200 = 21 час 36 минут. Почти сутки... в общем, главный недостаток таких ЗУ очевиден – время зарядки зачастую превышает разумные величины.

Тем не менее, если вы никуда не торопитесь, такое зарядное устройство вполне имеет право на жизнь. Главное – если вы используете аккумуляторы малой ёмкости в паре с современным ЗУ, проверьте, чтобы ток зарядки (а он обязательно должен быть указан в характеристиках ЗУ) не превышал 0,1C. Также стоит учесть, что медленный заряд способствует проявлению у аккумуляторов эффекта памяти.

Заряд током 0,2...0,5С без контроля окончания заряда

Подобные зарядные устройства хоть и редко, но всё же встречаются – в основном среди дешёвой китайской продукции. При токе 0,2...0,5С они либо не имеют контроля окончания заряда вообще, либо имеют только встроенный таймер, выключающий аккумуляторы через заданное время.

Использовать подобные ЗУ категорически не рекомендуется : так как контроля окончания заряда нет, то в большинстве случаев аккумулятор окажется недо- или перезаряжен, что существенно сократит срок его жизни. Сэкономив на зарядном устройстве, вы потеряете деньги на аккумуляторах.

Заряд током до 1C с контролем окончания заряда

Этот класс зарядных устройств – наиболее универсален для повседневного применения: с одной стороны, они обеспечивают зарядку аккумуляторов за разумное время (от полутора до четырёх-шести часов, в зависимости от конкретного ЗУ и аккумуляторов), с другой, чётко контролируют окончание заряда в автоматическом режиме.

Наиболее часто встречающийся метод контроля окончания заряда – по спаду напряжения, обычно он называется "метод dV/dt", "метод отрицательной дельты" или "метод -ΔV". Заключается он в том, что в течение всей зарядки напряжение на аккумуляторе медленно растёт – но когда аккумулятор достигает полной ёмкости, оно кратковременно снижается. Это изменение очень небольшое, однако его вполне можно обнаружить – и, обнаружив, прекратить заряд.


Многие производители зарядных устройств также указывают в их характеристиках "микропроцессорный контроль" – но, по сути, это то же самое, что и контроль по отрицательной дельте: если он есть, то он осуществляется специализированным микропроцессором.

Впрочем, контроль по напряжению – не единственный доступный: в момент накопления аккумулятором полной ёмкости в нём резко возрастает давление и температура корпуса, что также можно контролировать. На практике, впрочем, технически проще всего измерять напряжение, поэтому другие методы контроля окончания заряда встречаются редко.

Также многие качественные зарядные устройства имеют два защитных механизма: контроль температуры аккумуляторов и встроенный таймер. Первый останавливает зарядку, если температура превысит допустимый предел, второй – если за разумное время остановка заряда по отрицательной дельте не сработала. И то, и другое может случиться, если мы используем старые или попросту некачественные аккумуляторы.

Закончив зарядку аккумуляторов большим током, наиболее "разумные" зарядные устройства ещё некоторое время дозаряжают их малым током (менее 0,1C) – это позволяет получить от аккумуляторов максимальную возможную ёмкость. Индикатор заряда на устройстве при этом обычно гаснет, показывая, что основная стадия зарядки закончена.

Проблем с подобными устройствами бывает две. Во-первых, не все из них способны с достаточной точностью "поймать" момент спада напряжения – но, увы, это проверить можно только опытным путём. Во-вторых, хотя такие устройства обычно рассчитаны на 2 или 4 аккумулятора, большинство из них не умеют заряжать эти аккумуляторы независимо друг от друга.

Например, если в инструкции к ЗУ указано, что оно может заряжать только 2 или 4 аккумулятора одновременно (но не 1 и не 3) – это значит, что оно имеет лишь два независимых канала заряда. Каждый из каналов обеспечивает напряжение около 3 В, а аккумуляторы включаются в них попарно-последовательно. Следствия из этого два. Очевидное заключается в том, что вы не сможете зарядить в подобном ЗУ одиночный аккумулятор (а, скажем, ваш покорный слуга ежедневно пользуется mp3-плеером, работающим именно от одного AAA-аккумулятора). Менее очевидное – в том, что контроль окончания заряда также осуществляется только для пары аккумуляторов. Если вы используете не слишком новые аккумуляторы, то просто из-за технологического разброса одни из них состарятся немного раньше других – и если в паре попались два аккумулятора с разной степенью старения, то такое ЗУ либо недозарядит один из них, либо перезарядит второй. Разумеется, это будет только усугублять темпы старения худшего из пары.

"Правильное" зарядное устройство должно позволять заряжать произвольное количество аккумуляторов – один, два, три или четыре – а в идеале, ещё и иметь для каждого из них отдельный индикатор окончания зарядки (в противном случае индикатор гаснет, когда зарядится последний из аккумуляторов). Только в таком случае у вас будут некоторые гарантии того, что каждый из аккумуляторов будет заряжен до полной ёмкости независимо от состояния остальных аккумуляторов. Отдельные индикаторы заряда позволяют также отлавливать преждевременно вышедшие из строя аккумуляторы: если из четырёх элементов, использовавшихся вместе, один заряжается значительно дольше или значительно быстрее остальных, значит, именно он и будет слабым звеном всей батареи.

Многоканальные зарядные устройства имеют и ещё одну приятную особенность: во многих из них при зарядке половинного количества аккумуляторов можно выбирать скорость заряда. Скажем, ЗУ Sanyo NC-MQR02, рассчитанное на четыре аккумулятора формата AA, при зарядке одного или двух аккумуляторов позволяет выбирать зарядный ток между 1275 мА (при установке аккумуляторов в крайние слоты) и 565 мА (при установке их в центральные слоты). При установке трёх или четырёх аккумуляторов они заряжаются током 565 мА.

Кроме удобства в эксплуатации, ЗУ данного типа являются и наиболее "полезными" для аккумуляторов: заряд током средней величины с контролем окончания заряда по отрицательной дельте является оптимальным с точки зрения увеличения срока жизни аккумуляторов.

Отдельный подкласс быстрых зарядных устройств – ЗУ с предварительным разрядом аккумуляторов. Сделано это для борьбы с эффектом памяти и может быть весьма полезно для Ni-Cd аккумуляторов: ЗУ проследит, чтобы сначала они были полностью разряжены, и только после этого начнёт заряд. Для современных Ni-MH такая тренировка уже не является обязательной.

Заряд током более 1C с контролем окончания заряда

И, наконец, последний метод – сверхбыстрый заряд, продолжительностью от 15 минут до часа, с контролем заряда опять же по отрицательной дельте напряжения. Достоинств у таких ЗУ два: во-первых, вы почти моментально получаете заряженные аккумуляторы, во-вторых, сверхбыстрый заряд позволяет в большой степени избежать эффекта памяти.

Есть, впрочем, и минусы. Во-первых, не все аккумуляторы хорошо выдерживают быстрый заряд: недостаточно качественные модели, имеющие большое внутреннее сопротивление, могут в таком режиме перегреваться вплоть до выхода из строя. Во-вторых, очень быстрый (15-минутный) заряд может негативно влиять на срок жизни аккумуляторов – опять же, из-за их избыточного нагрева при заряде. В-третьих, такой заряд "наполняет" аккумулятор лишь до 90...95 % ёмкости – после чего для достижения 100 % ёмкости требуется дополнительный дозаряд малым током (впрочем, большинство быстрых ЗУ его осуществляют).

Тем не менее, если вы нуждаетесь в сверхбыстрой зарядке аккумуляторов, приобретение "15-минутного" или "получасового" ЗУ будет хорошим выходом. Разумеется, использовать с ним надо только качественные аккумуляторы крупных производителей, а также своевременно исключать из батарей отслужившие своё экземпляры.

Если же вас устраивает продолжительность заряда в несколько часов, то оптимальными по-прежнему остаются описанные в предыдущем разделе ЗУ с зарядным током менее 1C и контролем окончания заряда по отрицательной дельте напряжения.

Отдельный вопрос – совместимость зарядных устройств с разными типами аккумуляторов. ЗУ для Ni-MH и Ni-Cd, как правило, универсальны: любое из них может заряжать аккумуляторы каждого из этих двух типов. ЗУ для Ni-MH аккумуляторов с окончанием заряда по отрицательной дельте напряжения, даже если для них это не заявлено прямо, могут работать и с Ni-Cd аккумуляторами, а вот наоборот – увы. Дело здесь в том, что скачок напряжения, та самая отрицательная дельта, у Ni-MH заметно меньше, чем у Ni-Cd, поэтому не всякое ЗУ, настроенное на работу с Ni-Cd, сможет "почувствовать" этот скачок на Ni-MH.

Для других же типов аккумуляторов, включая литий-ионные и свинцово-кислотные, эти ЗУ непригодны в принципе – такие аккумуляторы имеют совершенно другую схему заряда.

Методика тестирования

В процессе тестирования аккумуляторов и гальванических элементов в нашей лаборатории мы измеряем следующие их параметры, наиболее важные для определения как качества элементов (то есть их соответствия обещаниям производителя), так и разумной области использования:

ёмкость при различных режимах разряда;
величина внутреннего сопротивления;
величина саморазряда (только для аккумуляторов);
наличие эффекта памяти (только для аккумуляторов).

Основная часть испытательного стенда – это, разумеется, регулируемая нагрузка, позволяющая разряжать заданным током до четырёх аккумуляторов или батареек одновременно.


Для контроля напряжения всех четырёх элементов используется цифровой самописец Velleman PCS10, подключаемый к компьютеру по USB-интерфейсу. Погрешность измерения составляет не более 1 % (собственная погрешность самописца – 3 %, но мы дополнительно калибруем каждый из его каналов, внося соответствующие поправки в итоговые данные), дискретность измерения напряжений – 12 мВ, периодичность измерений – 250 мс.


Схема установки достаточно проста: это четыре отдельных стабилизатора тока, выполненных на операционном усилителе LM324 (эта микросхема как раз состоит из четырёх ОУ в одном корпусе) и полевых транзисторах IRL3502. Управляются все стабилизаторы одним многооборотным переменным резистором, поэтому ток на них выставляется одновременно – это упрощает настройку установки на конкретный тест и сводит к минимуму погрешность ручной установки тока. Возможные пределы изменения нагрузки – от 0 до 3 А на каждый элемент питания.

Для измерения напряжения на ещё одной микросхеме LM324 собраны четыре дифференциальных усилителя, входы которых подключены непосредственно к контактам колодки, в которую устанавливаются аккумуляторы – это полностью исключает погрешность, вносимую потерями на соединительных проводах. С выходов дифференциальных усилителей сигнал поступает на самописец.

Кроме того, в схеме присутствует не показанный на рисунке выше генератор прямоугольных импульсов, периодически то включающий, то полностью отключающий нагрузку. Длительность "нуля" на выходе генератора равна 6,0 с, длительность "единицы" – 2,25 с. Генератор позволяет протестировать элементы питания в режиме работы с импульсной нагрузкой и, в частности, определить их внутреннее сопротивление.

Также на рисунке выше не показана схема питания установки: она подключается к блоку питания компьютера, его выходное напряжение (+12 В) понижается до +9 В стабилизатором на микросхеме 78L09, а необходимое для двуполярного питания ОУ напряжение -9 В формируется емкостным конвертером на микросхеме ICL7660. Впрочем, это уже малосущественные нюансы, которые мы обсуждаем лишь затем, чтобы заранее предупредить вопросы о корректности проведения измерений, могущие возникнуть у сведущих в электронике читателей.

Для охлаждения силовых транзисторов, шунтов обратной связи и собственно тестируемых элементов питания вся установка обдувается стандартным 12-вольтовым вентилятором типоразмера 80x80x20 мм.


Для получения и автоматической обработки данных с самописца была написана специальная программа – к счастью, компания Velleman для многих своих приборов поставляет весьма простые в использовании SDK и наборы библиотек. Программа позволяет в реальном времени строить графики напряжения на элементах питания в зависимости от прошедшего с начала теста времени, а также рассчитывать – по окончании теста – их ёмкость. Последняя, очевидно, равна произведению разрядного тока и времени, за которое элемент достиг нижней границы напряжения.

Граница же выбирается в зависимости от типа элемента и условий разряда. Для аккумуляторов при малых токах это 1,0 В – ниже разряжать их просто нельзя, так как это может привести к необратимой порче элемента; на больших токах нижняя граница снижается до 0,9 В, чтобы должным образом учесть внутреннее сопротивление аккумулятора.

Для батареек практический смысл имеют две границы разряда. С одной стороны, элемент считается полностью опустошённым, если напряжение на нём упало до 0,7 В – поэтому логично измерять ёмкость именно по факту достижения этого уровня. С другой стороны, не все питающиеся от батареек устройства способны работать при напряжениях ниже 0,9 В, поэтому практическое значение имеет и то, когда аккумулятор разрядился до данного уровня. В наших тестах мы будем приводить оба этих значения – хотя многие элементы, достигнув уровня 1,0 В, дальше разряжаются очень быстро, есть и такие, которые сравнительно долго держатся между 0,7 В и 0,9 В.

Итак, установив элементы питания, выставив нужный ток и включив самописец, мы начинаем тестирование. Для каждого типа элементов питания были выбраны несколько режимов разрядки – с целью получить наиболее интересные и характерные результаты.

Для батареек это:

разрядка малым постоянным током: 250 мА для элементов формата АА, 100 мА – формата ААА;
разрядка большим постоянным током: 750 мА для элементов формата АА, 300 мА – формата ААА;

Для Ni-MH аккумуляторов это:

разрядка малым постоянным током: 500 мА для элементов формата АА, 200 мА – формата ААА;
разрядка большим постоянным током: 2500 мА для элементов формата АА, 1000 мА – формата ААА;
разрядка импульсным током: длительность импульса 2,25 с, длительность паузы 6,0 с, амплитуда тока 2500 мА для элементов формата АА и 1000 мА – формата ААА.

Для Ni-Cd аккумуляторов формата AA разрядные режимы выбраны такими же, как и для Ni-MH аккумуляторов формата AAA – с учётом схожей паспортной ёмкости первых и вторых.

Если при тестировании батареек всё просто – распечатал упаковку, вставил батарейку в установку, запустил тест – то аккумуляторы надо предварительно готовить, ибо все они, кроме упоминавшейся выше серии "Ready To Use", на момент покупки полностью разряжены. Поэтому тестирование аккумуляторов проводилось строго по следующей схеме;

измерение остаточной ёмкости на малом токе (только для "Ready To Use" моделей);
зарядка;
разрядка большим током без измерения ёмкости (тренировка);
зарядка;
разрядка большим током с измерением ёмкости;
зарядка;
разрядка импульсным током с измерением ёмкости;
зарядка;
разрядка малым током с измерением ёмкости;
зарядка;
выдержка в течение 7 суток;
разрядка малым током с измерением ёмкости – далее результат сравнивается с полученным на предыдущем шаге и рассчитывается процент потери ёмкости за счёт саморазряда за 1 неделю;

В тестах батареек мы используем на каждом этапе по одному элементу каждой марки. В тестах аккумуляторов – минимум по два элемента каждой марки.

Для зарядки аккумуляторов мы используем зарядное устройство Sanyo NC-MQR02.


Это ЗУ быстрой зарядки с контролем отрицательной дельты напряжения и температуры аккумуляторов, позволяющее заряжать от одного до четырёх (в произвольных комбинациях) аккумуляторов формата AA, а также один или два аккумулятора формата AAA. Первые можно заряжать как током 565 мА, так и 1275 мА (если аккумуляторов не более двух), вторые – током по 310 мА на элемент. За несколько лет регулярного использования это ЗУ убедительно доказало свою высокую эффективность и совместимость с любыми аккумуляторами, что и обусловило его выбор для проведения тестирования. Чтобы избежать потери ёмкости за счёт саморазряда, во всех тестах, кроме собственно теста на саморазряд, аккумуляторы заряжаются непосредственно перед началом измерений.


Измерения на постоянном токе дают логичную картину (пример представлен на графике выше): напряжение на элементах быстро снижается в первые минуты теста, потом выходит на более-менее постоянный уровень, а в самом конце теста, на последних процентах заряда, снова быстро падает.


Несколько менее банальны измерения на импульсном токе. На рисунке выше представлен сильно увеличенный участок графика, полученного в таком тесте: провалы напряжения на нём соответствуют включению нагрузки, подъёмы – отключению. Из этого графика легко подсчитать внутреннее сопротивление аккумулятора: как вы видите, при амплитуде тока 2,5 А напряжение проседает на 0,1 В – соответственно, внутреннее сопротивление равно 0,1/2,5 = 0,04 Ом = 40 мОм. Важность этого параметра станет более ясна из наших последующих статей, в которых мы сравним друг с другом различные типы батареек и аккумуляторов – а пока отметим лишь, что большое внутреннее сопротивление вызывает не только "просадку" напряжения под нагрузкой, но и потери накопленной в аккумуляторах энергии на нагрев самих себя.


В полном же масштабе импульсы сливаются друг с другом в сплошную полосу, верхняя граница которой соответствует напряжению на элементе питания без нагрузки, нижняя – с нагрузкой. По форме этой полосы можно оценить не только время работы элемента под тяжёлой импульсной нагрузкой, но и зависимость его внутреннего сопротивления от глубины разряда: например, как вы видите, у Ni-MH аккумулятора компании Sony сопротивление почти постоянно и начинает расти только при полном его разряде. Хороший результат.

Как наверняка заметят многие наши читатели, мы выбрали очень жёсткие режимы разряда: ток 2,5 А весьма велик, а 6-секундная пауза между импульсами не даёт элементу как следует "отдохнуть" (как мы уже упоминали выше, батарейки, немного "отлежавшись", могут частично восстановить свою ёмкость). Тем не менее, сделано это нарочно, чтобы максимально ярко и наглядно показать различия между элементами питания разных типов и разного качества. Для того же, чтобы приблизиться к более мягким реальным условиям эксплуатации, а также к условиям, в которых производители аккумуляторов измеряют их ёмкость, мы добавили в тестирование режимы разряда с относительно небольшим постоянным током.

К слову, сами производители обычно указывают разрядные режимы так же, как и зарядные – пропорционально ёмкости элемента. Скажем, штатные измерения ёмкости аккумуляторов положено проводить при токе 0,2C – то есть 540 мА для аккумулятора на 2700 мА*ч, 500 мА для аккумулятора на 2500 мА*ч, и так далее. Однако, так как аккумуляторы одного форм-фактора в наших тестах достаточно близки по характеристикам, мы решили тестировать их при фиксированных токах, не зависящих от паспортной ёмкости конкретного экземпляра – это сильно упрощает представление и сопоставление результатов.

И раз уж речь зашла о ёмкости, стоит упомянуть о некоторой обманчивости такой общепринятой единицы, как ампер-час. Дело в том, что запасённая в элементе питания энергия определяется не только тем, сколько времени он держал заданный ток, но и тем, какое на нём было при этом напряжение – так, совершенно очевидно, что литиевая батарея ёмкостью 3 А*ч и напряжением 3 В способна запасти вдвое больше энергии, чем батарея ёмкостью те же 3 А*ч, но напряжением 1,5 В. Поэтому правильнее указывать ёмкость не в ампер-часах, а в ватт-часах, получая их через интеграл зависимости напряжения на аккумуляторе от времени разряда при его постоянном токе. Кроме естественного учёта разного рабочего напряжения разных элементов, такая методика позволяет ещё и учесть, насколько хорошо данный конкретный элемент держал напряжение под нагрузкой. Скажем, если две батарейки разрядились до уровня 0,7 В за 60 минут, но первая большую часть этого времени держалась на уровне 1,1 В, а вторая – на уровне 0,9 В, совершенно очевидно, что первая имеет большую реальную ёмкость – несмотря на то, что итоговое время их разряда одинаково. Особенно это важно в свете того, что большинство современных электронных устройств потребляют не постоянный ток , а постоянную мощность – и элементы с большим напряжением в них будут работать в более выгодных режимах.

Ближе к практике: примеры энергопотребления

Разумеется, помимо абстрактного тестирования батареек на управляемой нагрузке, нам было интересно, как же потребляют ток реальные устройства. Для прояснения этого вопроса мы, оглядев окружающее пространство, случайным образом выбрали набор предметов, питающихся от различных батареек.



Только часть этого набора


В случае, если устройство потребляло более-менее постоянный ток, измерения проводились обычным цифровым мультиметром Uni-Trend UT70D в режиме амперметра. Если же ток потребления сильно менялся, то измеряли мы его, включив между устройством и питающими его батарейками низкоомный шунт, падение напряжения на котором фиксировалось осциллографом Velleman PCSU1000.

Результаты представлены ниже в таблице:


Что же, среди наших устройств встретились и довольно "прожорливые" – фотовспышка, фотоаппарат и фонарь с лампой накаливания. Если последний потреблял положенные ему 700 мА постоянно и непрерывно, то у первых двух характер энергопотребления оказался более интересным.

Цена вертикального деления на осциллограммах ниже равна 200 мА, нуль соответствует первому делению снизу.



Фотоаппарат
Цена деления осциллограммы – 200 мА


В обычном режиме Canon PowerShot A510, питающийся от двух элементов типа АА, потреблял около 800 мА – немало, но и не рекордно много. Однако при включении (первая группа узких пиков на осциллограмме), движение объектива (вторая группа пиков) и фокусировке (третья группа) ток мог вырастать более чем в полтора раза, до 1,2...1,4 А. Что интересно, сразу после нажатия на "спуск" энергопотребление фотоаппарата упало – при записи только что снятого кадра на флэшку он автоматически выключает экран. Впрочем, как только кадр был записан, потребление поднялось обратно до 800 мА.



Фотовспышка
Цена деления осциллограммы – 100 мА


Фотовспышка Pentax AF-500FTZ (четыре элемента формата АА) потребляла ток ещё интереснее: он был почти равен нулю в периоды между срабатываниями, мгновенно вырастал до 700 мА сразу после срабатывания (такой момент и запечатлён на осциллограмме выше), после чего в течение 10...15 секунд плавно снижался обратно к нулю (рваная линия осциллограммы получилась из-за того, что вспышка потребляет ток с частотой около 6 кГц). При этом вспышка демонстрировала чёткую зависимость между временем спада тока и напряжением питающих её элементов: так как ей надо было каждый раз накопить определённую энергию, то чем сильнее проседало под нагрузкой напряжение питания, тем больше времени требовалось для накопления нужного запаса. Это, кстати, хорошо иллюстрирует одну из ролей внутреннего сопротивления элементов питания – чем оно меньше, тем меньше при прочих равных просядет напряжение и тем быстрее вы сможете сделать следующий кадр со вспышкой.

В следующих же наших статьях, где мы будем рассматривать уже конкретные типы и экземпляры батареек и аккумуляторов, примерное представление об энергетических потребностях разных устройств поможет нам определить, какие из элементов питания для них подходят.

Может быть не все знают, что во всех самой различной формы аккумуляторах для ручного электроинструмента стоят унифицированные банки напряжением 1.2В и различной мощности. Имеет значение только размер банки (а они бывают 2х самых распространенных типоразмеров) и мощность измеряемая в амперах или миллиамперах. Чем большей емкости батареи - тем дольше проработает инструмент от одной зарядки.

В первую очередь посмотрите, что написано на корпусе аккумулятора. Нам нужно знать всего три значения. Это тип аккумулятора (Ni-Cd или Ni-MH или LI-Ion) напряжения (обычно 12V или 14.4V 18v 24V) и емкость батареи (что то вроде 1200mA 1.2A 2000mA 2400mA и т.д.) На недорогих моделях указано только напряжение. Это почти всегда означает никель кадмиевые SC на 1200mA Для уточнения потребуется разборка корпуса.

Если у вас стояли Ni-Cd аккумуляторы, то можно использовать только такие же Ni-Cd хотя на качественном инструменте ЗУ шли единые и заряжали как те так и другие типы. А на бюджетном и подавно, главное правильно рассчитать время зарядки.

Если у вас стояли Ni-MH как Ni-MH так и Ni-Cd

Если у вас стояли Li-Ion аккумуляторы можно использовать только Li-Ion.

Это обусловлено типом зарядных устройств для Вашей модели инструмента. Хотя как показала практика, NI-MH аккумуляторы прекрасно заряжают все зарядные устройства.

Банки стоящие в блоке спаяны последовательно, делим напряжения блока на 1.2 и получаем кол-во банок стоящих внутри блока. Зная количество, тип и емкость аккумуляторов смотрим цену за 1 штуку и решаем, стоит ли овчинка выделки) Для качественного инструмента однозначно да, для китайских бюджетных моделей стоимость может превышать цену нового инструмента раза в два-три. Но следует учитывать, что собранный из нормальных аккумуляторов блок будет и работать долго, тогда как новый бюджетный инструмент закрутит 5-10 саморезов и потребует зарядки.

Если вы все же решили заняться переборкой аккумулятора, нужно разобрать корпус и достать спаянные между собой банки. В основном корпуса собраны на саморезах, но встречаются как клееные так и с использованием винтов со звездочкой, в этом случае придется приобрести специальную отвертку. Посмотрите что написано на самих банках. Это могут быть бочонки 4/5 SC или просто SC. (Можно измерить их по высоте,SC 42мм в длину, 4/5 SC 32 мм) На замену мы предлагаем оптимальные на сегодняшний день по соотношению цена/емкость модели. Для аккумуляторов 4/5 SC это банки емкостью 1200 mAh в или . Влияние оболочки на срок службы не выявлено. Для аккумуляторов полный SC это банки емкостью или .

Теперь что касается соединения банок между собой. В заводских условиях это делается контактной сваркой. Нам же придется их спаять. Аккумуляторные батареи не любят перегрева поэтому паять нужно быстро мощным паяльником с коротким жалом. Из флюсов лучше использовать ортофосфорную кислоту. С ее помощью легко облуживаются сами аккумуляторы и перемычки лучше делать из многожильной медной проволки. Кислоту после облуживания смыть водой, чтобы она не разъела место соединения. Проволку можно достать из старого отечественного антенного кабеля, это та что идет по экрану, или купить монтажную проволку, легко паяется и стоит недорого. В любом случае лучше вначале поэкспериментировать со старой банкой, попробовать припаяться к ней.

Что касается времени зарядки, то оно чаще всего вычисляется по формуле,- Емкость аккумуляторов делиться на ток ЗУ (указан на блоке питания) и умножается на 1.5. Например, Вы поставили банки на 2000мА и блок питания у Вас 400мА (Напряжение в данном случае не имеет значения.) (2000/400)*1.5=7.5 часов.

Вот вкратце все что нужно знать, что бы восстановить старый аккумулятор самостоятельно.

Так же весьма информативный отзыв по переборке аккумулятора используя элементы GP на 2000мА типа SC написал наш покупатель. Прочитать можете

Дополнение от ноября 2012 года.

Количество просмотров статьи с 2009 года составило более 12000. Кто бы мог подумать, что написанная под нас роение заметка будет столь полезна людям. Что изменилось с той поры? Во первых аккумуляторы фирмы GP серии Sub-C NI-Cd окончательно исчезли с рынка. Жаль, соотношение цена-качество было отличное.

Сегодня мы предлагаем аккумуляторы фирмы Energy Technology, хорошие по качеству и по невысокой цене.

Так же у нас есть возможность сваривать аккумуляторы контактной сваркой. Это качественно и правильно. Стоимость переборки аккумуляторов для шуруповерта не является фиксированной . Гарантия 6 месяцев. Подробнее ознакомиться с ценами можно по ссылке на любой странице сайта

По всем вопросам просьба обращаться на почту [email protected]