Реферат: Резины, стойкие к старению. Старение шин Старение резины

Каучуки и их вулканизаты, как всякие ненасыщенные соедине­ния, способны к различного рода химическим превращениям. Важ­нейшей реакцией, которая непрерывно происходит при хранении и эксплуатации резиновых изделий, является окисление резины, ведущее к изменению ее химических, физических и механических свойств. Только эбонит, превращающийся в полностью насыщен­ное соединение за счет присоединения к макромолекулам каучука предельно возможного количества серы, представляет собой хи­мически инертный материал. Совокупность всех изменений, про­исходящих в резине в процессе длительного окисления, принято называть ее старением.

Старение принадлежит к категории сложных многостадийных превращений, на определенных этапах которого значительно умень­шаются эластичность, износостойкость и в некоторой степени прочность резины. Иначе говоря, с течением времени работоспо­собность резиновых изделий, а следовательно, и надежность рабо­ты автомобилей снижаются. К разряду наиболее неблагоприятных изменений резины, возникающих вследствие старения, относится необратимое снижение ее эластичности. В результате повышенная хрупкость резины, в первую очередь ее поверхностных слоев, обу­словливает появление в деформируемых деталях трещин, посте­пенно углубляющихся и в конце концов приводящих к разруше­нию изделия.

Последствия старения резины аналогичны последствиям от пониже­ния температуры, с той лишь разницей, что последние по своему харак­теру являются временными и частично или полностью устранимыми с помощью нагревания, тогда как первые никакими способами нельзя осла­бить и тем более устранить.

Борьба со старением ведется различными методами. Очень эф­фективной является добавка противостарителей (ингибиторов), 1... 2 % которых по отношению к содержащемуся в резине каучуку замедляют процесс окисления в сотни и тысячи раз. С той же це­лью некоторые резиновые изделия выпускаются с заводов в гер­метичной упаковке (в полиэтиленовых чехлах).

Однако технологических средств оказывается недостаточно, поэтому дополнительно приходится применять ряд эксплуатаци­онных мер. С повышением температуры старение усиливается, причем от нагревания на каждые 10 °С скорость старения возрастает в два раза. Замечено также, что окисление резины интенсивнее на тех участках, которые испытывают большее напряжение. Следовательно, необходимо содержать резиновые изделия по возможнос­ти в недеформированном состоянии.

Колеса и шины

Автомобильные колеса различают по их назначению, типу при­меняемых шин, конструкции и технологии изготовления.

Основные параметры колес некоторых автомобилей отечествен­ного производства приведены в табл. 11.2.

Пневматические шины легковых автомобилей подразделяются по способу герметизации внутреннего объема, расположению нитей корда в каркасе, отношению высоты к ширине профиля, типу протектора и ряду других специфических особенностей, вызванных их назначением и условиями эксплуатации.

По способу герметизации внутреннего объема различают ка­мерные и бескамерные шины.

Камерные шины состоят из покрышки, камеры с вентилем и ободной ленты, надеваемой на обод. Размер камеры всегда несколь­ко меньше внутренней полости покрышки во избежание образо­вания складок в накаченном состоянии. Вентиль представляет со­бой обратный клапан, позволяющий нагнетать воздух в шину и препятствующий выходу наружу. Ободная лента предохраняет ка­меру от повреждений и трения о колесо и борт покрышки.

Таблица 11.2

Основные параметры колес некоторых отечественных легковых

Автомобилей


Рис. 11.9. Бескамерная шина авто­мобиля:

1 - протектор; 2 - герметизирую­щий воздухонепроницаемый резино­вый слой; 3 - каркас; 4 - вентиль; 5 - глубокий обод

Бескамерные шины (рис. 11.9) отличаются наличием воздухо­непроницаемого резинового слоя, наложенного на первый слой каркаса (вместо камеры), и имеют следующие преимущества (по сравнению с камерными):

меньшую массу и лучший теплообмен с колесами;

повышенную безопасность при движении машины, так как при проколе воздух выходит только в месте прокола (при мелком про­коле достаточно медленно);

упрощенный ремонт в случае прокола (нет необходимости в демонтаже).

В то же время монтаж и демонтаж бескамерных шин усложнен­ные и требуют большей квалификации, и зачастую возможны толь­ко на специальном шиномонтажном станке.

Бескамерные шины применяются для колес с ободами специ­ального профиля и повышенной точности изготовления.

Камерные и бескамерные шины по расположению нитей корда в каркасе покрышки могут быть как диагональной, так и радиаль­ной конструкции.

Маркировка шин

Диагональные и радиальные шины различаются не только кон­струкцией, но и маркировкой.

Например, в обозначении диагональной шины 6,15-13/155-13:

6,15 - условная ширина профиля шины (В) в дюймах;

13 - посадочный диаметр (d) шины (и колеса) в дюймах;

155 - условная ширина профиля шины в мм.

Вместо последнего числа 13 может быть указан посадочный диа­метр в мм (330).

Радиальные шины имеют единое смешанное миллиметрово­дюймовое обозначение. Например, в маркировке 165/70R13 78S Steel Radial Tubeless:

165 - условная ширина профиля шины (В) в мм;

70 - отношение высоты профиля шины (Я) к ее ширине (В) в процентах;

R - радиальная;

13 - посадочный диаметр в дюймах;

78 - условный индекс грузоподъемности шины;

8 - скоростной индекс шины (максимально допустимая ско­рость движения автомобиля) в км/ч.

Для повседневной езды по российским дорогам целесообразно ограничиться отношением Н/В не ниже 0,65, причем это касается довольно больших шин, т.е. шин для автомобилей типа ГАЗ-3110 «Волга». На моделях ВАЗ лучше не применять шины с Н/В ниже 0,70, а на автомобиле ВАЗ-111 «Ока» и вовсе нецелесообразна ус­тановка каких-либо иных шин кроме заводских размером 135R12.

Современные скоростные сверхнизкопрофильные шины с Н/В= = 0,30...0,60 пригодны для работы только на гладких шоссейных дорогах с хорошим качеством покрытия, которых в нашей стране практически нет.

Каждый российский изготовитель шин имеет свой фирменный знак или же, как например Московский шинный завод, знак мо­дели «ТАГАНКА».

Маркировка шины включает в себя букву (или буквы), кодиру­ющие предприятие-изготовитель (например, К - Кировский шин­ный завод; Я - Ярославский шинный завод и др.) и цифры (циф­ру) внутризаводского индекса этой шины.

На боковине шины ставится ее серийный номер и кодируется другая, достаточно полезная (в случае выставления рекламации) информация (табл. 11.3).

Покрышки играют важную роль в управляемости и безопасности автомобиля, однако с возрастом они теряют свои качества и должны меняться на новые. Поэтому каждый водитель должен уметь определять возраст шин и производить их своевременную замену. О том, почему необходимо менять старые покрышки, как определять их возраст и время замены, читайте в данной статье.

Стандарты на срок службы автомобильных шин

Покрышки — один из немногих компонентов автомобиля, который не только подвергается износу во время эксплуатации, но и подвержен естественному старению. Поэтому замена покрышек производится не только в связи с их критическим износом или повреждениями, но и при сроках эксплуатации, превышающих допустимые. Слишком старые покрышки теряют свои качества, эластичность и прочность, а поэтому становятся слишком опасными для автомобиля.

На сегодняшний день в России сложилась противоречивая ситуация со сроками эксплуатации шин. С одной стороны, законодательно в нашей стране установлен так называемый гарантийный срок службы (срок эксплуатации) автомобильных покрышек, равный 5 годам со дня их производства. В течение данного срока покрышка должна обеспечивать заявленные эксплуатационные характеристики, при этом производитель в течение всего срока эксплуатации несет ответственность за свое изделие. Срок 5 лет устанавливается двумя стандартами — ГОСТ 4754-97 и 5513-97.

С другой стороны, в западных странах таких законов нет, и производители автомобильных шин заявляют о том, что срок эксплуатации их изделий достигает 10 лет. При этом в мире и в России не существует и законодательных актов, которые обязывали бы водителей и владельцев транспортных средств производить обязательную замену покрышек при истечении гарантийного срока эксплуатации. Хотя в российских ПДД есть норма об остаточной высоте протектора, и, как показывает практика, износ покрышек обычно происходит быстрее, чем истекает срок их службы.

Также существует и такое понятие, как срок хранения автомобильных шин, однако российское законодательство не устанавливает границ этого срока. Поэтому производители и продавцы обычно опираются на гарантийный срок службы, и говорят, что покрышка при соблюдении правильных условий может пролежать 5 лет, и после этого использоваться, как новая. Однако в ряде стран Европы и Азии максимальным сроком хранения считается 3 года, и по истечении этого срока покрышка уже не может считаться новой.

Итак, сколько же можно эксплуатировать покрышки , установленные на автомобиле? Пять, десять лет или больше? Ведь все указанные цифры — рекомендованные, но никто не обязывает водителя заменять покрышки, даже и через пятнадцать лет, главное, чтобы они были не изношены. Однако сами производители рекомендуют заменять покрышки возрастом 10 лет, а в большинстве случаев покрышки приходят в негодность через 6-8 лет эксплуатации.

С чем связаны указанные сроки эксплуатации и хранения автомобильных шин? Все дело в самой резине, из которой производятся покрышки — данный материал при всех своих преимуществах подвержен естественному старению, которое ведет к потере основных качеств. В результате старения резина может терять эластичность и прочность, в ней появляются микроскопические разрушения, со временем переходящие в заметные трещины, и т.д.

Старение покрышек — процесс, в первую очередь, химический. Под воздействием света, перепада температур, содержащихся в воздухе газов, масел и других веществ молекулы эластомера, составляющие резину, разрушаются, также разрушаются связи между этими молекулами — все это ведет к потере эластичности и прочности резины. В результате старения резины покрышки хуже противостоят износу, они буквально рассыпаются и уже не могут обеспечить необходимые эксплуатационные характеристики.

Именно из-за процессов старения резины производители и отечественный ГОСТ устанавливают гарантийный срок эксплуатации покрышек. Отечественный стандарт устанавливает срок, по истечении которого старение резины еще не оказывает негативного эффекта, а производители покрышек устанавливают реальный срок службы, при котором старение уже заметно. Поэтому стоит с большой осторожностью относиться к покрышкам возрастом свыше 6-8 лет, а покрышки, отметившие 10-летний «юбилей», необходимо менять в обязательном порядке.

Чтобы заменить покрышку, нужно определить ее возраст — сделать это довольно просто.

Способы проверки возраста шин

На автомобильных покрышках , как и на любом другом товаре, обязательно указывается дата производства — именно по этой дате можно судить о возрасте покупаемых или установленных на автомобиле шин. На сегодняшний день маркировка даты производства шин производится согласно утвержденному в 2000 году Министерством транспорта США (U.S. Department Of Transportation) стандарту.

На любой покрышке есть овал-опрессовка, перед которым расположена аббревиатура DOT и цифробуквенный индекс. В овале также выпрессованы цифры и буквы — именно они и говорят о дате производства шины. Точнее — дата зашифрована в последних четырех цифрах, которые означают следующее:

  • Первые две цифры — неделя года;
  • Последние две цифры — год.

Так, если в овал-опрессовке последние четыре цифры 4908, то шина была произведена на 48-й неделе 2008 года. По российским стандартам такая покрышка уже исчерпала свой ресурс, да и по мировым стандартам ее уже стоит заменить.

Однако на покрышках можно встретить и иные обозначения времени производства. В частности, в овал-опрессовке может быть не четыре, а три цифры, а также присутствует небольшой треугольник — это значит, что данная шина была произведена в период с 1990 по 2000 год. Понятно, что сейчас такие покрышки применять уже нельзя, даже если они были на хранении или установлены на автомобиле, который много лет простоял в гараже.

Таким образом, для определения возраста покрышки достаточно одного взгляда. Однако это знают далеко не все автовладельцы, чем пользуются нечестные продавцы, выдающие старые покрышки за новые. Поэтому при покупке резины нужно быть внимательным и обязательно проверять дату производства.

Определяем время, когда нужно заменить шины

Когда наступает момент замены шин? Есть несколько случаев, когда обязательно нужно покупать новые покрышки:

  • Возраст 10 лет и более — даже если эта шина внешне выглядит хорошо, в ней нет видимых повреждений и износ ее невелик, ее стоит снять и отправить на утилизацию;
  • Возраст шины 6-8 лет, при этом ее износ приближается к критическому;
  • Критический или неравномерный износ, крупные проколы и разрывы независимо от возраста покрышки.

Как показывает практика, шины , особенно в России с ее дорожными особенностями, редко «доживают» до десятилетнего возраста. Поэтому замена покрышек чаще всего производится по причине их износа или повреждений. Однако в нашей стране в продажу нередко поступают не совсем новые покрышки, поэтому каждый водитель должен уметь определять их возраст — только в этом случае можно обезопасить себя и свой автомобиль.


Другие статьи

30 Апреля

Майские праздники — это первые по-настоящему теплые выходные, которые можно с пользой провести на природе в кругу семьи и близких друзей! Сделать досуг на свежем воздухе максимально комфортным поможет ассортимент продукции интернет-магазина AvtoALL.

29 Апреля

Трудно найти ребенка, которому не нравились бы активные игры на улице, и каждый ребенок с самого мечтает об одной вещи — велосипеде. Выбор детских велосипедов — ответственная задача, от решения которой зависит радость и здоровье ребенка. Типы, особенности и выбор детского велосипеда — тема этой статьи.

28 Апреля

Теплое время года, особенно весна и лето — это сезон велосипедов, прогулок на природе и семейного отдыха. Но велосипед будет комфортным и принесет удовольствие только в том случае, если он подобран правильно. О выборе и особенностях покупки велосипеда для взрослых (мужчин и женщин) читайте в статье.

4 Апреля

Шведский инструмент Husqvarna известен во всем мире, он является символом настоящего качества и надежности. Среди прочего под этим брендом выпускаются и бензопилы — все о пилах Husqvarna, их актуальном модельном ряду, особенностях и характеристиках, а также о вопросе выбора читайте в данной статье.

11 Февраля

Отопители и предпусковые подогреватели немецкой компании Eberspächer — известные во всем мире устройства, повышающие комфорт и безопасность зимней эксплуатации техники. О продукции данного бренда, ее типах и основных характеристиках, а также о подборе отопителей и подогревателей — читайте в статье.

13 Декабря 2018

Многие взрослые не любят зиму, считая ее холодным, депрессивным временем года. Однако дети совсем другого мнения. Для них зима — это возможность поваляться в снегу, покататься на горках, т.е. весело провести время. И одним из лучших помощников для детей в их нескучном времяпровождении - это, например, всевозможные санки. Ассортимент рынка детских санок очень обширен. Рассмотрим некоторые виды из них.

1 Ноября 2018

Редкие строительные и ремонтные работы обходятся без применения простого ударного инструмента — молотка. Но чтобы выполнить работу качественно и быстро, нужно грамотно подобрать инструмент — именно о выборе молотков, их существующих типах, характеристиках и применяемости пойдет рассказ в этой статье.

Прослужат вам очень и очень долго? Вы считаете, что пробег автомобиля является самым главным врагом шин? Но это не так. Вы задумывались что происходит с шинами на автомобилях, которые фактически не используются? На самом деле шины могут полностью прийти в негодность даже если ваша машина будет просто стоять на месте.

Для начала напомним, что шины являются единственными компонентами автомобиля, которые напрямую взаимодействуют с дорожным покрытием. Поэтому о них никогда не должен забывать ни один водитель. Помните, что каждый день резина автомобиля на дороге получает колоссальные нагрузки. Естественно, что со временем состояние покрышек ухудшается. Но об этом конечно знают все. Ведь все логично. , тем больше износ шин. Ведь все покрышки рассчитаны на определенный километраж.

Но к сожалению многие владельцы автомобилей почему-то забывают, что помимо пробега резина может стареть и изнашиваться просто с течением времени, даже если автомобиль используется очень редко или же стоит неподвижно на месте.

Так что, даже если ваша машина будет стоять на месте, со временем новая резина станет непригодной для использования.

Обратите внимание на старые автомобили во дворах, которые уже долгие годы стоят, и постепенно гниют. Наверняка вы видели, как со временем в таких автомобилях трескается, вздувается резина, которая в последующем лопается.

Итак, почему автомобильные шины достигают этой стадии деградации даже если автомобиль не используется?

Для начала давайте посмотрим на конструкцию шины. Основным ингредиентом шины очевидно является резина. Также в конструкции имеется металлический слой, который укрепляет стенки покрышки.

Если вы когда-нибудь видели порванную или разорванную автомобильную шину, то наверняка обратили внимание, что из разрезанных рванных концов поврежденной резины выступают концы металлического слоя, а также другие слои покрышки.

Что касается деградации автомобильной резины, то мы должны еще со школы помнить, что резина- это каучук.

Каучук - это органический материал который содержится в растениях и деревьях. Естественно, каучук должен биологически разлагаться.

Правда современная резина- это конечно уже не чистый каучук. Впрочем, сегодня автомобильные покрышки по-прежнему из каучука, но не из природного. Химическая промышленность не стоит на месте. В мире уже долгое время в автопромышленности используется полностью синтетический каучук, который значительно лучше природного и по свойствам, и по себестоимости.

Правда не смотря на то что используемый в покрышках синтетический каучук смешивается с различными полимерами, которые делают резину прочней и более устойчивой к внешним агрессивными условиям, со временем даже синтетический материал подвержен старению и разрушению. Все дело в том, что по-прежнему в составе каучука присутствует углерод, который является естественным химическим элементом, входящим в состав многих веществ на планете. Так что для углерода, который даже если выработан искусственным методом вполне естественно изменение состояния с течением времени.


Вы наверняка обращали внимание что по мере ухудшения характеристик старых шин, они становятся более жесткими и, следовательно, более хрупкими. Не верите? Тогда подойдите к старой машине, которая уже долгое время стоит брошенной во дворе и ударьте по колесу ногой. И вы поймете насколько старая резина стала твердой.

Почему же резина со временем становится жесткой?


Вулканизация каучука, которая показывает как упрочняются химические связи полимеров

Все это связано с процессом вулканизации. Вулканизация является производственным процессом закалки каучука с использованием серы и других "ускорителей", что создает связь между молекулами, которые входят в состав резины. В результате этого процесса резина становится пригодной для использования в требуемых условиях, которые связаны с постоянными нагрузками - резина становится прочней. Также процесс вулканизации придает покрышкам гибкость.

Это достигается за счет тепла и давления в условиях завода, где производится автомобильная резина. Но даже после того как покрышки вышли завода процесс вулканизации не прекращается. Как только шины оказываются на открытом пространстве, то они начинают поглощать энергию света, тепло, а также начинают подвергаться постоянному трению в процессе эксплуатации автомобиля. В итоге химические соединения в составе резины покрышек продолжают вулканизироваться с течением времени. То есть по сути покрышки становятся все крепче и крепче. Правда в этом случае теряется гибкость резины. В конечном итоге процесс вулканизации делает свое злое дело. Резина со временем усиливается до такой точки, в которой начинает просто-напросто трескаться и разрушаться.


Но это не единственный процесс, который портит любые даже если автомобиль редко эксплуатируется.

В списке причин деградации шин также есть такой процесс, который приводит к окислению каучука. Сочетание кислорода и озона ухудшает прочность и эластичность шин.

В том числе, сочетание кислорода и озона разрушает связь между металлическим слоем покрышек и резиной.

Кроме того, так как резина постоянно нагревается, сочетание тепла и кислорода приводит к изменению полимеров, содержащихся в составе резины. В итоге резина от этого процесса начинает твердеть до тех пор, пока не станет хрупкой. В итоге на поверхности шин появляются трещины.


Последней естественной причиной старения шин является вода. Резина считается водонепроницаемой. Но после многих лет использования шин вода может проникать внутрь резины и связываться с металлическими компонентами, которые находятся внутри конструкции покрышки. Соответственно это приводит к ухудшению в шинах связывающих свойств металлического каркаса и резины.

Рано или поздно это приведет к уменьшению теплостойкости и прочности внутри шины. В результате внутренние соединения конструкции шин начнут разрушаться, что неминуемо приведет к повреждению покрышки.

Частые ошибки владельцев автомобилей, которые приводят к быстрому повреждению шин


Одной из частых ошибок автолюбителей, связанной с эксплуатацией новой резины является неправильная парковка автомобиля. Особенно это касается водителей-новичков, которые не обращают внимание на резину.

Например, многие из нас паркуя автомобиль заезжают на бордюр, ухаб или яму. В итоге колесо машины остается во время парковки под повышенным давлением в результате уменьшения объема из-за сминания резины. Это уменьшение объема шины приводит к увеличению давления воздуха на стенки покрышки.

В итоге, оставляя постоянно автомобиль на неровной поверхности вы ускорите окисление резины, а также заставит сжатый воздух оказывать вредное воздействие на внутреннюю структуру конструкции шины. В результате ускоряется общий процесс деградации покрышек и естественно увеличивается их скорость износа.


Еще одной частой ошибкой владельцев автомобилей, которая приводит к быстрому износу и повреждению покрышек, является эксплуатация машины с колесами не имеющими правильное давление в шинах.

Например, в случае если шины имеют недостаточное давление, которое рекомендует производитель, то в процессе эксплуатации автомобиля создается большое количество тепла из-за увеличения трения. Это происходит из-за того, что недокаченные шины имеют большее пятно контакта покрышки с дорожной поверхностью В конечном итоге это, ускоряет процесс износа резины.

Перекаченные же шины становятся жестче и менее эластичными. В результате внутри покрышек появляется избыточное давление, оказываемое на металлический слой шин. В результате при ударах внутренний слой шин может в короткий срок вылезти наружу. Проще говоря появится "грыжа" колеса. В итоге вам придется заменить покрышку на новую. Особенно перекаченные шины не любят ям и других неровностей.

Какой срок годности у автомобильной резины?


Как мы уже сказали, даже если вы не будете эксплуатировать автомобиль с новой резиной, рано или поздно покрышки придут в негодность. И испортит их агрессивная природная среда, которая нас окружает.

Какая же продолжительность жизни шин по времени независимо от пробега? По оценкам экспертов и производителей шин этот срок составляет от 6 до 9 лет с момента их производства.

Также многие производители шин советуют водителям менять резину на новую сразу как были обнаружены признаки деградации, износа и т.п. Например при обнаружении трещин в боковых стенках шин, при повреждении протектора, при образовании даже маленьких грыж и т.д.

Поэтому каждый водитель не должен делать ставку только на пробег автомобиля при решении вопроса о смене покрышек на новые.

Озонное старение , озонное растрескивание (ozone cracking, Ozonri βbildung, vieillissement а l, ozone ) -это растянутых резин под действием озона. Озонное старение – это один из видов так называемого коррозионного растрескивания , которое наблюдается при действии химически или физически активных сред на напряженные материалы (например, аммиака на латунь, детергентов на , кислот или щелочей на резины из полисулъфидных каучуков, HF на резины из кремнийорганических каучуков). Растягивающие напряжения возникают в резинах при статическом или динамическом одномерном или двумерном растяжении или при деформации сдвига.

Для того чтобы произошло озонное старение, достаточно присутствия даже следов озона, который всегда содержится в атмосфере (2-6)·10 -6 % ; (здесь и далее указана объемная концентрация озона) и, кроме того, может образоваться в определенных условиях в закрытых помещениях. Основная причина присутствия озона в атмосфере - воздействие коротковолновой части солнечной радиации на кислород воздуха.

Озон образуется также в результате фотохимического окисления содержащихся в воздухе органических примесей с участием двуокиси азота. Особенно интенсивно этот процесс протекает в больших городах, где загрязнение воздуха выхлопными газами двигателей обусловливает высокую концентрацию озона [до (50-100)·10 -6 % ] .

В закрытых помещениях озон может образоваться под действием УФ -света, γ -лучей, рентгеновских лучей, при электрических разрядах, а также при окислении органических соединений.

Механизм озонного старения

Механизм озонного старения заключается в резком ускорении разрушения напряженных резин, обусловленном присоединением озона по кратным связям макромолекул каучука: Напряжение, которое возникает в резине при малых деформациях, способствуя деструкции макромолекулы и препятствуя рекомбинации макрорадикалов, ускоряет появление и разрастание микротрещин, первоначально направленных вдоль оси растяжения. Разрыв слабых перемычек между этими микротрещинами приводит к возникновению видимых глазом поперечных трещин. При больших деформациях (сотни процентов) трещины по мере их роста остаются продольными, так как вследствие эффекта ориентации перемычки между трещинами приобретают большую прочность.

Кинетика озонного старения полимерных материалов

При статическом напряжении σ (или деформации ε ) в процессе озонного старения можно выделить 2 основные стадии озонного старения:

  1. индукционный период τ и , окончание которого практически совпадает с моментом появления трещин;
  2. период развития видимых трещин τ вт , которое происходит в основном на стадии стационарной скорости их роста τ ст (рисунок 1).


С ростом напряжения его разрушающее действие увеличивается, но развивающаяся одновременно ориентация макромолекул приводит к упрочнению полимера, что затрудняет его дальнейшее разрушение. Поскольку в первой стадии озонного старения , происходящего на поверхности резины, разрушающая роль напряжения усиливается из-за возрастания доли свежей, вновь образованной поверхности, то τ и обычно монотонно уменьшается с ростом ε (рисунок 1 ). В развитии трещин в глубине образца состояние его поверхности не играет роли; на этой стадии озонного старения в большей степени проявляется ориентационное упрочнение , в связи с чем скорость роста трещин проходит через максимум в области так называемой критической деформации ε кр (рисунок 2 ).


Время до разрыва τ р = τ и + τ вт зависит от σ (или ε ) так же, как τ и (рисунок 1 ), или проходит через минимум в области ε кр (при больших деформациях - через максимум, обусловленный исчерпанием эффекта ориентационного упрочнения (рисунок 2 ). Первая зависимость, характерная для озоностойких резин, наблюдается в том случае, когда τ р определяется продолжительностью τ и (τ и /τ р ≈1 ), вторая - если τ р определяется продолжительностью периода τ вт (τ и / τ р <<1).

Значение ε кр определяется двумя факторами: степенью уменьшения τ р с ростом σ и степенью увеличения τ р с развитием эффекта ориентации.

Факторы, влияющие на скорость озонного старения

Межмолекулярное взаимодействие

Увеличение , затрудняя ориентацию макромолекул при деформации и способствуя повышению долговечности резин, может привести к сдвигу ε кр в сторону ее больших значений. Такая зависимость наблюдается, в частности, в ряду ненаполненных вулканизатов следующих полимеров:

натуральный каучук < гуттаперча < хлоропреновый каучук.

Значение ε кр возрастает также и при введении активных наполнителей в каучуки со сравнительно слабо выраженным межмолекулярным взаимодействием. Так, при увеличении количества газовой канальной сажи в натуральном каучуке от 0 до 90 маcсовых частей ε кр возрастает от 15 до 50% . В случае значительного уменьшения межмолекулярных взаимодействий (например, при введении дибутилфталата в хлоропреновый каучук) значение ε кр резко уменьшается. Изменением межмолекулярного взаимодействия объясняется также влияние на значение ε кр температуры, и других факторов.

Характер и частота деформаций

В сравнении со скоростью озонного при статических деформациях , при многократных деформациях с постоянной частотой может наблюдаться как ускорение озонного старения (в резинах из бутадиен-нитрильных каучуков), так и его замедление (в резинах из натурального каучука).

В некоторых резинах с увеличением частоты деформации проявляется релаксационное упрочнение , приводящее к уменьшению озонного старения. В области малых частот (до 100 колебаний в минуту) наибольшая скорость озонного старения большинства резин наблюдается при частоте 10 колебаний в минуту. Резины, содержащие воскообразные вещества, слой которых на поверхности резины при многократных деформациях легко разрушается, значительно сильнее подвержены в этих условиях озонного старения, чем при статических деформациях.

Концентрация озона

Уменьшение концентрации озона С резко замедляет озонное старение, причем вплоть до его атмосферных концентраций сохраняется зависимость τ = kС -n , где k и n - постоянные, а τ может быть как τ и , так и τ р . В случае больших τ (годы) применение этой зависимости осложняется изменением условий экспозиции резин (релаксация напряжения, миграция на поверхность резин антиозонантов и др.), оказывающих влияние на значения k и n .

Концентрация озона не влияет на положение ε кр и значение энергии активации озонного старения. Последняя очень мала (десятки кдж/моль, или несколько ккал/моль) и, следовательно, изменение скорости озонного старения с температурой обусловлено главным образом изменением подвижности макромолекул. Это подтверждается тем, что скорость разрастания трещин подчиняется уравнению Вильямса - Лэндела - Ферри (см. Вязкотекучее состояние), описывающему релаксационные процессы.

Влияние температуры, влаги и солнечного излучения на скорость озонного старения

Понижение температуры приводит к резкому замедлению озонного старения; в условиях испытаний при постоянном значении ε озонное старение практически прекращается при температурах, на 15-20 °С превышающих температуру стеклования полимера.

Солнечное излучение сильно ускоряет озонное старение вследствие фотоокисления резины , сопровождающегося деструкцией макромолекул, увеличения подвижности макрорадикалов, а также в результате общего повышения температуры резины. Влага , сорбируясь сравнительно гидрофильными резинами (например, из натурального или хлоропренового каучука) и способствуя более равномерному распределению напряжений на их поверхности, несколько замедляет озонное старение этих резин.

Озоностойкость резин (классификация резин по озоностойкости)

Способность резин сопротивляться озонному старению существенно зависит от типа каучука.

По стойкости к озонному старению (в условиях статической деформации до 50%) резины на основе различных каучуков можно условно разделить на четыре группы:

  • Особо стойкие резины не разрушаются в течение длительного времени (годы) при атмосферных концентрациях озона и устойчивы более 1 часа при концентрациях O 3 порядка 0,1 - 1%. Такими свойствами обладают резины на основе насыщенных каучуков - фторсодержащих, этилен-пропиленовых, полиизобутилена, хлорсульфированного полиэтилена и, в меньшей степени, резины из кремнийорганического каучука; последние разрушаются веществами кислого характера, легко образующимися в присутствии озона.
  • Стойкие резины не разрушаются в течение нескольких лет в атмосферных условиях и устойчивы более 1 ч при концентрациях O 3 около 0,01% . К этой группе относятся резины на основе каучуков, слабо взаимодействующих с озоном вследствие небольшого содержания в них кратных связей (например, резины из бутилкаучука) или благодаря присутствию связей, мало активных к озону (например, резины из уретановых и полисульфидных каучуков), а также резины из хлоропреновых каучуков, стабилизированных антиозонантами.
  • Умеренно стойкие резины устойчивы в атмосферных условиях от нескольких месяцев до 1-2 лет, а при концентрациях O 3 около 0,001% - более 1 часа. В эту группу входят резины из нестабилизированного хлоропренового каучука и из других ненасыщенных каучуков (натурального, синтетического изопренового, бутадиен-стирольных, бутадиен-нитрильных), содержащих антиозонанты . Большая стойкость хлоропренового каучука к озонного объясняется особенностями его физической структуры (легкой кристаллизуемостью, сильными межмолекулярными полярными взаимодействиями), обусловливающими образование тупоугольных, округлых, медленно растущих трещин.
  • Нестойкие резины устойчивы в атмосферных условиях от нескольких дней до 1 месяца, а при концентрациях O 3 - 0,0001% - более 1 часа. К нестойким относят резины из нестабилизированных каучуков предыдущей группы, за исключением резин из хлоропренового каучука. Повышение стойкости резин этой группы к озонному старения достигается введением в них антиозонантов и восков , нанесением на резины озоностойких покрытий из хлоропренового каучука, хлорсульфированного полиэтилена и др., химической обработкой (например, гидрированием) поверхности резин для уменьшения содержания в макромолекулах ненасыщенных связей, а также изменением конструкции изделий с целью снижения в условиях их эксплуатации растягивющих напряжений.

О способах защиты резин от озонного старения см. также Антиозонанты.

Помимо типа каучука, на стойкость резин к озонному старению влияет состав резиновых смесей. Так, в условиях испытаний при одинаковой деформации ε значения τ и и τ р для резин, содержащих наполнители и пластификаторы , будут меньше, чем для ненаполненных.

Ухудшение озоностойкости обусловлено следующими причинами:

  • ростом напряжения, связанным с введением наполнителей,
  • снижением прочностных свойств резин вследствие введения пластификаторов.

Стойкость резин к озонному старению оценивают по изменению следующих характеристик растянутых образцов:

1)степени растрескивания (для этого по фотографиям образцов составляют условную 4-, 6- или 10-балльную шкалу);

2)времени до появления трещин τ и ;

3)времени до разрыва τ р .

За кинетикой развития трещин удобно следить по спаду усилия Р в растянутом озонируемом образце. При этом τ р соответствует моменту, когда Р = 0 .

Испытание в среде озона - эффективный метод исследования долговечности резин при малых деформациях (десятки процентов), характерных для условий эксплуатации большинства резиновых изделий. Результаты испытаний при повышенных концентрациях озона позволяют также прогнозировать резин, нестойких к действию озона, поскольку в этом случае долговечность определяется сопротивляемостью резин озонному старению.

Список литературы: Зуев Ю. С, Разрушение полимеров под действием агрессивных сред, 2 изд., М., 1972. Ю. С. Зуев,