Полное водяное охлаждение компьютера. Недостатки водяного охлаждения. Компоненты системы водяного охлаждения

СВО своими руками

Всех приветствую!

Разбирал завалы на ноуте и нашел фотки 6 летней давности, где я запечатлел процесс создания самодельной системы водяного охлаждения (СВО) компьютера.

Ну начнем по порядку. Вероятно, у многих возникнет вопрос: "Анафига?"
Отвечу сразу.

Предистория

Была приобретена в свое время за кругленькую сумму денег топовая модель процессора Intel Core 2 Quad 2.83GHz/12MB L2/1333MHz /LGA775, коий и по сих пор радует своей производительностью.

Так-же установлен винт WD 1GB/32MB/Black/SATA2, 4GB DDR2 800MHz (Up to 1300MGz) с самодельным радиатором, топовая видеокарта Saphire ATI HD6870 тогда недавно появившаяся топовая модель с поддержкой DX11.

Так-же уже была приобретена игровая материнская плата ASUS R.O.G. series X35-chip 2xPCIEx16 с рассчетом на установку второй видеокарты и сборки Crossfier или SLI. Чуть позже была докуплена вторая карточка, но не аналогичная Saphire ATI HD6870 и даже не другая модель "Красного семейства" , а решено было подружить двух непримиримых соперников ATI и NVidia , приобрел ASUS GeForce GT9600 исключительно для поддержки фирменной технологии "Зеленого лагеря" - PhysX.

Для тех, кто не вполне понимает, зачем это - технология PhysX дает поддержку максимально приближенной к реальности физики движения и взаимодействия мелких объектов в игровой графике, как то: пыль в лучах света, листва на ветру, разлетающиеся осколки и т.п.

Вот демонстрация эффекта технологии PhysX в водной среде:

В любимой мной когда-то игре Sacred 2

B Borderlands 2

В Batman: Arkham Origins

Ну и много где еще - можно найти в тырнете.

Почему тогда не поставить видеокарту "зеленого лагеря" ? - конкуренты из "красного лагеря" при равной мощи стоят, как правило, дешевле или имеют бОльшую мощь при равных ценах. Нехватает лишь такой мелочи, как физика) Под физику можно взять карточку весьма дешевую. Основное требование к ней - это наличие более-менее производительного GPU. Наличие "широкой" шины и быстрой и большой памяти не нужно! А такие видеокарточки стоят совсем немного.

Монстр Saphire ATI HD6870 с референсной системой охлаждения занимал ооочень много пространства в корпусе, имел высокопроизводительную и как следствие громкую турбину, откровенно дешевая ASUS GeForce GT9600 имела плохонький радиатор и убогенький кулер на нем, вследствии чего высокопроизводительный GPU нагревался до температур порядка 87-96 градусов! Не порядок!

К этому всему я добавим еще и процессор, разогнанный со штатных 2,83GHz до 3,6GHz. Тепла и шума было моооре. Такую систему я собрал с запасом на 5-6лет, пока я учился в институте (заочник, оплачивал из своего кармана, потому и брал с запасом - денег во время учебы на комп не будет), чтобы она обеспечивала комфортную графику всех игр с разрешением до FullHD и максимальных параметрах графики - идти на компромисс не привык))

Разогнанное железо, высокопроизводительная видеосистема выделяли много тепла. А тепло у нас не берется ниоткуда. Оно берется из сети! Мощности одного БП 450Вт было недостаточным и был установлен второй БП на 350Вт, распределена нагрузка между ними. Почему не купить один новый мощный БП? - а вы посмотрите на них цены… market.yandex.ru/model.xm…odelid=6199502&hid=857707 В то время они стоили в районе 5-7тыс.

Мирился попервости с шумом, открывал балкон - системник охлаждался свежим морозным воздухом, но с наступлением лета ситуация резко осложнилась. Комп попросту стал перегреваться!

Нужно было что-то решать. Начал копать интернеты в поисках способов отвода тепла. Тем временем оборудовал системник дополнительными кулерами для максимального отвода тепла из коробки.

На тот момент в системнике чудом уживались 12 (!) кулеров! Среди которых 2 - блоки питания, 1 - процессор, 1 - охлаждение системы питания процессора, 2 - видеокарты и 6 штук обеспечивали вентиляцию ящика.

Надо-ли говорить о том, какой вой был от этого монстра!

Проштудировав инет, выбран был путь самурая наиболее доступный для дома вид высокопроизводительного охлаждения - это СВО . Купить такое в Екб-то проблема, я не говорю о нашем захолустье. Да и стоят такие системы ой как не дешего. Ну и в конце концов! Наши руки не для скуки!

Так было принято решение о самостоятельном создании системы водяного охлаждения для домашнего компьютера.

Сразу прошу прощения за ужасное качество фото - был тогда только телефон и телефон был древний)

Вот так выглядел системный блок перед модернизацией. Видеокарта сначала была одна.

Места под второй БП нету((

В первой версии был установлен один водоблок на ЦП. Вся система представляла из себя герметичную систему из прозрачных шлангов, переделанного аквариумного насоса, водоблока процессора, радиатора охлаждения с двумя 120мм вентиляторами, запитанными от 5В для минимизации шума, расширительного бачка с датчиком давления и циркуляции потока ну и схемы защиты от протечек и прекращения циркуляции ОЖ.

Водоблок процессора

Был изготовлен с нуля. Основание - теплосъемник вырезано из толстого куска электротехнической меди (~4мм толщиной). Из тонкой листовой меди (0,4мм) вырезал 120 пластин теплообменной камеры, проложил их электрокартоном, стянул вместе, залудил одну плоскость и припаял к основанию. После удаления электрокартона получили основание с радиатором отвода тепла из 120 пластинок.

Водоблок процессора

Рубашку изготовил из попавшего под руку куска толстого пластика. Верх - медная пластинка 1мм с припаянными на нее медными-же штуцерами.

Сверху устанавливаем Х-образную пластину из железа 1мм с отверстиями под крепежные шпильки вместо штатных защелок крепления радиатора и стягиваем весь "бутерброд" на герметике четырьмя винтами.

Радиатор охлаждения ОЖ

Был изготовлен из медного радиатора печки Газели . Но как есть он был слишком громоздкий, а я поставил себе цель уместить всю СВО в корпус системного блока чтоб наружу ничего не торчало. Системник - обычный MidiTower.

Потому вооружаемся ножевкой по металлу и безжалостно кромсаем радиатор по размеру системника!

Пока радиатор вскрыт, меняем штуцера на меньшего диаметра, чтоб оделась наша трубочка. Так-же не забываем поставить водонепроницаемую перегородку посередине между штуцерами, дабы ОЖ проходила через радиатор, а не тупо из штуцера в штуцер. Из листовой меди вырезаем и припаиваем недостающие стенки.

Теперь немаловажный момент. Ребра радиатора расположены уж очень часто и продуть их компьютерным кулерам, да еще и на пониженном питании будет нереально. Потому вооружаемся отверткой, ножницами и крайне аккуратно сжимаем пластины радиаторов между собой, увеличивая просвет.


Разница налицо!


Обязательно проверяем на герметичность. С первого раза собрать герметично практически нереально. Потому ищем дырки и как-следует пропаиваем. Если место недоступно, то допустимо пролить герметиком. Проверять на герметичность следует после того, как раздвинули пластины т.к. тут очень высока вероятность повредить каналы радиатора (я проткнул в 2-ух местах).

Доработка насоса

Были приобретены парочка насосов (~10$ за штуку) т.к. при поломке насоса компьютер будет невозможно эксплуатировать.

Суть доработки заключается в уменьшении шума крыльчатки и установке новых штуцеров.

Крыльчатка имеет некоторый ход относительно магнита ротора для уменьшения гидроудара. Но это создает лишний шум, потому крыльчатка была намертво приклеена к магниту на силикон. Так-же из силикона изготовлены 2 шайбы миллиметровой толщины на концы оси для смягчения продольных ударов.


Штуцеры новые были вклеены на эпоксидку.


Готовый насос

Следует добавить, что для уменьшения передачи вибраций от насоса на корпус системного блока, насос был установлен на пружинную подвеску на кусок оргстекла, а оно в свою очередь тоже на пружинах к железу системника. Фото этого узла нет, извините.

Расширительный бачек

Сделан из подходящей пластиковой емкости. Можно хоть из стеклянной банки, хоть из куска канализационной трубы с заглушенными концами - тут кто на что горазд. Мой был плоский и широкий для того, чтоб поместиться внизу системника и не мешать установленным платам шины PCI.

Устнавливаем 2 штуцера, делаем перегородку, оставив небольшую щель - это для лучшего отделения воздушных пузыриков из воды.

В качестве датчика потока был выбран миниатюрный компьютерный трехпроводной кулер. На фото не удачное его положение. Располагать следует лопастями непосредственно перед штуцерами, чтоб тот начал вращаться.

Сигнал с датчика Холла снимается желтым проводом и идет на плату контроля циркуляции охлаждающей жидкости.

В качестве защиты от протечек был выбран вариант создания слегка пониженного давления в системе - чтобы не раздавило мягкие трубки системы, но в то-же время при образовании протечки не жидкость польется из системы, а воздух попадет в систему.

Датчик давления был создан из латекса, установлен на крышке расширительного бачка.

В крышке прорезаем отверстие меньшее на 10мм, чем диаметр латексной мембраны, клеим мембрану поверх, к ней приклеиваем небольшую контактную площадку с припаянным к ней проводком. Поверх устанавливаем П-образную конструкцию, ввинчиваем регулировочный винт и подключаем к нему проводок (у меня это 2 ножки из оргстекла, кусок текстолита с припаянной гайкой и болт в гайке). Регулируем так, чтобы при нормальном атмосферном давлении мембрана поднимаясь замыкала контакт и винт.


Мембрана с с контактом

Готовый датчик

Т.к. ATI у меня была еще на гарантии, разбирать дорогостоящую карту и ставить на нее водоблок я не стал. Позже водоблок был собран и установлен на "вспомогательную" видеокарту, тем самым ощутимо понизив децибеллы.

Водоблок видеокарты был создан по отличной от водоблока процессора технологии.

На медное основание были напаяны несколько спиралек из медной проволоки, образовав тем самым ребра охлаждения. Сверху выгнут и припаян медный кожух. Интенсивность нагрева видеочипа в разы меньше, потому такой упрощенный водоблок вполне имеет место быть.


Водоблок видеокарты с крепежом.

Ах, да защита системы!

Ее создал на небольшой платке, которую уместил на заглушке верхнего свободного слота CD-ROM. Схема имела индикацию режимов на светодиодах, кнопку принудительного пуска насоса даже при отключенном компьютере - это для облегчения процесса наполнения систему водой, и выход на реле для отключения питания компьютера в случае протечки или прекращения циркуляции ОЖ и реле для включения насоса. Пуск компьютера остался штатным. При включении БП напряжение подается на реле включения насоса и вся система начинает функционировать.

Одно НО. Т.к. блоки питания в случае протечки обестачивались полностью, питать схему от дежурки 5В не было возможным и пришлось поставить третий уже блок питания, но маломощный на основе обычного трансформатора)) Сейчас можно было-бы поставить ЗУ от мобилки на его место.


Испытания проводил в лаборатории на столе.


Протяжка, продувка…)

Сборка и пуск

Первым делом вырезал место под второй БП снизу под HDD, предусмотрел вентиляционные отверстия для выдува теплого воздуха.

Массивный радиатор с двумя установленными на нем кулерами 120мм установил в самый верх, заняв 2 лота под CD-ROM. Естественно, выпиливаем верх системника под отвод нагретого воздуха. Что плюс, так то, что сверху мой системник имеет декоративную крышку с вентиляционными отверстиями, так что радиатор снаружи не виден!

На верхнюю заглушку отсека с радиатором ставим плату защиты с индикацией и кнопкой принудительного пуска насоса. 2 DVD-ROMa опускаются вниз.

На стенку под основным БП крепим 3 реле (2 на отключение питания и 1 на пуск насоса) - обычные 12В автомобильные, но с немного доработанной конструкцией, дабы не пустить 220 в цепи питания компа. Там-же разместится и сам насос.

Устраиваем все как должно стоять и ставим видеокарту. Подключаем третий БП, который я установил на боковой крышке системника на разъеме.


Система собрана и запущена. Все заработало сразу. И прежде всего поразила ТИШИНА ! После того адского рева, что издавал системник прежде осталось лишь едва слышное шуршание блоков питания и насоса. Ну видеокарта давала о себе знать лишь в мощных играх))

Итого, что имеем.

Было:

CPU 2.83GHz/1333MHz t=80градусов
RAM 800MHz
GPU NVidia 915MHz t=94градуса
HDD t=53градуса
Дикий рев кулеров

Стало:

CPU 3,6GHz/1900MHz t=54градусов
RAM 1300MHz
GPU NVidia 1050MHz t=62градуса
HDD t=43градуса

И тишинаааааа…

Цена вопроса:
Насосы 2шт 20$
Радиатор печки Газель медный 30$
Трубки прозрачные 2$
Вода дистиллированная 1$
Хомутики 5$
Оргсеткло, метизы, пружины, медь, инструмент - бесплатно.
Опыт и удовлетворение от работы - бесценны!

Цель была достигнута. Имел мощный разогнанный компьютер с низким уровнем шума и стабильной работой, вся система уместилась во внутрь системного блока. Но как там все тесно… И весить он стал тонну, не иначе!)))

Но в этой бочке меда не обошлось и без капли дегтя…
Со временем начали появляться протечки, а искать и устранять не было времени и желания. Потому плата защиты была отключена, за что и поплатился через некоторое время. В один прекрасный момент компьютер встретил меня холодным черным экраном после нажатия кнопки питания. С водоблока процессора вода набежала на видеокарту, умертвив ее. Благо была вторая видеокарта, на которой продержался до покупки новой. Немного досталось и материнке, отчего срок ее работы уменьшился в разы. Сейчас стоит и новая мать, и видеокарта мощностью аналогично покойнице, но уже в 2 раза дешевле. Процессор тот-же, оперативка DDR3 4GB, жесткий тот-же.

Современные компьютеры могут похвастаться высокой производительностью. Однако увеличение вычислительной силы впечет за собой существенную проблему – количество выделяемого компонентами системного блока тепла серьезно возрастает. Для того, чтобы охладить комплектующие компьютера, приходится использовать все более эффективные системы воздушного охлаждения. В результате, уровень шума от постоянно работающих вентиляторов в корпусе компьютера начинает становиться все более громким и раздражающим. К тому же, традиционное воздушное охлаждение уже совершенно не спасает, когда за окном стоит жаркая летняя погода. Тут есть смысл задуматься над применением водяного охлаждения, о возможностях и преимуществах которого многие пользователи даже не подозревают.

Принцип работы системы водяного охлаждения компьютера

Принцип действия, привычной нам, воздушной системы охлаждения компьютера, заключается в том, что кулер для центрального процессора направляет воздух на радиатор. И когда воздух прогоняется через ребра радиатора, он забирает вместе с собой тепло. Затем горячий воздух выводится другим кулером из корпуса компьютера. У систем жидкостного охлаждения совершенно иной принцип работы, поскольку вместо воздуха для отвода тепла здесь используется вода.

Вода постоянно циркулирует и поступает к компонентам компьютера, нуждающимся в охлаждении. Затем вода по шлангам проходит дальше и уже сама охлаждается в радиаторе, где тепло от воды передается воздуху и отводится за пределы системного блока компьютера. Движение воды в системе водяного охлаждения осуществляется посредством специальной помпы. Поскольку вода имеет большую теплопроводность, чем воздух, то она гораздо эффективнее отводит тепло от различных компонентов компьютера, включая процессор и графический чип.

Преимущества системы водяного охлаждения

Систему водяного охлаждения (СВО) очень выгодно использовать для охлаждения компьютера по нескольким причинам. Во-первых, эффективность такого охлаждения гораздо выше воздушного, а значит, подобную систему можно использовать для того, чтобы разогнать систему и одновременно обеспечить ее стабильность. Вы можете добиться разгона процессора ПК и других компонентов без существенного увеличения их температуры, что самым положительным образом отразится на надежности работы комплектующих.

Во-вторых, при использовании СВО фактически нет никаких вентиляторов. Это означает, что можно сделать работу своего компьютера гораздо более тихой и комфортной. У систем водяного охлаждения есть и еще один плюс – это отличный внешний вид. При ее установке можно использовать различные цветные или флуоресцентные шланги, а также светодиоды, которыми подсвечивают внутренние компоненты компьютера.

Недостатки водяного охлаждения

К минусам СВО для компьютера обычно относят некоторую сложность ее сборки и дороговизну. Однако собрать все компоненты системы сегодня может любой человек, кто владеет хотя бы минимальными навыками сборки отдельных комплектующих компьютера. Что касается цены, то, безусловно, такое охлаждение стоит дороже даже самого качественного и эффективного воздушного охлаждения. Но поскольку жидкостные системы применяются главным образом в дорогостоящих и высокопроизводительных устройствах, то стоимость такого охлаждения можно вполне назвать соответствующей цене других комплектующих компьютера. Ко всему прочему, при правильной сборке и наличии качественных компонентов СВО способна прослужить очень долгое время.

Состав системы водяного охлаждения компьютера

Любая система водяного охлаждения состоит из следующего набора компонентов:

— Водяной блок


Наиболее значимый компонент системы, отвечающий за рассеивание тепла от поверхности нагревающего элемента (процессора, материнской платы, видеочипа) и отвод его посредством воды. Водоблоки могут устанавливаться для всех тепловыделяющих комплектующих системного блока компьютера. Они изготавливаются из теплопроводного материала (в частности, из меди), чтобы наиболее эффективно и быстро передавать тепло от чипа воде.

— Радиатор


Вода, набирающая тепло в теплообменнике (ватерблоке), затем передает это тепло воздуху с помощью радиатора. То есть радиатор служит для охлаждения воды. Он может работать в пассивном режиме или активном. В последнем случае дополнительно оборудуется вентилятором для того, чтобы более эффективно передавать тепло воздуху.

— Помпа


Она отвечает за циркуляцию воды в системе. Этот электрический насос, постоянно перекачивающий воду, является сердцем системы. Помпы, используемые в СВО, могут питаться от электросети 220 В и обладать различной производительностью (литров в час).

— Шланги и фитинги


Без них не обходится любая система водяного охлаждения. По шлангам вода течет от одного компонента к другому, а фитинги позволяют подключать шланги к другим компонентам системы, в частности, к ватерблокам, радиатору и помпе.

— Резервуар и вода

Резервуар для воды обычно ставится на дно корпуса компьютера, где он будет сохранять устойчивое положение и в случае неожиданной протечки не зальет материнскую плату водой. Что касается самой воды, то рекомендуется использовать дистиллированную воду, в которую иногда добавляют немного спирта или автомобильной охлаждающей жидкости.

Помимо этих компонентов, система водяного охлаждения компьютера может оснащаться сливным краном для удобного слива воды из контура системы, контроллерами помпы и вентиляторов, а также разнообразными датчиками, индикаторами и измерителями. Но все это не обязательные компоненты, которые используются, главным образом, для повышения удобства пользования СВО.

Типы систем водяного охлаждения

Системы водяного охлаждения для компьютера могут быть внутренними или внешними. Внешняя представляет собой отдельный модуль, который соединяется с ватерблоками, установленными на компонентах ПК, посредством шлангов. В самом закрытом модуле размещается радиатор, помпа, резервуар с водой и датчики.

Преимущество внешней системы водяного охлаждения заключается в том, что вы можете пользоваться корпусом своего компьютера без какой-либо доработки. Модуль водяного охлаждения легко сочетается с любым корпусом системного блока. Недостатком такого типа системы является то, что компьютер становится менее мобильным, его неудобно перемещать даже на минимальное расстояние (нужно сливать воду, отсоединять шланги).

Внутренняя система водяного охлаждения полностью располагается внутри самого корпуса ПК. Хотя иногда отдельные элементы системы могут и выноситься на внешнюю поверхность просто из-за того, что не все корпуса приспособлены для размещения такого оборудования. Внутренняя СВО хороша тем, что при ее использовании у Вас не возникнет никаких трудностей с переноской компьютера. Кроме того, не страдает внешний вид корпуса, поскольку охлаждение скрыто в системном блоке. Правда, внутренние системы более сложны в установке и могут потребовать некоторой доработки или модификации корпуса ПК.

Системы жидкостного охлаждения также можно разделить на уже готовые системы и самодельные. Готовые отличаются, прежде всего, удобством в установке, поскольку при покупке Вы получаете сразу набор компонентов водяного охлаждения с подробной инструкцией, как собирать систему. По этой причине их можно рекомендовать тем, кто хочет поменять воздушное охлаждение компьютера на водяное, но при этом еще пока не разобрался в тонкостях установки подобных систем. Готовые системы также обладают высокой надежностью. Из минусов «систем из коробки» можно отметить их, как правило, более низкую производительность по сравнению с самодельными системами, а также отсутствие гибкости в плане конфигурации.

Самодельная система водяного охлаждения предполагает, что Вы сами подбираете отдельные компоненты для нее, исходя из конкретных задач и бюджета. Такие системы получаются, как правило, более эффективными и производительными, чем готовые продукты с заданной конфигурацией. Покупая систему из отдельных компонентов, Вы также получаете возможность немного сэкономить. Однако тут же возникает риск того, что некоторые компоненты просто окажутся несовместимыми друг с другом и Вы попадете впросак. Кроме того,новичку с установкой самодельной системы водяного охлаждения справиться самостоятельно будет сложнее.

Оверклокинг

Водяное охлаждение целесообразно устанавливать для мощных производительных систем, чтобы обеспечить более эффективный отвод тепла от внутренних компонентов ПК и одновременно снизить уровень шума. Кроме того, СВО просто необходима для разгона системы в том случае, если охлаждение стандартными средствами не дает необходимого результата. Недаром системы водяного охлаждения пользуются такой заслуженной популярностью у оверклокеров.

Проведено немало показательных тестов, в которых сравнивался разгон процессора с использованием, соответственно, воздушной и водяной систем охлаждения. Доказано, что стандартные кулеры не очень хорошо справляются со своей работой, ядро процессора достаточно быстро нагревается до таких температур, при которых дальнейший разгон системы становится опасным. В свою очередь, система жидкостного охлаждения успешно справляется с отводом тепла от процессора и даже при увеличении нагрузки на него рабочая температура ЦП остается на нормальном, приемлемом уровне.

Водяное охлаждение можно использовать не только для процессора, но и для других компонентов ПК. Например, нередко геймеры подключают к своему компьютеру параллельно несколько мощных видеокарт, работающих в режиме 3-Way SLI или CrossFire X. Графические карты устанавливаются вплотную одна к другой, что неизбежно приводит к их нагреву до температуры свыше 90 градусов. Из-за необходимости сильного охлаждения видеокарт вентиляторы в корпусе ПК начинают работать на полную мощность. Как следствие, создается очень высокий уровень шум. Прекрасной альтернативой воздушному охлаждению в такой ситуации выступают водяные системы охлаждения. В принципе, каждому компоненту компьютера можно организовать водяное охлаждение посредством установки собственного ватерблока. Таким способом можно охлаждать не только процессор и видеокарту, но и чипсет материнской платы или жесткий диск.

Установка СВО для компьютера потребует от Вас предварительного планирования. Во-первых, нужно определиться с тем, какие компоненты ПК Вы будете охлаждать посредством воды. Во-вторых, следует нарисовать схему расположения собственной системы водяного охлаждения для ее последующей сборки и установки. Тут нужно помнить о двух важных вещях. Во-первых, что течение воды в системе не должно быть ничем ограничено. А во-вторых, что при прохождении через каждый ватерблок вода нагревается. Это, в свою очередь, означает, что нежелательно пускать охлаждающую жидкость сразу через все нагревающиеся компоненты компьютера (процессор, чипсет, видеокарта), иначе в последний компонент на этом пути вода будет приходить уже теплой.

При наличии нескольких ватерблоков рекомендуется продумать, как пустить воду по отдельным, параллельным путям к каждому ватерблоку. Предварительно начертив план системы водяного охлаждения на бумаге, Вы сможете правильно подобрать все компоненты такой системы и облегчить ее дальнейшую установку.

Итак, как мы уже успели убедиться, водяное охлаждение намного эффективнее традиционного воздушного охлаждения. Не говоря уже о том, что такое охлаждение позволит Вашему мощному компьютеру работать гораздо тише. Мифы о том, что водяное охлаждение – это слишком дорого и сложно, постепенно уходят в прошлое. Сегодня разобраться в тонкостях сборки и установки СВО под силу даже не профессионалу. Можно с уверенностью утверждать, что в ближайшем будущем системы водяного охлаждения для компьютеров потеснят традиционное воздушное охлаждение, поскольку обладают рядом серьезных преимуществ.

авно уже канули в Лету те времена, когда компьютеру не требовались специализированные системы охлаждения. По мере роста тактовых частот центрального и графического процессоров последние сначала стали обрастать пассивными радиаторами, а впоследствии потребовали установки вентиляторов. Сегодня уже ни один ПК не обходится без специальных кулеров для охлаждения процессора, видеокарты и северного моста чипсета. Нередко специализированные кулеры устанавливаются и на жесткие диски, а в самом корпусе для принудительной конвекции помещаются дополнительные вентиляторы.

Делать нечего — с законами физики не поспоришь, и рост тактовых частот и производительности ПК неизбежно сопровождается повышением энергопотребления и, как следствие, выделением тепла. Это, в свою очередь, заставляет производителей создавать новые, более эффективные системы охлаждения. К примеру, не так давно стали появляться системы охлаждения на основе тепловых трубок, которые сегодня широко используются для создания систем охлаждения ноутбуков.

Наряду с традиционными системами охлаждения на основе радиаторов с вентиляторами, все большее распространение получают жидкостные системы охлаждения, которые используются в качестве альтернативы воздушных систем. Однако здесь необходимо сделать одно важное замечание: несмотря на все заверения производителей о необходимости использования жидкостных систем охлаждения для обеспечения нормального температурного режима, в действительности это условие вовсе не является обязательным при штатном режиме работы ПК.

Собственно, все современные процессоры рассчитаны именно на воздушное охлаждение, причем для этого вполне достаточно штатного кулера, поставляемого в боксовом варианте процессора. Видеокарты вообще продаются вместе со штатной воздушной системой охлаждения, что исключает необходимость использования альтернативных средств охлаждения. Более того, возьму на себя смелость утверждать, что современные воздушные системы охлаждения обладают определенным запасом и что поэтому многие производители даже снижают без ущерба производительности скорость вращения вентиляторов, создавая таким образом малошумящие комплекты для охлаждения процессоров и видеокарт. Вспомним хотя бы наборы для создания бесшумных ПК компании ZALMAN - в этих устройствах используются вентиляторы с низкими оборотами, которых, тем не менее, вполне достаточно.

О том, что традиционные воздушные системы охлаждения вполне справляются с возложенной на них задачей, свидетельствует хотя бы тот факт, что ни один отечественный производитель ПК не устанавливает жидкостных систем охлаждения в свои серийные модели. Во-первых, это дорого, а во-вторых, в этом нет особой необходимости. А страшные рассказы о том, что по мере повышения температуры процессора падает его производительность, что обусловлено технологией Throttle, - это, по большому счету, выдумки.

Зачем же тогда вообще нужны альтернативные жидкостные системы охлаждения? Дело в том, что до сих пор речь шла о штатном режиме работы ПК. Если же посмотреть на проблему охлаждения с позиции разгона, то выясняется, что штатные системы охлаждения могут и не справиться со своими задачами. Вот тут-то на выручку и приходят более эффективные жидкостные системы охлаждения.

Другое применение жидкостных систем охлаждения - это организация теплоотвода в ограниченном пространстве корпуса. Таким образом, подобные системы находят применение в том случае, когда корпус недостаточно велик, чтобы организовать в нем эффективное воздушное охлаждение. При охлаждении системы жидкостью подобная жидкость циркулирует по гибким трубкам малого диаметра. В отличие от воздушных магистралей, трубкам для жидкости можно задать практически любые конфигурации и направления. Занимаемый ими объем гораздо меньше, чем воздушные каналы, при такой же или гораздо большей эффективности.

Примерами таких компактных корпусов, где традиционное воздушное охлаждение может оказаться неэффективным, могут служить различные варианты barebone-систем или ноутбуков.

Устройство систем жидкостного охлаждения

ассмотрим, что представляют собой жидкостные системы охлаждения. Принципиальная разница между воздушным и жидкостным охлаждением заключается в том, что в последнем случае для переноса тепла вместо воздуха используется жидкость, обладающая большей, по сравнению с воздухом, теплоемкостью. Для этого вместо воздуха через радиатор прокачивается жидкость - вода или другие подходящие для охлаждения жидкости. Циркулирующая жидкость обеспечивает гораздо лучший теплоотвод, чем поток воздуха.

Второе различие заключается в том, что жидкостные системы охлаждения гораздо компактнее традиционных воздушных кулеров. Именно поэтому первыми стали применять жидкостное охлаждение на серийных устройствах производители ноутбуков.

В плане конструкции системы принудительной циркуляции жидкости по замкнутому контуру системы жидкостного охлаждения можно разделить на два типа: внутренние и внешние. При этом отметим, что никакого принципиального различия между внутренними и внешними системами не существует. Разница заключается лишь в том, какие функциональные блоки находятся внутри корпуса, а какие - снаружи.

Принцип действия жидкостных систем охлаждения достаточно прост и напоминает систему охлаждения в автомобильных двигателях.

Холодная жидкость (как правило, дистиллированная вода) прокачивается через радиаторы охлаждаемых устройств, в которых она нагревается (отводит тепло). После этого нагретая жидкость поступает в теплообменник, в котором обменивается теплом с окружающим пространством и охлаждается. Для эффективного теплообмена с окружающим пространством в теплообменниках, как правило, используются вентиляторы. Все компоненты конструкции соединяются между собой гибкими силиконовыми шлангами диаметром 5-10 мм. Для того чтобы заставить жидкость циркулировать по замкнутому корпусу, используется специальный насос - помпа. Структурная схема такой системы показана на рис. 1.


Посредством систем жидкостного охлаждения тепло отводится от центральных процессоров и графических процессоров видеокарт. При этом жидкостные радиаторы для графических и центральных процессоров имеют некоторые различия. Для графических процессоров они меньше по размеру, однако принципиально ничем особенным друг от друга не отличаются. Эффективность жидкостного радиатора определяется площадью контакта его поверхности с жидкостью, поэтому для увеличения площади контакта внутри жидкостного радиатора устанавливают ребра или столбчатые иголки.

Во внешних жидкостных системах охлаждения внутри корпуса компьютера размещается только жидкостный радиатор, а резервуар с охлаждающей жидкостью, помпа и теплообменник, помещенные в единый блок, выносятся за пределы корпуса ПК.

Внутренние системы жидкостного охлаждения

лассическим примером внутренней жидкостной системы охлаждения может служить система CoolingFlow Space2000 WaterCooling Kit компании CoolingFlow (www.coolingflow.com), показанная на рис. 2.


Рис. 2. Система жидкостного охлаждения CoolingFlow Space2000 WaterCooling Kit

Данная система предназначена только для охлаждения процессора, на котором устанавливается жидкостный радиатор Space2000 SE+ waterblock. Помпа совмещена с резервуаром для жидкости емкостью 700 мл.

Другим примером системы жидкостного охлаждения с помпой, устанавливаемой внутрь корпуса ПК, может служить система Poseidon WCL-03 (рис. 3) компании 3RSystem (www.3rsystem.co.kr).

Система Poseidon WCL-03 предназначена для жидкостного охлаждения процессора или чипсета.


Poseidon WCL-03 представляет собой два функциональных блока. Первый блок - это емкость для воды с габаритами 90Ѕ25Ѕ30 мм, совмещенная с радиатором теплообменника размером 134Ѕ90Ѕ22 мм (рис. 4), а второй - жидкостный радиатор процессора, совмещенный с помпой (рис. 5). Радиатор процессора выполнен из алюминия и имеет размеры 79Ѕ63Ѕ8 мм при весе 82 г.

Рис. 4. Емкость для воды, совмещенная с радиатором теплообменника системы Poseidon

Рис. 5. Радиатор процессора, совмещенный с помпой системы Poseidon WCL-03

Еще одним примером внутренней системы жидкостного охлаждения является система TherMagic CPU Cooling System компании Evergreen Technologies (рис. 6). Как следует из названия, эта система предназначена для охлаждения процессора, а состоит она из двух функциональных блоков: жидкостного радиатора процессора, выполненного из меди, и блока теплообменника, совмещенного с помпой.

Рис. 6. Система жидкостного охлаждения процессора TherMagic CPU Cooling System

Теплообменник — это довольно внушительных размеров пластиковый корпус квадратного сечения, по обеим сторонам которого расположены вентиляторы, прогоняющие воздух сквозь устройство.

Внутри корпуса теплообменника расположены миниатюрная помпа, качающая жидкость по системе, и крупный медный радиатор с ребрами большой площади (рис. 7).


Теплообменник крепится к стандартному посадочному месту, предназначенному для дополнительного вентилятора в корпусе компьютера; горячий воздух выдувается наружу.

Внешние системы жидкостного охлаждения

нутренние системы жидкостного охлаждения имеют один недостаток: их крепление внутри корпуса может вызвать проблемы, поскольку стандартные корпуса изначально проектируются именно под воздушные системы охлаждения. Поэтому тем, кто предпочтет внутреннюю систему жидкостного охлаждения, придется подбирать соответствующий корпус. Внешние же жидкостные системы охлаждения лишены данного недостатка.

Классическим примером внешней системы жидкостного охлаждения можно считать систему Aquagate ALC-U01 компании Cooler Master (www.coolermaster.com). Данная система представляет собой выполненный из алюминия отдельный блок размерами 220Ѕ148Ѕ88 мм (рис. 8).


Этот блок может устанавливаться либо внутрь компьютера, занимая два 5,25-дюймовых отсека, либо отдельно от системного блока (например, сверху) (рис. 9).


Естественно, что и при внешнем по отношению к корпусу расположении система Aquagate ALC-U01 остается связанной с корпусом двумя гибкими шлангами для прокачки воды. Сама же система охлаждения процессора (жидкостный радиатор) выглядит вполне традиционно (рис. 10).


Внутри алюминиевого корпуса системы Aquagate ALC-U01 расположены теплообменник, помпа и жидкостный резервуар. Теплообменник состоит из собственно радиатора и 80-миллиметрового вентилятора, выдувающего горячий воздух из радиатора. Скорость вращения вентилятора регулируется посредством термодатчика, встроенного в систему, и может составлять 4600, 3100 и 2000 об./мин.

Вторым примером внешней жидкостной системы охлаждения, которая не допускает внутренней установки, является система Exos-Al (рис. 11) компании Koolance (www.koolance.com)


Размеры этой системы — 184Ѕ95Ѕ47 мм. Внутри внешнего блока Exos-Al расположен массивный радиатор теплообменника (рис. 12), горячий воздух из которого высасывается тремя вентиляторами. Кроме того, в блоке имеются помпа и, конечно же, резервуар для воды.


Система жидкостного охлаждения Exos-Al может использоваться как для охлаждения процессоров, так и для охлаждения графических процессоров видеокарт. Различны только жидкостные радиаторы, используемые для охлаждения. Радиатор для центрального процессора изображен на рис. 13, а радиатор для графического процессора - на рис. 14.



Отметим, что компания Koolance производит не только внешние системы жидкостного охлаждения, но и целые корпуса со встроенной системой жидкостного охлаждения на основе системы Exos-Al. Пример такого корпуса показан на рис. 15.


Рис. 15. Корпус PC2-C компании Koolance со встроенной системой жидкостного охлаждения

Конечно же, такая известная компания, как ZALMAN (www.zalman.co.kr), специализирующаяся на выпуске систем охлаждения, не могла оставить без внимания системы жидкостного охлаждения и тоже представила на рынке свое решение - внешнюю систему RESERATOR 1 (рис. 16).


Рис. 16. Система внешнего жидкостного охлаждения ZALMAN RESERATOR 1

По своему дизайну данная система весьма оригинальна и не похожа ни на одну из рассмотренных выше. Фактически, это своего рода «водяная труба», устанавливающаяся рядом с системным блоком ПК.

Система RESERATOR 1 включает несколько функциональных блоков: собственно теплообменник (рис. 17) со встроенной помпой (рис. 18) и резервуаром для жидкости, жидкостный радиатор процессора ZM-WB2 (рис. 19), индикатор потока жидкости (рис. 20) и опциональный жидкостный радиатор для графического процессора ZM-GWB1 (рис. 21).


Рис. 17. Теплообменник со встроенной помпой и резервуаром для жидкости системы RESERATOR 1


Рис. 18. Помпа, устанавливаемая внизу теплообменника системы RESERATOR 1




Внешний теплообменник системы RESERATOR 1 имеет высоту 59,2 см при диаметре 15 см. С учетом расходящихся ребер радиатора общая его поверхность составляет 1,274 м2.

Индикатор потока жидкости включается в контур циркуляции жидкости и предназначен для визуального контроля потока жидкости. Когда жидкость циркулирует по контуру, заслонка внутри индикатора начинает вибрировать, что говорит о нормальном состоянии системы.

Жидкостный радиатор процессора ZM-WB2 имеет полностью медное основание и может использоваться для любых процессоров и разъемов (Intel Pentium 4 (Socket 478), AMD Athlon/Duron/Athlon XP (Socket 462), Athlon 64 (Socket 754)).

Еще одним примером жидкостной внешней системы охлаждения является система Aquarius III Liquid Cooling (рис. 22) от небезызвестной компании Thermaltake (www.thermaltake.com).


Рис. 22. Система внешнего жидкостного охлаждения Aquarius III Liquid Cooling

Данная система во многом напоминает рассмотренную выше систему Aquagate ALC-U01. Внутри алюминиевого корпуса размером 312Ѕ191Ѕ135 мм блока Aquarius III Liquid Cooling располагаются водяная помпа, теплообменник с 80-миллиметровым вентилятором и резервуар для жидкости.

Помпа установлена внутри небольшого резервуара для жидкости. В зависимости от температуры жидкости помпа способна изменять частоту вращения ротора (значение можно отслеживать так же, как и для обычного кулера).

Для подвода силиконовых трубок, по которым циркулирует жидкость, к корпусу в комплекте поставляется соответствующая заглушка (рис. 23).


Резервуар выполнен из прозрачного пластика со светодиодной подсветкой изнутри. Для визуального контроля работоспособности помпы внутри резервуара помещены два белых пластиковых шарика, которые вращаются при ее работе. К резервуару с помпой подводятся четыре трубки. Две из них - от дополнительного резервуара с водой, через который можно доливать воду в систему, а затем судить о ее количестве в контуре. По инструкции резервуар должен устанавливаться снаружи корпуса, но это не обязательно - нужно только ежемесячно контролировать уровень воды в помпе по соответствующим меткам и добавлять жидкость по мере необходимости.

Жидкостный радиатор процессора (рис. 24) полностью изготовлен из меди и является универсальным, то есть может быть установлен на любой современный процессор.


Рис. 24. Жидкостный радиатор процессора системы Aquarius III Liquid Cooling

Будущее систем охлаждения

есмотря на всю эффективность систем жидкостного охлаждения, уже сейчас стало понятно, что неизбежно наступит день, когда тактовые частоты процессоров достигнут того самого критического значения, когда дальнейшее использование традиционных систем охлаждения станет невозможным. Поэтому разработчики не прекращают поиски принципиально новых, более эффективных систем охлаждения. Одна из таких перспективных разработок, основанная на открытии ученых Стандфордского университета (Stanford University), принадлежит компании Cooligy (www.cooligy.com).

Собственно, технологически новая система охлаждения напоминает традиционную жидкостную. Во всяком случае здесь тоже наличествуют жидкостный радиатор, теплообменник и помпа. Основное же различие заключается в принципе действия помпы и жидкостного радиатора.

Жидкостный радиатор, называемый Microchannel Heat Collector, встраивается в кристалл кремния микросхемы (процессора). Внутри жидкостный радиатор имеет микроканальную структуру с шириной отдельного канала порядка 20-100 мкм.

Идея использования микроканальной структуры для эффективного охлаждения микросхем была высказана еще в 1981 году профессорами Стандфордского университета доктором Дэвидом Тукерманом (David Tuckerman) и доктором Фабианом Пизом (Fabian Pease). Согласно их исследованию, микроканальная структура, внедренная в кремний, позволяет отводить 1000 Вт тепла с каждого сантиметра поверхности кремния. Эффективность теплоотвода в микроканальной структуре, внедренной в кристалл кремния, реализуется благодаря двум эффектам. Во-первых, тепло, отводимое с кристалла кремния, передается на очень малое расстояние, поскольку микроканалы находятся непосредственно в кристалле кремния. Во-вторых, тепло, передаваемое стенкой микроканала холодной жидкости, тоже передается на очень малое расстояние, так как диаметр самого микроканала очень мал. В результате достигается очень высокий коэффициент теплопередачи микроканальной структуры, причем зависящий от ширины самого канала (рис. 25).


В результате — чем меньше толщина микроканала, тем более эффективно отводится тепло и тем более холодными остаются стенки микроканалов (рис. 26).


Рис. 26. По мере уменьшения толщины микроканала эффективность отвода тепла возрастает

Второй особенностью системы охлаждения, разработанной компанией компании Cooligy, является сама помпа, заставляющая циркулировать жидкость по замкнутому контуру.

Принцип действия данной помпы основан на электрокинетическом явлении, поэтому такая помпа получила название электрокинетической (EK pump).

В электрокинетической помпе жидкость (вода) проходит по стеклянным трубкам, стенки которых имеют отрицательный заряд (рис. 27). В воде вследствие реакции электролиза имеется некоторое количество положительно заряженных ионов водорода, которые будут смещаться к отрицательно заряженным стеклянным стенкам.


Если вдоль такой стеклянной трубки приложить электрическое поле, то положительные ионы водорода будут двигаться вдоль по полю, увлекая за собой всю жидкость. Таким образом можно заставить двигаться жидкость внутри стеклянной трубки.

В этой серии представлены уникальные компьютеры с полностью водяным охлаждением. Все системы созданы вручную в единственном экземпляре. Сумасшедшая производительность для самых требовательных задач, таких как виртуальная реальность со сверхвысокими настройками качества.

  • Представляем вам самые быстрые игровые компьютеры Hyper из когда-либо созданных

    Hyper Concept - это уникальные компьютеры с полностью водяным охлаждением и экстремальным разгонном. Разработка компьютеров серии Concept является одной из наиболее сложных и длительных в истории HYPERPC.

    Наши эксперты имели только одну цель, сделать лучший компьютер в мире!

    Производительность данных компьютеров вас просто шокирует!

    Характеристики данных компьютеров действительно впечатляют: самый быстрый процессор в мире Intel Core i7 Extreme разогнанный до 5ГГц, две самые мощные игровые видеокарты NVIDIA GeForce в режиме SLI и всё это охлаждается уникальной системой водяного охлаждения . Не зря водяное охлаждение будоражит умы многих компьютерных энтузиастов уже несколько лет.



    Узнайте подробнее как мы собираем эксклюзивные компьютеры с водяным олаждением


  • Что такое система водяного охлаждения?

    Система водяного охлаждения - это система охлаждения, которая для переноса тепла использует воду в качестве теплоносителя. В отличии от систем воздушного охлаждения, которые передают тепло напрямую воздуху, система водяного охлаждения сначала передает тепло воде.

    Кому подойдет система водяного охлаждения?

    Если Вы обычный пользователь, который проводит за компьютером 2-3 часа в день, который не работает с графикой, не играет, не занимается оверклокингом (разгоном), не увлечен моддингом, то для Вас хватит и стандартного воздушного кулера. Но если Ваш компьютер – это образ жизни, или заработок, если Вы хотите максимальной мощности с разгоном всей системы, идеальной тишины, или может быть Ваш компьютер является частью интерьера, то водяное охлаждение именно, то, что Вам нужно.



    • Водоблок CPU - это теплообменник, передающий тепло от процессора охлаждающей жидкости. Водоблок для процессора состоит из металлического основания, непосредственно контактирующего с теплораспределителем процессора, и крышки с отверстиями для включения его в контур СВО. Для достижения максимальной производительности внутренняя поверхность основания имеет сложную структуру.



      Водоблоки для видеокарт делятся на два основных типа - водоблок закрывающий только чип и водоблок с полным покрытием, обеспечивающий отвод тепла сразу от всех критически важных компонентов видеоадаптера. Основание таких водоблоков имеет сложную структуру, что способствует более эффективному отводу тепла.



      Радиатор в системе жидкостного охлаждения необходим для отвода тепла из контура охлаждения в атмосферу. Для этого на него как правило устанавливается один или несколько вентиляторов большого диаметра. Размер радиатора определятся мощностью, которую нужно удалить из контура охлаждения.



      Помпа представлет из себя электронный насос обеспечивающий циркуляцию охлаждающей жидкости в контуре системы охлаждения.

      Резервуар служит для аккумуляции воздуха из контура охлаждения и обеспечения запаса жидкости. Также он служит для выравнивания давления – это необходимо так как жидкость при нагревании расширяется.

      Помпа и резервуар могут быть выполнены в виде единого устройства, либо же являться отдельными узлами СЖО.



      Фитинг (англ. fitting, от fit - прилаживать, монтировать, собирать) - соединительная часть трубопровода, устанавливаемая в местах его разветвлений, поворотов, переходов на другой диаметр, а также при необходимости частой сборки и разборки труб. Фитинги служат и для герметичного перекрытия трубопровода и прочих вспомогательных целей.



      Контур систему жидкостного охлаждения представлен трубками или шлангами соединяющими все ее компоненты в единый механизм. Для максимизации эффективности всей СВО крайне важно правильное проектирование контура и наши инженеры вкладывают весь свой многолетний опыт в решение этой задачи. Так же контур может быть одним из ключевых элементов дизайна всей системы.



      Охлаждающая жидкость (хладагент, теплоноситель) предназначена для переноса тепла от водоблоков, нагреваемых компонентами системы, к радиаторам, рассеивающим его в атмосферу. В отличие от обычной воды, специализированные жидкости обладают большей эффективностью и не приводят к коррозии компонентов СЖО. Охлаждающие жидкости могут быть разных цветов, в том числе и с флюоресцентными добавками.

  • Преимущества водяного охлаждения

    Основные плюсы СВО

    • Прежде всего, это невероятная эффективность, выраженная в стабильности температурного режима. Вы будете комфортно играть или работать без зависаний и перегрева.
    • Возможности разгона без потери устойчивости работы системы. Вы сможете получить дополнительную производительность, за счет более высокого и безопасного разгона системы.
    • Значительном снижении уровня шума, вплоть до полной тишины. Это поможет вам избавиться от неприятного шума.
    • Снижении уровня пыли, накапливающейся внутри компьютера - увеличение срока службы всех комплектующих.
    • Уникальный внешний вид и дизайн сделает Ваш компьютер не похожим на большинство стандартных, скучных ПК.



  • 5. Резервуар (расширительный бачек) Преимущество систем с резервуаром в более удобной заправке системы и более удобном удалении пузырей воздуха из системы.
  • Хорошее охлаждение центрального процессора и процессора видеокарты последние десятилетия является необходимым условием их бесперебойной работы. Но греются в компьютере не только процессор и видеокарта - отдельный кулер может потребоваться микросхеме чипсета, жестким дискам и даже модулям памяти. Производители корпусов добавляют дополнительные вентиляторы, увеличивают их мощность и габариты, улучшают устройство радиаторов. И, разумеется, жидкостные системы охлаждения не могли быть обойдены вниманием.



    Вообще, жидкостное охлаждение процессоров – тема не новая: оверклокеры столкнулись с недостаточной эффективностью воздушного охлаждения уже давно. «Разогнанные» до теоретического максимума процессоры грелись так, что не справлялись никакие из имевшихся тогда в продаже кулеров. Систем жидкостного охлаждения в магазинах не было, и оверклокерские форумы полнились темами о самодельных «водянках». И сегодня многие ресурсы предлагают собрать систему жидкостного охлаждения самостоятельно, но смысла в этом уже немного. Стоимость комплектующих сравнима с ценой недорогих СЖО в магазинах, а качество (и, следовательно, надежность) заводской сборки обычно все же выше кустарной.

    Почему эффективность СЖО выше, чем у простого кулера?



    Рассматриваемые СЖО не имеют вырабатывающих холод элементов, охлаждение происходит за счет воздуха возле системного блока – как и в случае обычного воздушного охлаждения. Эффективность СЖО достигается за счет того, что скорость теплоотвода с помощью движущегося теплоносителя намного выше, чем скорость естественного теплоотвода с помощью теплопередачи внутри металлического радиатора. Но скорость теплоотвода зависит не только от скорости движения теплоносителя, но и от эффективности охлаждения этой жидкости и от эффективности её нагревания теплом процессора. И, если первая задача решается увеличением площади радиатора, площади теплообменника радиатора и улучшением воздухообдува, то во втором случае теплообмен ограничен площадью процессора. Поэтому общая эффективность системы ограничивается эффективностью водоблока процессора. Но даже с таким ограничением СЖО обеспечивают примерно в 3 раза лучший теплосъем по сравнению с обычным воздушным охлаждением. В числах это означает снижение температуры чипа на 15-25 градусов по сравнению с воздушным охлаждением при нормальной комнатной температуре.

    Конструкция СЖО



    Любая система жидкостного охлаждения содержит следующие элементы:

    - Водоблок . Его назначение – эффективно снимать тепло с процессора и передавать протекающей воде. Соответственно, чем выше теплопроводность материала, из которого изготовлены подошва и теплообменник водоблока, тем выше и эффективность этого элемента. Но теплопередача также зависит и от площади соприкосновения теплоносителя и радиатора – поэтому конструкция водоблока важна ничуть не меньше материала.


    Поэтому плоскодонный (бесканальный) водоблок, в котором жидкость просто протекает вдоль стенки, прилегающей к процессору, намного менее эффективен, чем водоблоки со сложной структурой дна или теплообменниками (трубчатыми или змеевидными). Минусами водоблоков со сложной структурой является то, что они создают намного большее сопротивление водяному потоку и, следовательно, требуют более мощной помпы.



    - Помпа . Распространенное мнение, что чем мощнее помпа, тем лучше и что СЖО без отдельной мощной помпы вообще неэффективна – некорректно. Функция помпы – обеспечить циркуляцию теплоносителя с такой скоростью, чтобы перепад температур между теплообменником водоблока и жидкостью был максимальным. Т.е., с одной стороны, нагревшаяся жидкость должна вовремя выводиться из водоблока, с другой стороны – поступать в водоблок она должна уже полностью охлажденной. Поэтому мощность помпы должна быть сбалансирована с эффективностью остальных элементов системы и замена помпы на более мощную в большинстве случаев не даст положительного эффекта. Маломощные помпы часто объединены в одном корпусе с водоблоком.



    - Радиатор. Назначение радиатора – рассеивать тепло, приносимое теплоносителем. Соответственно, он должен быть изготовлен из материала с высокой теплопроводностью, обладать большой площадью и быть укомплектован мощным вентилятором (вентиляторами). Если площадь радиатора СЖО сравнима с площадью радиатора процессорного кулера и вентилятор на ней установлен ничуть не мощнее, то не стоит ожидать от такой СЖО эффективности, превышающей эффективность того же кулера.



    - Соединительные трубки должны быть достаточной толщины, чтобы не создавать большого сопротивления водяному потоку. По этой причине обычно используются трубки диаметром от 6 до 13 мм – в зависимости от скорости потока жидкости. В качестве материала трубок обычно используется ПВХ или силикон.
    - Теплоноситель должен иметь высокую теплоемкость и высокую теплопроводность. Из доступных и безопасных жидкостей лучше всего этим условиям удовлетворяет обычная дистиллированная вода. Часто в воду добавляются присадки для снижения её коррозирующих свойств, для предотвращения размножения микроорганизмов (зацветания) и просто для эстетического эффекта (цветные присадки в системах с прозрачными трубками).



    В мощных системах с большим объемом теплоносителя становится необходимым использование расширительного бачка – резервуара, в который будут уходить излишки жидкости при её термическом расширении. В таких системах помпа обычно объединяется с расширительным бачком.

    Характеристики систем жидкостного охлаждения.

    Обслуживаемая/необслуживаемая СЖО.



    Необслуживаемая система идет с завода полностью в сборе, залитая теплоносителем и загерметизированная. Установка такой системы отличается простотой – некоторые необслуживаемые СЖО установить ничуть не сложнее, чем обычный кулер. Минусы у необслуживаемой СЖО тоже есть:
    - Низкая ремонтопригодность. Трубки часто просто запаяны в неразъемные пластиковые штуцеры. С одной стороны, это обеспечивает герметичность, с другой стороны, замена поврежденного элемента такой системы может вызвать осложнения.
    - Сложность замены теплоносителя обычно тоже связана с ремонтом системы – если часть жидкости вытекла, снова заполнить необслуживаемую СЖО может оказаться весьма непросто – заливочными отверстиями такие системы, как правило, не снабжаются.
    - Низкая универсальность связана с неразборностью системы. Невозможно ни расширить систему, ни заменить какой-либо из её элементов на более эффективный.
    - Фиксированная длина трубок ограничивает возможности по выбору места установки радиатора.



    Обслуживаемые СЖО часто поставляются в виде набора элементов и установка такой системы потребует времени и некоторой сноровки. Зато и возможности по её кастомизации намного выше – можно добавлять водоблоки для чипсета и для видеокарты, менять все элементы на более подходящие для конкретного компьютера, выносить радиатор на любое (разумное) расстояние от процессора и т.д. Можно не бояться устаревания сокета (и системы охлаждения) при замене материнской платы – для восстановления актуальности потребуется только заменить водоблок процессора. К недостаткам обслуживаемых СЖО, кроме сложности установки и высокой цены, следует отнести большую вероятность протечек через разъемные соединения и большую вероятность загрязнения теплоносителя.

    СЖО должна поддерживать сокет материнской платы, на которую устанавливается. И если обслуживаемую СЖО еще можно приспособить под другой сокет, купив дополнительно соответствующий водоблок, то необслуживаемая СЖО может использоваться только с теми сокетами, что перечислены в её характеристиках.



    Количество вентиляторов не оказывает прямого влияния на эффективность СЖО, но большое их количество позволяет снизить скорость вращения каждого отдельного вентилятора при сохранении общего воздушного потока, и, соответственно, снизить шумность при сохранении эффективности. Будет ли СВО с большим количеством вентиляторов эффективнее – зависит от их суммарного максимального воздушного потока.

    Максимальный воздушный поток считается в кубических футах в минуту (CFM) и определяет, какой объем воздуха прогоняется через вентилятор в минуту. Чем выше это значение, тем выше вклад этого вентилятора в эффективность радиатора. Размеры (длина, ширина, толщина ) радиатора ничуть не менее важны – четыре мощнейших вентилятора, обдувающих простой тонкий радиатор с малой площадью пластин будут охлаждать теплоноситель ничуть не лучше, чем один вентилятор, хорошо подобранный к радиатору с большой площадью пластин.



    Материал радиатора определяет его теплопроводность, т.е., с какой скоростью переданное ему тепло будет распределяться по всей площади радиатора. Теплопроводность меди почти в два раза выше, чем теплопроводность алюминия, но в данном случае эффективность радиатора больше зависит от его конструкции и площади, чем от материала..

    Материал водоблока , в силу ограниченности его размеров, важнее материала радиатора. Фактически, медь является единственным приемлемым вариантом. Алюминиевые водоблоки (встречающиеся в дешевых СЖО) снижают эффективность системы настолько, что пропадает смысл использования жидкостного охлаждения.

    Максимальный уровень шума зависит от максимальной частоты вращения вентиляторов . Если в системе не предусмотрена регулировка частоты вращения, на этот параметр следует обратить пристальное внимание. При наличии регулировки частоты вращения, внимание следует обратить на минимальный уровень шума .

    Уровень шума выше 40 дБ уже может восприниматься как некомфортный (40 дБ соответствует обычному звуковому фону в жилом помещении - негромкая музыка, спокойный разговор). Чтобы шум вентиляторов не мешал сну, он не должен превышать 30 дБ.

    Регулировка скорости вращения вентиляторов может быть ручной и автоматической. Ручная регулировка позволяет менять скорость вращения вентиляторов в соответствии с личными предпочтениями, автоматическая же подстраивает скорость под текущую температуру процессора и обеспечивает лучшие условия работы оборудования.

    Тип коннектора питания может быть 3-pin и 4-pin.
    3-pin коннектор не имеет отдельного провода для изменения скорости вращения вентилятора. Управлять скоростью вращения такого вентилятора можно только изменяя его напряжение питания. Не все материнские платы поддерживают этот способ. Если ваша материнская плата не может управлять скоростью вращения 3-pin вентилятора, то кулеры и двигатель помпы СЖО с 3-pin коннектором питания будут всегда вращаться на максимальной скорости. Для изменения степени охлаждения придется дополнительно покупать