Машины на водородном топливе. Чем заправить авто из будущего? Сообщение на тему водород топливо будущего

Мы живем в 21 веке, пришло время для создания топлива будущего, которое заменит традиционное топливо и ликвидирует нашу зависимость от него. Ископаемые виды топлива сегодня являются нашим основным источником энергии.

За последние 150 лет количество углекислого газа в атмосфере увеличилось на 25%. Сжигание углеводородов приводит к загрязнениям, таким как смог, кислотные дожди и загрязнение воздуха.

Каким будет топливо будущего?

Водород — альтернативный вид топлива будущего

Водород бесцветный газ без запаха, составляет 75% массы всей Вселенной. Водород на Земле существует только в сочетании с другими элементами, такими как кислород, углерод и азот.

Чтобы использовать чистый водород, он должен быть отделен от этих других элементов, чтобы быть использованным в качестве топлива.

Переход на водород всех автомобилей и всех автозаправочных станций непростая задача, но в долгосрочной перспективе, переход на водород, как альтернативный вид топлива для автомобилей, будет очень выгодно.

Превращение воды в топливо

Водные топливные технологии используют воду, соль и очень недорогой металлический сплав. Газ, что результатом этого процесса является — чистый водород, который горит как топливо без необходимости использования внешнего кислорода — и не выделяет никаких загрязнений.

Морская вода может использоваться непосредственно в качестве основного топлива, тем самым устраняя необходимость добавления соли.

Есть еще один способ превращения воды в топливо. Он называется электролизом. Этот метод превращения воды в газ Брауна, который также является прекрасным топливом для нынешних бензиновых двигателей.

Почему газ Брауна лучшее топливо, чем чистый водород?

Давайте посмотрим на все три вида водородного топливного решения — топливные элементы, чистый водород, и газ Брауна — и посмотрим, как они работают по отношению к кислороду и его потреблению:

Топливные элементы: Этот метод использует кислород из атмосферы при полном сжигании водорода в топливных элементах. Что выходит из выхлопной трубы? Кислород и пары воды! Но кислород изначально пришел из атмосферы, а не из топлива.

И поэтому использование топливных элементов не решает проблему: окружающая среда испытывает огромные проблемы на данный момент с содержанием кислорода в воздухе; мы теряем кислород.

Водород: Это топливо является совершенным, если бы не одно «но». Хранение и распределение водорода требует специального оборудования, а топливные баки автомобилей должны выдерживать высокое давление сжиженного газа водорода.

Газ Брауна: Это самое совершенное топливо для работы всех наших транспортных средств. Чистый водород поступает непосредственно из воды, то есть, пара водород — кислород, но, кроме того, он горит в двигателе внутреннего сгорания, выделяя кислород в атмосферу: из выхлопной трубы входит в атмосферу кислород и пары воды.

Так, при сжигании газа Брауна в качестве топлива, можно увеличить кислород воздуха и тем самым увеличить содержание кислорода в нашей атмосфере. Это способствует решению очень опасной экологической проблемы.

Газ Брауна — идеальное топливо будущего

Об использовании воды в качестве альтернативного вида топлива для автомобилей, о планах преобразования бензиновых двигателей для работы на обычной водопроводной воде, этот постулат является мировым переворотом в сознании людей.

Теперь только вопрос времени, когда все поймут, что вода лучшее топливо для нашего транспорта. Лицо или лица, которые дали нам это знание, мы должны их помнить как героев.

Их убивали, их патенты скупались частными лицами, чтобы их изобретения не стали достоянием гласности; информация об автомобилях на воде жила в Интернете не более 1-2 часов…
Но сейчас что-то изменилось, видимо, власть имущие решили «Пусть начнутся игры»!

Автомобилей на воде работает, и мы знаем это наверняка. Работа бензиновых двигателей на воде — это как трамплин для гораздо лучших технологий, чем те, которые уже существуют и которые быстро заменят идею ведения автомобилей на воде.

Но пока нефтяные компании душат идею автомобиля на воде, овладеть более высокими технологиями не получится, и использование нефти будет продолжаться. Это общее мнение ученых, так говорят во всем мире.

Может ли использование воды в виде топлива изменить жизнь Земли?

Известно ли Вам, что водоснабжение Земли не является статическим? Количество воды на Земле увеличивается с каждым днем.

Было обнаружено, что в последние несколько лет, большое количество воды ежедневно прибывает из космоса в виде водных астероидов!

Эти огромные астероиды — мегатонны воды, которые попав в верхние слои атмосферы, немедленно испаряются, и в конце концов оседают на Землю.

Вы можете просмотреть фотографии НАСА этих астероидов в первой книге доктора Эмото, «Сообщение о воде«. Почему эти водные астероиды ближаются к Земле, а не на другие планеты, такие как Марс, остается загадкой.

И действительно ли то, что это происходит только сейчас или это происходило на протяжении всей истории Земли. Другое дело, что никто не знает ответа.

Таяние ледников . Помимо этого, уровень океана повышается из-за таяния ледников. Как следствие потепления климата, начинает быть слишком много воды на Земле.

Я разговаривал с учеными, которые считают, что было бы реально помочь, если бы небольшое количество воды было как-то использовано в это время — например, для работы машин.

Запуск автомобилей на воде поможет пополнить кислород в нашей атмосфере: главная причина для перехода на воду в качестве топлива — наши текущие экологические проблемы.

Они настолько велики, что если мы не будем делать что-то для снижения использования ископаемых видов топлива, наша Земля будет уничтожена. И уже не будет имеет значения, если ли у планеты вода или ее нет.

Иногда человек потребляет то, что является потенциально опасным для того, чтобы стать здоровым. Запуск автомобилей на воде сродни этой концепции. Это может быть потенциально опасным, если бы мы продолжали использовать воду в качестве топлива для чрезмерного периода времени.

Но учитывая все обстоятельства, это решение является лучшим из того, что правительства могут себе позволить на время.

Даже правительства готовятся запустить автомобили на топливных элементах, где топливом является водород. И для реализации этой технологии, нам не придется изменять наши двигатели — альтернативный источник нашего топлива может быть не единственным.

Введение

Исследования Солнца, звёзд, межзвёздного пространства показывают, что самым распространённым элементом Вселенной является водород (в космосе в виде раскалённой плазмы он составляет 70 % массы Солнца и звёзд).

По некоторым расчётам, каждую секунду в глубинах Солнца примерно 564 млн. тонн водорода в результате термоядерного синтеза превращаются в 560 млн. тонн гелия, а 4 млн. тонн водорода превращаются в мощное излучение, которое уходит в космическое пространство. Нет опасений, что на Солнце скоро иссякнут запасы водорода. Оно существует миллиарды лет, а запас водорода в нём достаточен для того, чтобы обеспечить ещё столько же лет горения.

Человек живёт в водородно-гелиевой вселенной.

Поэтому водород представляет для нас очень большой интерес.

Влияние и польза водорода в наши дни очень велика. Практически все известные сейчас виды топлива, за исключением, разумеется, водорода, загрязняют окружающую среду. В городах нашей страны ежегодно проходит озеленение, но этого, как видно, недостаточно. В миллионы новых моделей автомобилей, которые сейчас выпускаются, заливают такое топливо, которое выпускает в атмосферу углекислый (СО 2) и угарный (СО) газы. Дышать таким воздухом и постоянно находиться в такой атмосфере представляет очень большую опасность для здоровья. От этого происходят различные заболевания, многие из которых практически не поддаются лечению, а уж тем более невозможно лечить их, продолжая находиться в можно сказать «заражённой» выхлопными газами атмосфере. Мы хотим быть здоровыми, и разумеется, хотим, чтобы поколения, которые пойдут за нами, тоже не жаловались и не страдали от постоянного загрязняемого воздуха, а наоборот, помнили и доверяли пословице: «Солнце, воздух и вода – наши лучшие друзья».

А пока я не могу сказать, что эти слова оправдывают себя. На воду нам уже вообще приходится закрывать глаза, поскольку сейчас, если даже брать конкретно наш город, известны факты, что из кранов течёт загрязнённая вода, и пить её ни в коем случае нельзя.

Что касается воздуха, то здесь на повестке дня уже много лет стоит не менее важная проблема. И если представить, хотя бы на секунду, что все современные двигатели будут работать на экологически чистом топливе, коим, разумеется, является водород, то наша планета встанет на путь, ведущий к экологическому раю. Но это всё фантазии и представления, которые, к великому нашему сожалению ещё не скоро станут реальностью.

Несмотря на то, что наш мир приближается к экологическому кризису, все страны, даже те, которые в большей степени загрязняют своей промышленностью окружающую среду, (ФРГ, Япония, США, и как это не прискорбно – Россия) не торопятся паниковать и начинать экстренную политику по её очищению.

Сколько бы мы не говорили о положительном влиянии водорода, на практике это можно увидеть довольно таки не часто. Но всё же разрабатывается множество проектов, и целью моей работы явился не только рассказ о самом чудесном топливе, но и о его применении. Эта тема очень актуальна, поскольку сейчас жителей не только нашей страны, но и всего мира, волнует проблема экологии и возможные пути решения этой проблемы.

Водород на Земле

Водород – один из наиболее распространённых элементов и на Земле. В земной коре из каждых 100 атомов 17 – атомы водорода. Он составляет примерно 0,88 % от массы земного шара (включая атмосферу, литосферу и гидросферу). Если вспомнить, что воды на земной поверхности более

1,5∙10 18 м 3 и что массовая доля водорода в воде составляет 11,19 %, то становится ясно, что сырья для получения водорода на Земле – неограниченное количество. Водород входит в состав нефти (10,9 – 13,8 %), древесины (6 %), угля (бурый уголь – 5,5%), природного газа (25,13 %). Водород входит в состав всех животных и растительных организмов. Он содержится и в вулканических газах. Основная масса водорода попадает в атмосферу в результате биологических процессов. При разложении в анаэробных условиях миллиардов тонн растительных остатков в воздух выделяется значительное количество водорода. Этот водород в атмосфере быстро рассеивается и диффундирует в верхние слои атмосферы. Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут улететь в космическое пространство. Концентрация водорода в верхних слоях атмосферы составляет 1∙10 -4 %.

Что такое водородная технология?

Под водородной технологией подразумевается совокупность промышленных методов и средств для получения, транспортировки и хранения водорода, а также средств и методов его безопасного использования на основе неисчерпаемых источников сырья и энергии.

В чём же привлекательность водорода и водородной технологии?

Переход транспорта, промышленности, быта на сжигание водорода – это путь к радикальному решению проблемы охраны воздушного бассейна от загрязнения оксидами углерода, азота, серы, углеводородами.

Переход на водородную технологию и использование воды в качестве единственного источника сырья для получения водорода не может изменить не только водного баланса планеты, но и водного баланса отдельных её регионов. Так, годовая энергетическая потребность такой высокоиндустриальной страны, как ФРГ, может быть обеспечена за счёт водорода, полученного из такого количества воды, которое соответствует 1,5% среднего стока реки Рейн (2180 л воды дают 1 тут в виде H 2). Отметим попутно, что на наших глазах становится реальной одна из гениальных догадок великого фантаста Жюля Верна, который устами героя рома «Таинственный остров» (гл. XVII) заявляет: «Вода – это уголь будущих веков».

Водород, получаемый из воды, - один из наиболее энергонасыщенных носителей энергии. Ведь теплота сгорания 1 кг H 2 составляет (по низшему пределу) 120 МДж/кг, в то время как теплота сгорания бензина или лучшего углеводородного авиационного топлива – 46 – 50 МДж/кг, т.е. в 2,5 раза меньше 1 т водорода соответствует по своему энергетическому эквиваленту 4,1 тут, к тому же водород – легковозобновляемое топливо.

Чтобы накопить ископаемое горючее на нашей планете, нужны миллионы лет, а чтобы в цикле получения и использования водорода из воды получить воду, нужны дни, недели, а иногда часы и минуты.

Но водород как топливо и химическое сырьё обладает и рядом других ценнейших качеств. Универсальность водорода заключается в том, что он может заменить любой вид горючего в самых разных областях энергетики, транспорта, промышленности, в быту. Он заменяет бензин а автомобильных двигателях, керосин в реактивных авиационных двигателях, ацетилен в процессах сварки и резки металлов, природный газ для бытовых и иных целей, метан в топливных элементах, кокс в металлургических процессах (прямое восстановление руд), углеводороды в ряде микробиологических процессов. Водород легко транспортируется по трубам и распределяется по мелким потребителям, его можно получать и хранить в любых количествах. В то же время водород – сырьё для ряда важнейших химических синтезов (аммиака, метанола, гидразина), для получения синтетических углеводородов.

Как и из чего в настоящее время получают водород?

В распоряжении современных технологов имеются сотни технических методов получения водородного топлива, углеводородных газов, жидких углеводородов, воды. Выбор того или иного метода диктуется экономическими соображениями, наличием соответствующих сырьевых и энергетических ресурсов. В разных странах могут быть различные ситуации. Например, в странах, где имеется дешёвая избыточная электроэнергия, вырабатываемая на гидроэлектростанциях, можно получать водород электролизом воды (Норвегия); где много твёрдого топлива и дороги углеводороды, можно получать водород газификацией твёрдого топлива (Китай); где дешёвая нефть, можно получать водород из жидких углеводородов (Ближний Восток). Однако больше всего водорода получают в настоящее время из углеводородных газов конверсией метана и его гомологов (США, Россия).

В процессе конверсии метана водяным паром, диоксидом углерода, кислородом и оксида углерода водяным паром протекают следующие каталитические реакции. Рассмотрим процесс получения водорода конверсией природного газа (метана).

Получение водорода осуществляется в три стадии. Первая стадия – конверсия метана в трубчатой печи:

CH 4 + H 2 O = CO + 3H 2 – 206,4 кДж/моль

CH 4 +CO 2 = 2CO + 2H 2 – 248, 3 кДж/моль.

Вторая стадия связана с доконверсией остаточного метана первой стадии кислородом воздуха и введением в газовую смесь азота, если водород используется для синтеза аммиака. (Если получается чистый водород, второй стадии принципиально может и не быть).

CH 4 + 0,5O 2 = CO + 2H 2 + 35,6 кДж/моль.

И, наконец, третья стадия – конверсия оксида углерода водяным паром:

CO + H 2 O = СO 2 + H 2 + 41,0 кДж/моль.

Для всех указанных стадий требуется водяной пар, а для первой стадии – много тепла, поэтому процесс в энерготехнологическом плане проводится таким образом, чтобы трубчатые печи снаружи обогревались сжигаемым в печах метаном, а остаточное тепло дымовых использовалось для получения водяного пара.

Рассмотрим, как это происходит в промышленных условиях (схема 1). Природный газ, содержащий в основном метан, предварительно очищают от серы, которая является ядом ля катализатора конверсии, подогревают до температуры 350 – 370 o С и под давлением 4,15 – 4,2 МПа смешивают с водяным паром в соотношении объёмов пар: газ = 3,0: 4,0. Давление газа перед трубчатой печью, точное соотношение пар: газ поддерживаются автоматическими регуляторами.

Образующаяся парогазовая смесь при 350 – 370 o C поступает в подогреватель, где за счёт дымовых газов нагревается до 510 – 525 o С. Затем парогазовую смесь направляют на первую ступень конверсии метана – в трубчатую печь, в которой она равномерно распределяется по вертикально расположенными реакционным трубам (8). Температура конвертированного газа на выходе из реакционных труб достигает 790 – 820 o С. Остаточное содержание метана после трубчатой печи 9 – 11 % (объёмн.). Трубы заполнены катализатором.

История водородного двигателя. Если нефть называют топливом сегодняшнего дня (топливом века), то водород можно назвать топливом будущего .

При нормальных условиях водород - это газ без цвета, запаха и вкуса, самое легкое вещество (в 14,4 раза легче воздуха); отличается очень низкими температурами кипения и плавления, соответственно, -252,6 и -259,1 СС.

Жидкий водород - бесцветная жидкость, без запаха, при -253 °С имеет массу 0,0708 г/см 3 .

Своим названием водород обязан французскому ученому Антуану Лорану Лавуазье, который в 1787 г., разлагая и вновь синтезируя воду, предложил назвать второе составляющее (кислород был известен) - гидрофеном, что в переводе означает «рождающий воду», или «водород». До этого выделяющийся при взаимодействии кислот с металлами газ назывался «горючим воздухом».

Первый патент на двигатель, работающий на смеси водорода с кислородом, появился в 1841 г. в Англии, а спустя 11 лет придворный часовщик Христиан Тейман построил в Мюнхене двигатель, который проработал на смеси водорода с воздухом в течение нескольких лет.


Одной из причин того, что эти двигатели не получили распространения, послужило отсутствие в природе свободного водорода.

Вновь к водородному двигателю обратились уже в нашем веке - в 70-е годы в Англии учеными Рикардо и Брусталлом были проведены серьезные исследования. Экспериментально - путем изменения только подачи водорода - они установили, что двигатель на водороде может работать во всем диапазоне нагрузок, от холостого хода до полной нагрузки. Причем на бедных смесях были получены более высокие значения индикаторного КПД, чем на бензине.

В Германии в 1928 г. дирижаблестроительная фирма «Цеппелин» использовала водород в качестве обогатителя топлива, чтобы осуществить дальний испытательный перелет через Средиземное море.

Перед второй мировой войной в той же Германии применялись автодрезины, работавшие на водороде. Водород для них получали в электролизерах высокого давления, работавших от электросети на заправочных станциях, расположенных близ железной дороги.

Большую роль в совершенствовании водородного двигателя сыграли работы Рудольфа Эррена. Он впервые применил внутреннее смесеобразование, что позволило осуществить конвертирование жидкотопливных двигателей на водород при сохранении основной топливной системы и тем самым обеспечить работу двигателя на углеводородном топливе, водороде и жидком топливе с присадкой водорода. Интересно отметить, что переходить с одного вида топлива на другой можно было без остановки двигателя.


Одним из двигателей, конвертированных Эрреном, является дизель автобуса «Лейланд», опытная эксплуатация которого выявила высокую экономичность при добавке водорода к дизельному топливу.

Эррен разработал также водородокислородный двигатель, продуктом сгорания которого был водяной пар Некоторая часть пара возвращалась в цилиндр вместе с кислородом а ос тальная конденсировалась. Возможность работы такого двигателя без наружного выхлопа была использована на германских подводных лодках довоенной постройки. В надводном положении дизели обеспечивали ход лодки и давали энергию для разложения воды на водород и кислород, в подводном положении - работали на парокислородной смеси и водороде. При этом подводная лодка не нуждалась в воздухе для дизелей и не оставляла на поверхности воды следов в виде пузырьков азота, кислорода и других продуктов сгорания.

В нашей стране исследование возможностей использовать водород в двигателях внутреннего сгорания началось в 30-е годы.

В период блокады Ленинграда для подъема и спуска аэростатов воздушного заграждения использовались автомобили-лебедки с двигателями «ГАЗ-АА», которые были переведены на водородное питание. С 1942 г. водород успешно использовался в московской службе ПВО, им надували аэростаты.

В 50-е годы на речных судах предполагалось использовать водород, получаемый разложением воды током гидроэлектростанций.

Использование водорода в настоящее время

В 70-е годы под руководством академика В. В. Струминского были проведены испытания автомобильного двигателя «ГАЗ-652», работавшего на бензине и водороде, и двигателя «ГАЗ-24», работавшего на жидком водороде. Испытания показали, что при работе на водороде повышается КПД и уменьшается нагрев двигателя.

В Харьковском институте проблем машиностроения АН УССР и Харьковском автодорожном институте под руководством профессора И. Л. Варшавского были проведены исследования детонационной стойкости водородовоздушных и бензоводородовоздушных смесей, а также выполнены разработки по конвертированию на водород и добавке водорода к бензину двигателей автомобилей «Москвич-412», «ВАЗ-2101», «ГАЗ-24» с использованием для получения и хранения водорода энергоаккумулирующих веществ и гидридов тяжелых металлов. Эти разработки достигли стадии опытной эксплуатации на автобусах и такси.

В космонавтике появился новый класс летательных аппаратов, имеющих в земной атмосфере гиперзвуковые скорости. Для достижения таких скоростей необходимо топливо с высокой теплотворной способностью и низким молекулярным весом продуктов сгорания; кроме того, оно должно обладать большим хладоресурсом.

Этим требованиям как нельзя лучше отвечает водород. Он способен поглощать тепло в 30 раз больше, чем керосин. При нагревании от -253 по +900 °С (температура на входе в двигатель) 1 кг водорода может поглотить более 4000 ккал.

Омывая изнутри обшивку летательного аппарата перед поступлением, в камеру сгорания, жидкий водород поглощает все тепло, выделяющееся при разгоне аппарата до скорости, в 10-12 раз превосходящей скорость звука в воздухе.

Жидкий водород в паре с жидким кислородом был применен в последних ступенях сверхтяжелых американских ракет - носителей «Сатурн-5», что в определенной степени способствовало успеху космических программ «Аполлон» и «Скайлэб».

Моторные свойства топлива

Основные физико-химические и моторные свойства водорода в сравнении с пропаном и бензином приведены в табл. 1.


Водород обладает наиболее высокими энергомассовыми показателями, превосходящими традиционные углеводородные топлива в 2,5-3 раза, а спирты - в 5-6 раз. Однако из-за низкой плотности по объемной тепло-производительности он уступает большинству жидких и газообразных топлив. Теплота сгорания 1 м 3 водородовоздушной смеси на 15% меньше, чем у бензина. Вследствие худшего наполнения цилиндра из-за низкой плотности литровая мощность бензиновых двигателей при переводе на водород снижается на 20-25%.

Температура воспламенения водородных смесей выше, чем углеводородных, но для воспламенения первых требуется меньшее количество энергии. Водородовоздушные смеси отличаются высокой скоростью сгорания в двигателе, причем сгорание протекает практически при постоянном объеме, что ведет к резкому возрастанию давления (в 3 раза выше по сравнению с бензиновым эквивалентом). Однако на бедных и даже очень бедных смесях скорость горения водорода обеспечивает нормальную работу двигателя.

Водородовоздушные смеси обладают исключительно широким диапазоном горючести, что позволяет при любых изменениях нагрузки применять качественное регулирование. Низкий предел воспламенения обеспечивает работу водородного двигателя на всех скоростных режимах в широком диапазоне состава смеси, вследствие чего его КПД на частичных нагрузках увеличивается на 25-50%.

Для подачи водорода в двигатели внутреннего сгорания известны следующие способы: впрыск во впускной трубопровод; при помощи модификации карбюратора, аналогичной системам питания сжиженным и природным газами; индивидуальное дозирование водорода около впускного клапана; непосредственный впрыск под высоким давлением в камеру сгорания.

Для обеспечения устойчивой работы двигателя первый и второй способы могут применяться только при частичной рециркуляции отработавших газов, при помощи присадки к топливному заряду воды и добавки бензина.

Наилучшие результаты дает непосредственный впрыск водорода в камеру сгорания, при котором полностью исключаются обратные вспышки во впускном тракте, максимальная же мощность не только не уменьшается, но может быть повышена на 10-15%.

Запас топлива

Объемно-массовые характеристики различных систем хранения водорода приведены в табл. 2. Все они по габаритам и массе уступают бензину.


Из-за малого энергозапаса и значительного увеличения размеров и массы топливного бака газообразный водород не применяется. Не применяются на транспортных средствах и тяжелые баллоны высокого давления.

Жидкого водорода в криогенных емкостях, имеющих двойные стенки, пространство между которыми теплоизолировано.

Большой практический интерес представляет аккумулирование водорода при помощи металлогидридов. Некоторые металлы и сплавы, например ванадий, ниобий, железотитановый сплав (FeTi), марганцевоникелевый (Mg + 5% Ni) и другие, при определенных условиях могут соединяться с водородом. При этом образуются гидриды, содержащие большое количество водорода. Если к гидриду подводить тепло, он будет разлагаться, освобождая водорот. Восстановленные металлы и сплавы можно многократно использовать для соединения с водородом.

В гидридных системах для выделения водорода обычно используется тепло отработавших газов двигателя. Зарядка гидридного аккумулятора водородом производится под небольшим давлением с одновременным охлаждением проточной водой из водопровода. По термодинамическим свойствам и низкой стоимости наиболее подходящим компонентом является сплав FeTi.

Гидридный аккумулятор представляет собой пакет трубок (гидридных патронов) из нержавеющей стали, заполненных порошкообразным сплавом FeTi и заключенных в общую оболочку. В пространство между трубками пропускаются отработавшие газы двигателя или вода. Трубки с одной стороны объединены коллектором, который служит для хранения небольшого запаса водорода, необходимого для запуска двигателя и его работы на переходных режимах. По массе и объему гидридные аккумуляторы соизмеримы с системами хранения жидкого водорода. По энергоемкости они уступают бензину, но превосходят свинцовые электроаккумуляторы.

Гидридный способ хранения хорошо согласуется с режимами работы двигателя посредством автоматического регулирования расхода отработавших газов через гидридный аккумулятор. Гидридная система позволяет наиболее полно утилизовать тепловые потери с отработавшими газами и охлаждающей водой. На автомобиле «Шевроле Монте-Карло» применена опытная гидридно-криогенная система. В этой системе запуск двигателя производится на жидком водороде, а гидридный аккумулятор включается после прогрева двигателя, причем для подогрева гидрида используется вода из системы охлаждения.

В довоенной Германии в опытной гидридной системе, разработанной фирмой «Даймлер-Бенц», были применены два гидридных аккумулятора, один из которых - низкотемпературный - поглощает тепло из окружающей среды и работает как кондиционер, другой - нагревается охлаждающей жидкостью из системы охлаждения двигателя. Время, необходимое для зарядки гидридного аккумулятора, зависит от количества времени, необходимого для отвода тепла. При охлаждении водопроводной водой время полной заправки гидридного аккумулятора емкостью 65 л, содержащего 200 кг сплава FeTi и поглощающего 50 м3 водорода, составляет 45 мин, причем за первые 10 мин происходит 75%-ная заправка.

Преимущества водорода

Главными преимуществами водорода как топлива в настоящее время являются неограниченные запасы сырья и отсутствие или малое количество вредных веществ в отработавших газах.

Сырьевая база для получения водорода практически неограничена. Достаточно сказать, что во вселенной это самый распространенный элемент. В виде плазмы он составляет почти половину массы Солнца и большинства звезд. Газы межзвездной среды и газовые туманности также в основном состоят из водорода.

В земной коре содержание водорода составляет 1% по массе, а в воде - самом распространенном на Земле веществе - 11,19% по массе. Однако свободный водород встречается крайне редко и в минимальных количествах в вулканических и других природных газах.

Водород является уникальным топливом, которое добывается из воды и после сгорания вновь образует воду. Если в качестве окислителя применять кислород, то единственным продуктом сгорания будет дистиллированная вода. При использовании воздуха к воде добавляются окислы азота содержание которых зависит от коэффициента избытка воздуха.

При использовании водорода не требуются ядовитые свинцовые антидетонаторы.

Несмотря на отсутствие в водородном топливе углерода, в отработавших газах из-за выгорания углеводородных смазок, попадающих в камеру сгорания, может содержаться незначительное количество окиси углерода и углеводородов.

Фирмой «Дженерал Моторс» (США) в 1972 г. были проведены соревнования автомобилей на наиболее чистый выхлоп. В соревнованиях приняли участие аккумуляторные электромобили и 63 автомобиля, работавших на различных топливах, в том числе на газе - аммиаке, пропане. Первое место было присуждено конвертированному на водород автомобилю «Фольксваген », отработавшие газы которого оказались чище окружающего атмосферного воздуха, потребляемого двигателем.

При работе двигателей внутреннего сгорания на водороде вследствие значительно меньшего выделения твердых частиц и отсутствия органических кислот, образующихся при сгорании углеводородных топлив, увеличивается срок службы двигателя и сокращаются ремонтные расходы.

О недостатках

Газообразный водород обладает высокой диффузионной способностью - его коэффициент диффузии в воздухе более чем в 3 раза выше по сравнению с кислородом, двуокисью водорода и метаном.

Способность водорода проникать в толщу металлов, получившая название наводораживание, возрастает с повышением давления и температуры. Проникновение водорода в кристаллическую решетку большинства металлов на 4-6 мм при нагартовке снижается на 1,5-2 мм. Наводораживание алюминия, достигающее 15-30 мм, при нагартовке может быть снижено до 4-6 мм. Наводораживание большинства металлов практически полностью устраняется легированием хромом, молибденом, вольфрамом.

Углеродистые стали не пригодны для изготовления деталей, контактирующих с жидким водородом, так как становятся хрупкими при низких температурах, Для этих целей применяются хромоникелевые стали Х18Н10Т, ОХ18Н12Б, Х14Г14НЗТ, латуни Л-62, ЛС 69-1, ЛЖ МЦ 59-1-1, оловянофосфористая БР ОФ10-1, берилиевая БРБ2 и алюминиевые бронзы.

Криогенные (для низкотемпературных веществ) емкости для хранения жидкого водорода изготавливаются обычно из алюминиевых сплавов АМц, АМг, АМг-5В и др.

Смесь газообразного водорода с кислородом в широких пределах отличается склонностью к воспламеняемости и взрываемости. Поэтому закрытые помещения должны быть оборудованы детекторами, контролирующими его концентрацию в воздухе.

Высокая температура воспламенения и способность к быстрому рассеиванию в воздухе делают водород в открытых объемах по безопасности примерно равноценным природному газу.

Для определения взрывобезопасности при дорожно-транспортном происшествии жидкий водород из криогенной емкости проливали на землю, однако он мгновенно испарялся и не воспламенялся при попытках поджечь.

В США автомобиль «Кадиллак Эльдорадо», переоборудованный на водородное топливо, подвергался следующим испытаниям. В полностью заправленную гидридную емкость с водородом стреляли из винтовки бронебойными пулями. При этом взрыва не происходило, а бензобак при аналогичном испытании взрывался.

Таким образом, серьезные недостатки водорода - высокая диффузионная способность и широкая область воспламеняемости и взрываемости водородокислородной газовой смеси уже не являются причинами, препятствующими его применению на транспорте.

Перспективы

Как топливо водород уже применяется в ракетной технике. В настоящее время исследуются возможности его применения в авиации и на автомобильном транспорте. Уже известно, каким должен быть оптимальный водородный двигатель. Он должен иметь: степень сжатия 10-12, частоту вращения коленвала - не менее 3000 об/мин внутреннюю систему смесеобразования и работать при коэффициенте избытка воздуха α≥1,5. Но для реализации. такого двигателя нужно улучшить смесеобразование в цилиндре двигателя и выдать надежные рекомендации по конструированию.

Ученые прогнозируют начало широкого применения водородных двигателей на автомобилях не раньше 2000 г. До этого времени возможно применение добавок водорода к бензину; это позволит улучшить экономичность и снизить количество вредных выбросов в окружающую среду.

Представляет интерес перевод на водород роторно-поршневого двигателя, так как он не имеет картера и, следовательно, не взрывоопасен.

В настоящее время водород производят из природного газа. Использовать такой водород в качестве топлива невыгодно, дешевле сжигать в двигателях газ. Получение водорода разложением воды также экономически невыгодно из-за больших затрат энергии на расщепление молекулы воды Однако проводятся исследования и в этом направлении. Уже есть экспериментальные автомобили, снабженные собственной электролизной установкой, которая может подключаться к общей электросети; вырабатываемый водород накапливается в гидридном аккумуляторе.

На сегодняшний день стоимость электролитического водорода в 2,5 раза выше, чем получаемого из природного газа. Ученые объясняют это техническим несовершенством электролизеров и считают, что их КПД может быть увеличен в скором времени до 70-80%, в частности, за счет применения высокотемпературной технологии. По существующей технологии итоговый КПД электролитического производства водорода не превышает 30%.

Для прямого термического разложения воды требуется высокая температура порядка 5000 °С. Поэтому прямое разложение воды пока не осуществимо даже в термоядерном реакторе - трудно найти материалы, способные работать при такой температуре. Японским ученым Т. Накимурой для солнечных печей предложен двухступенчатый цикл разложения воды, не требующий столь высоких температур. Может быть, придет время, когда по двухступенчатому циклу водород будет вырабатываться гелиоводородными станциями, расположенными в океане, и ядерно-водородными станциями, вырабатывающими водорода больше, чем электроэнергии.

Как и природный газ, водород можно транспортировать по трубопроводам. Вследствие меньшей плотности и вязкости по одному и тому же трубопроводу при одинаковом давлении водорода можно перекачать в 2,7 раза больше, чем газа, однако затраты на транспортировку будут выше. Расходы энергии на транспортировку водорода по трубопроводам составят приблизительно 1% на 1000 кгс, что недостижимо для линий электропередач.

Водород можно хранить в газгольдерах с жидким затвором и в резервуарах. Во Франции уже есть опыт хранения под землей газа, содержащего 50% водорода. Жидкий водород можно хранить в криогенных емкостях, в гидридах металлов и в растворах.

Гидриды могут быть нечувствительны к загрязняющим примесям и способны селективно поглощать водород из газовой смеси. Это открывает возможность заправляться в ночное время от бытовой газовой сети, питаемой продуктами газификации угля.

Литература

  • 1. Владимиров А. Топливо больших скоростей. - Химия и жизнь. 1974, №12, с. 47-50.
  • 2. Воронов Г. Термоядерный реактор - источник водородного топлива. - Химия и жизнь, 1979, № 8, с. 17.
  • 3. Использование альтернативных топлив на автомобильном транспорте за рубежом. Обзорная информация. Серия 5. Экономика, управление и организация производства. ЦБНТИ Минавтотранса РСФСР, 1S82, вып. 2.
  • 4. Струминский В. В. Водород как топливо. - За рулем, 1980, Ко 8, с. 10-11.
  • 5. Xмыров В. И., Лавров Б. Е. Водородный двигатель. Алма-Ата, Наука, 1981.

Примечания

1. Редакция продолжает публикацию серии статей, посвященных перспективным видам топлива и проблемам экономии горючего (см. «КЯ» , ).

Где можно взять водород было известно давно, еще пару веков назад. Способ получения водорода был достаточно подробно описан в издании:
О. Д. Хвольсон, Курс физики, Берлин, 1923, тт. 3 и.

Оказывается, не нарушая никаких законов физики можно построить машину, которая будет производить тепло за счет положительной разности энергии сжигания водорода, и энергии затрачиваемой на получение его в процессе электролиза воды.

Конкретно, 2 гр водорода при сгорании выделяют 67.54 больших калорий тепла, а при электролизе раствора серной кислоты, при напряжении 0.1 вольта, на получение такого же количества водорода будет затрачено менее 5 больших калорий тепла. Суть состоит в том, что при электролизе не расходуется энергия разъединения молекулы воды на кислород и водород. Эта работа совершается без нашего участия межмолекулярными силами при диссоциации воды ионами серной кислоты. Мы расходуем энергию только на то, чтобы нейтрализовать заряды уже имеющихся ионов водорода и остатка SO- Количество выделившегося водорода зависит не от энергии, а только от количества электричества, равного произведению силы тока на время его прохождения.

При сжигании водорода выделяется именно та энергия, которую надо было бы совершить для того, чтобы оторвать молекулу водорода от кислорода в воздухе. А это и есть 67.54 больших калорий. Полученный избыток энергии может быть использован по разному.

Можно получать водород прямо на заправочных станциях и заправлять им автомобили.

В условиях дома, взяв из сети один киловатт час энергии, сможем получить 10 квт часов тепловой энергии для бытовых нужд. Это своеобразный усилитель энергии. Отпадет надобность в проводке газовых труб, теплотрассах и котельных. Энергия будет приготовлена прямо в квартире из воды, а отходами будет снова только вода.

В крупных промышленных установках, даже при 33% кпд, как и в атомных станциях сегодня, сжигая водород получим электрической энергии в несколько раз больше, чем было затрачено ее на получение этого водорода.

Привлекательно использование водорода, как топлива для автомобилей, ввиду его нескольких особых преимуществ:

  • при сгорании водорода в двигателе образуется практически только вода, что делает двигатель на водородном топливе наиболее экологически чистым;
  • высокие энергетические свойства водорода (1 кг водорода эквивалентен почти 4,5 кг бензина);
  • неограниченная сырьевая база при получения водорода из воды.

Использовать водород в качестве топлива для автомобилей можно несколькими разными способами:

  • можно использовать только сам водород;
  • можно использовать водород вместе с традиционными топливами;
  • можно применять водород в топливных элементах.

Конечно, возникают определенные технические трудности, которые необходимо решить. Лет 30 назад, академик А. П. Александров, вел семинар по водородной энергетике. На нем обсуждались уже технические проекты. Предполагалось, что атомная энергия будет использоваться для получения водорода, а он уже будет использоваться как топливо. Но очевидно скоро поняли, что атомная энергетика здесь вообще не нужна. Тогда и похерили все водородные проекты, потому что нужно было не водородное топливо, а плутоний.

Писательница Л. Улицкая, генетик по образованию, писала в «Общей газете» 16-22 мая 2002 г. «Романтический период в истории науки закончился. Я совершенно уверена, что дешевые источники электроэнергии давно уже разработаны и разработки эти лежат в сейфах нефтяных королей. Убеждена, сегодня наука так работает, что этого не могут не сделать. Но до тех пор, пока последнюю каплю нефти не сожгут, такие разработки не выпустят из сейфа, им не нужен передел денег, мира, власти, влияния».

До сих пор сторонники развития атомной энергетики ставят коронный вопрос: А где альтернатива атому? Следует ожидать яростного противодействия не только сторонников ядерной энергетики, но всего топливно- энергетического комплекса. Они не пожалеют сил и средств, чтобы закопать проблему водородного топлива вместе с ее энтузиастами.

Более 90% водорода получают в нефтеперерабатывающих и нефтехимических процессах. Также водород вырабатывается при превращении природного газа в синтез-газ. Процесс получение водорода электролизом воды – чрезвычайно дорогой, по затратам энергии он практически равен количеству энергии, получаемой при сгорании водорода в двигателе.

На сегодняшний день, практически весь вырабатываемый водород используется в различных нефтеперерабатывающих и нефтехимических процессах.

С воздухом водород устойчиво воспламеняется в широком диапазоне концентраций, что обеспечивает устойчивую работу двигателя на всех скоростных режимах.

В отработавших газах практически отсутствуют оксиды углерода (СО и СО2) и несгоревшие углеводороды (СН), но выброс оксидов азота вдвое превышает выброс оксидов азота бензинового двигателя.

Из-за высокой реакционной способности водорода есть возможность проскока пламени во впускной трубопровод и преждевременного воспламенения смеси. Из всех вариантов устранения этого явления самым оптимальным является впрыск водорода непосредственно в камеру сгорания.

Проблемой использования водорода в качестве моторного топлива является его хранение на автомобиле.

Система хранения сжатого водорода позволяет уменьшить объем бака, но не его массу из-за увеличения толщины стенки. Хранение жидкого водорода – сложная задача, учитывая его низкую температуру кипения. Жидкий водород хранят в емкостях с двойными стенками.

При хранении водорода в виде гидридов металлов, водород находится в химически связанном состоянии. Если в качестве гидрида металла использовать гидрид магния, соотношение между водородом и металлом-носителем составляет около 168 кг магния и 13 кг водорода.

Высокая температура самовоспламенения водородо-воздушных смесей затрудняет использование водорода в дизелях. Устойчивое воспламенение может быть обеспечено принудительным поджогом от свечи.

Трудности при использовании водорода и высокая его цена привели к тому, что разрабатывается комбинированное топливо бензин-водород. Использование бензино-водородных смесей позволяет на 50% снизить расход бензина при скорости 90 – 120 км/ч и на 28% при езде в городе.

— сайт —

Комментарии:

    Я за комбинированное топливо бензин-водород

    А я за то, что бы использовать мобильный реактор водорода, как описывается выше. И не надо боков и безопасно. В качестве безопасности как уже извесно, можно использовать гидрозатвор.

    Никто и никогда не сможет эапустить водород как топлво пока есть нефть….как можно получить или посмотреть чертежи об устаноке дпя печного отопления……….

    В начале статьи говорится о серной кислоте, потом невзначай упоминается вода. Так с какой жидкостью будем иметь дело и соответсвующие экологические неоднозначности?
    Я не химик, прошу ногами не пинать, если что-то упустил.

    Если использовать серную кислоту некой средней концентрации, то после получения электролизом из нее водорода надо концентрацию кислоты как-то удерживать. Можно просто доливать воды и по ареометру следить, но вода из водопровода далека от дистиллировки и испарение оксида серы-6 в негерметичной системе тоже наверняка будет происходить, все же газ. Сжигать же водород в получаемом параллельно кислороде, чтобы обеспечить герметичность, надо малыми порциями, но и это взрывонебезопасно. Идея хорошая, надо попробовать – электролит аккумуляторный доступен, как и электросеть.

    в вов на дерижаблях в лененграде использовали водород а позже из них же питали движки машин с лебёдками

    Забудьте, это все теория, на самом деле все правильно, только вот Водород по калорийности в 3 раза меньше скажем природного газа сответствено КПД такого двигетеля ниже в 3 раза чем скажем на природном газе,тоесть он будет гудеть на холостом, но не ехать.Так что о применении самодостаточного водородного топлива забудьте это утопия,а вот молекулярная интенсивикация топлива бензин,газ, солярав двигателях внутренего сгорания и вгазотурбинных установках это перспективно экономически оправдано так как КПД двигателей растет 2-3 разы,при сокращению расхода топлива на 38-50% скажем на 100 км реально.Все эти раскозни про газ Брауна,Майера и других ничто так каз законы физики пока работают тесть получить методом электролиза газ и на нм ездить не реально так как мощность борт сети авто не достаточно генератор типового авто выдает максимум ток в 7.5А, дляустойчивой работы электролизера необходимая сила тока хотябы в 2 разы больше,значить мы посадим акамулятор достаточно быстро и еще и уграем как минимум реле регулятор авто.Все приплыли. Но решение все же есть.Так как октановое число водорода 1000то соответствено его в двигатель подавать надо очень мало, тоесть довести силу тока в электролизере до 3-4 ампер и готовит бензиновую или топливною смесь не посредственно перед впрыском в камеру сгорания обогащая ее полученым гремучим газом.Как показала практика на автомобилях испытуемых Шкода Октавия,БМВ-520.,Опель Аскона и других на протяжении порядка5-7 лет экономия составляла до 50% в зависимости от вида топлива двигателя,Увеличелся моторесурс в 2 разы,мощность двигателя возросла как минимум на 50%,соответствено увеличелся крутящий момент.Интересное явление наблюдается расход по топливу практически одинаков что в городском что в загородном цыкле.Машина становится резвая и очеь шустрая, скорость при базовом двигателе Шкоды Октавия обемом 1.6 литра набирает скорость до ста км за 12 сек, с молекулярным интенсификатором за 7 сек…крейсерская максимальная скорость Октавии составила 195 км в час при заводских настройках лиш 120-130 с горки,на бензиновых двигателях убитых большим пробегом оказалось что свечи зажигания смеси становятся вечними,прошли без замены по 250 тыс пробега…

    Н- на ~75% даёт больше дж чем бензин и ~50%больше чем метан(могу ошибаться).
    Интересно, какое давления создает в цилиндре Н?

    HHO .prom.ua
    Там собирают электр.лизеры на продажу

    автомобиль на водородном топливе уже в эксплуатации. в мире более 100 тысяч автомобилей ездит на водороде.

    Интересно, кто автор этого шедевра? Сначала он пишет: «В условиях дома, взяв из сети один киловатт час энергии, сможем получить 10 квт часов тепловой энергии для бытовых нужд». Просто и со вкусом автор предлагает обыкновенный вечный двигатель. Немного ниже: «Процесс получение водорода электролизом воды – чрезвычайно дорогой, по затратам энергии он практически равен количеству энергии, получаемой при сгорании водорода в двигателе». По-видимому автор это писал разными руками, а правая рука не ведает, что пишет левая и наоборот….

    Юрий.
    Автор имел ввиду что для власть и имущество имущих генерация водорода наиболее выгодна при синтезе с другими веществами. Но опять же это целые цепочки технологических мероприятий не говоря уже об дорогих оборудованиях. Способов масса но вот рентабельность нужно считать. Я считаю что наиболее рентабелен именно электролиз ибо ветряная энергия очень дешевая. А все другие способы добычи газ.об-водорода могут быть не рентабельными из за износа оборудований и слож. Технолог. Проццесов..

Водородо-кислородную смесь, как самую энергетически емкую, предлагал использовать в двигателях К.Э. Циолковский еще в 1903 году. Водород уже применяют как топливо: для автомобилей (от полуторки до Тойоты "Мирай"), реактивных самолётов (от «Хейнкель» до Ту-155), торпед (от GT 1200A до "Шквала"), ракет (от "Сатурна" до "Бурана"). Новые аспекты открывает получение металлического водорода и практическое применение реактора Росси. В недалеком будущем развитие технологий получения дешевого водорода из сероводорода Чёрного моря и непосредственно из источников дегазации Земли. Не смотря на противодействие нефтяного лобби, мы неумолимо вступаем в водородную эру!

Изменяя своё потребление - мы вместе изменяем Мир!

«Плюсы» и «минусы» водородного топлива

Водородное топливо имеет ряд особенностей:

  • Теплоотдача водорода на 250% выше, чем у топливно-воздушной смеси.
  • После сжигания водородной смеси на выходе образуется только пар.
  • Реакция воспламенения происходит быстрее, чем с другими видами топлива.
  • Благодаря детонационной устойчивости, удается поднять степень сжатия.
  • Хранение такого топлива происходит в жидкой или сжатой форме. В случае пробоя бака водород испаряется.
  • Нижний уровень пропорции газа для вхождения в реакцию с кислородом составляет 4%. Благодаря этой особенности, удается настроить режимы работы двигателя путем дозирования консистенции.
  • КПД водородного двигателя достигает 90 процентов. Для сравнения, дизельный мотор имеет коэффициент полезного действия на уровне 50%, а обычный ДВС - 35%.
  • Водород - летучий газ, поэтому он попадает в мельчайшие зазоры и полости. По этой причине немногие металлы способны перенести его разрушительное влияние.
  • Возникает меньший уровень шума при работе двигателя.

Первый двигатель на водороде заработал в СССР в 1941 году!

Будете удивлены, но первый двигатель обычной «полуторки» заработал на водороде в блокадном Ленинграде в сентябре 1941 года! Молодому младшему техник-лейтенанту Борису Щелищу, руководившему подъемом аэростата заграждения, было приказано в отсутствии бензина и электричества наладить работу лебёдок. Поскольку аэростаты заполнялись водородом, ему пришла мысль использовать его как топливо.

Во время опасных опытов сгорели два аэростата, взорвался газгольдер, сам Борис Исаакович получил контузию. После этого для безопасной эксплуатации воздушно-водородной «гремучей» смеси он придумал специальный водяной затвор, исключавший воспламенение при вспышке во всасывающей трубе двигателя. Когда все наконец получилось, приехали военачальники, убедились, что система работает нормально, и приказали за 10 дней перевести все аэростатные лебедки на новый вид горючего. В виду ограниченности ресурсов и времени, Щелищ остроумно применил для изготовления гидрозатвора списанные огнетушители. И задача подъёма аэростатов заграждения была успешно решена!

Бориса Исааковича наградили орденом "Красной звезды" и командировали в Москву, его опыт использовали в частях ПВО столицы - 300 двигателей перевели на «грязный водород», было оформлено авторское свидетельство №64209 на изобретение. Таким образом был обеспечен приоритет СССР в развитии энергетики будущего. В 1942 году необычный автомобиль демонстрировался на выставке техники, приспособленной к условиям блокады. При этом его двигатель проработал 200 часов без остановки в закрытом помещении. Отработанные газы - обыкновенный пар - не загрязняли воздух.

В 1979 году под научным руководством Шатрова Е.В. творческим коллективом работников НАМИ в составе Кузнецова В.М. Раменского А.Ю., Козлова Ю.А. был разработан и испытан опытный образец микроавтобуса РАФ, работающий на водороде и бензине.


Испытания РАФ 22031 (1979 г.)

Подводные аппараты на перекиси водорода

В 1938-1942 годах на Кильских верфях под руководством инженера Вальтера построили опытную лодку У-80 работавшую на перекиси водорода. На испытаниях корабль показал скорость полного подводного хода 28,1 узла. Полученные в результате разложения перекиси пары воды и кислорода использовали в качестве рабочего тела в турбине, после чего удаляли их за борт.


На рисунке условно показано устройство подводной лодки с двигателем на перекиси водорода

Всего немцы успели построить 11 лодок с ПГТУ.

После разгрома гитлеровской Германии в Англии, США, Швеции и СССР проводились работы с целью довести замысел Вальтера до практической реализации. Была построена советская подлодка (проект 617) с двигателем Вальтера в конструкторском бюро Антипина.

«Это была первая подводная лодка СССР, перешагнувшая 18-узловую величину подводной скорости: в течение 6 часов её подводная скорость составляла более 20 узлов! Корпус обеспечивал увеличение глубины погружения вдвое, то есть до глубины 200 метров. Но главным достоинством новой подводной лодки была её энергетическая установка, явившаяся удивительным по тем временам новшеством. И не случайно было посещение этой лодки академиками И. В. Курчатовым и А. П. Александровым - готовясь к созданию атомных подводных лодок, они не могли не познакомиться с первой в СССР подводной лодкой, имевшей турбинную установку. Впоследствии, многие конструктивные решения были заимствованы при разработке атомных энергетических установок…» - писал Александр Тыклин.


Знаменитая ПОДВОДНАЯ РАКЕТО-ТОРПЕДА ВА-111 «ШКВАЛ».

Тем временем успехи атомной энергетики позволили более удачно решить проблему мощных подводных двигателей. И эти идеи успешно применили в торпедных двигателях. Walter HWK 573. (работающий под водой двигатель первой в мире управляемой противокорабельной ракеты «воздух-поверхность» GT 1200A для поражения корабля ниже ватерлинии). Планирующая торпеда (УАБ) GT 1200A имела подводную скорость 230 км/ч, являясь прототипом высокоскоростной торпеды СССР «Шквал». Торпеда ДБТ принята на вооружение в декабре 1957 года, работала на перекиси водорода и развивала скорость 45 узлов при дальности хода до 18 км.

Газогенератором через кавитационную головку создается воздушный пузырь вокруг корпуса объекта (парогазовый пузырь) и, вследствие падения гидродинамического сопротивления (сопротивления воды) и применения реактивных двигателей, достигается требуемая подводная скорость движения (100 м/с), превышающая в разы скорость самой быстрой обычной торпеды. Для работы используется гидрореагирующее топливо (щелочные металлы при взаимодействии с водой выделяют водород).

Ту-155 на водороде установил 14 мировых рекордов!

Во время ВОВ Фирма «Хейнкель» создала под двигатель Вальтера Walter HWK-109-509 с тягой 2000 кгс., работавший на перекиси водорода, целую линейку реактивных самолетов.

Вполне успешный, но, к сожалению, не ставший серийным опыт создания «экологических» самолетов у России был уже в конце 80-х годов прошлого столетия. Миру был представлен Ту-155 (экспериментальная модель Ту-154), работающий на сжиженном водороде, а затем и на сжиженном природном газе. 15 апреля 1988 года самолет был впервые поднят в небо. Он установил 14 мировых рекордов и выполнил порядка ста рейсов. Однако затем проект ушел «на полку».

В конце 1990-х по заказу «Газпрома» был построен Ту-156 с двигателями на сжиженном газе и традиционном авиационном керосине. Этот самолет постигла та же участь, что и Ту-155. Представляете, насколько тяжело бороться с нефтяным лобби даже Газпрому!

Водородомобили

Автомобили с двигателями, работающими на водороде, делятся на несколько групп:

  • Транспортные средства, работающие на чистом водороде или топливно-воздушной смеси. Особенность таких двигателей заключается в чистом выхлопе и увеличении КПД до 90%.
  • Машины с гибридным двигателем. Они обладают экономичным мотором, способным работать на чистом водороде или бензиновой смеси. Такие транспортные средства соответствуют стандарту Евро-4.
  • Автомобили со встроенным электродвигателем, питающим водородный элемент на борту транспортного средства.

Главной особенностью водородомобилей является способ подачи горючего в камеру сгорания и его воспламенения.

Уже выпускаются серийно такие модели водородомобилей, как:

  • Ford Focus FCV;
  • Mazda RX-8 hydrogen;
  • Mercedes-Benz A-Class;
  • Honda FCX;
  • Toyota Mirai;
  • Автобусы MAN Lion City Bus и Ford E-450;
  • гибридный автомобиль на два вида топлива BMW Hydrogen 7.

Серийный водородомобиль Тойота "Мирай".

Этот автомобиль может разогнаться до 179 км/ч, причем до 100 км/ч машина разгоняется за 9,6 секунды и, самое главное, она способна проехать без дополнительной дозаправки 482 км

Концерн БМВ представил свой вариант автомобиля Hydrogen . Новая модель протестирована известными деятелями культуры, бизнесменами, политиками и другими популярными личностями. Испытания показали, что переход на новое топливо не влияет на комфортабельность, безопасность и динамику транспортного средства. При необходимости виды горючего можно переключать с одного на другой. Скорость Hydrogen7 - до 229 км/час.

Honda Clarity - автомобиль от концерна Хонда, который поражает запасом хода. Он составляет 589 км, чем не может похвастаться ни одно транспортное средство с низким уровнем выбросов. На дозаправку уходит от трех до пяти минут.

Home Energy Station III - это компактный блок, включающий в себя топливные элементы, баллон для хранения водорода и риформер природного газа, извлекающий H2 из газовой трубы.

Метан из бытовой сети превращается этим аппаратом в водород. А он - в электричество для дома. Мощность топливных элементов в Home Energy Station составляет 5 киловатт. Кроме того, встроенные баллоны с газом служат своеобразными аккумуляторами энергии. Станция использует этот водород при пике нагрузки на домашнюю электросеть. Вырабатывает 5 кВт электроэнергии и до 2 м3 водорода в час.

К недостаткам водородомобилей можно отнести:

  • громоздкость силовой установки при использовании топливных элементов, снижающей маневренность автомобиля;
  • пока высокую стоимость самих водородных элементов из-за входящих в их состав палладия или платины;
  • несовершенство конструкции и неопределённость в материале изготовления баков для топлива не позволяющих долго хранить водород;
  • отсутствие заправок водородом, инфраструктура которых очень слабо развита во всём мире.

По мере серийного производства большинство этих конструктивных и технологических недостатков будут преодолены, а по мере развития добычи водорода, как полезного ископаемого, и сети заправок, существенно понизится его стоимость.

В 2016 году появился первый поезд на водородном топливе, являющийся детищем немецкой компании Alstom. Планируется, что новый состав Coranda iLint начнет движение по маршруту из Букстехуде в Куксхавен (Нижняя Саксония).

В будущем планируется заменить такими поездами 4000 дизельных составов Германии, перемещающихся по участкам дорог без электрификации.

Во Франции выпустили оригинальную модель велосипеда на водороде. (Французский Pragma). Заливаешь всего 45 грамм водорода и в путь! Расход топлива - примерно 1 грамм на 3 километра.

Водород в космонавтике

Как горючее в паре с жидким кислородом (ЖК) жидкий водород (ЖВ) был предложен в 1903 г. К. Э. Циолковским. Он является горючим, с самым большим удельным импульсом (при любом окислителе), что позволяет при равной стартовой массе ракеты выводить в космос гораздо большую массу полезного груза. Однако на пути применения водородного топлива стояли объективные трудности.

Первая - сложность его сжижения (получение 1 кг ЖВ обходится в 20-100 раз дороже 1 кг керосина).

Вторая - неудовлетворительные физические параметры - чрезвычайно низкая температура кипения (-243°С) и очень малая плотность (ЖВ в 14 раз легче воды), что отрицательно сказывается на возможности хранения этого компонента.

В 1959 г. НАСА выдало крупный заказ на проектирование кислородно-водородного блока "Центавр". Он использовался в качестве верхних ступеней таких РН, как "Атлас", "Титан" и тяжелой ракеты "Сатурн".

Из-за крайне низкой плотности водорода, первые (самые большие) ступени ракет-носителей использовали другие (менее эффективные, но более плотные) виды горючего, например керосин, что позволяло уменьшить размеры до приемлемых. Пример такой «тактики» - ракета «Сатурн-5», в первой ступени которой применялись компоненты кислород/керосин, а во 2-й и 3-й ступени - кислородно-водородные двигатели J-2, тягой по 92104 т каждый.

Термический реактор Росси

Итальянский изобретатель Андреа Росси при поддержке научного консультанта физика Серджо Фокарди, провели эксперимент:

В герметичную трубку поместили насколько грамм никеля (Ni) добавили 10% алюмогидрида лития, катализатор и заполнили капсулу водородом (Н2). После нагрева до температуры порядка 1100-1300оС, парадоксально, но трубка оставалась в горячем состоянии на протяжении целого месяца, а выделенная тепловая энергия, в несколько раз превышала затраченную на нагрев!

На семинаре в Российском университете дружбы народов (РУДН) в декабре 2014 года, было доложено об успешном повторении этого процесса в России:

По аналогии выполнена трубка с топливом:

Выводы по эксперименту: выделение энергии в 2,58 раза больше затраченной электрической энергии.

В Советском Союзе работы по ХЯС велись с 1960 года в некоторых КБ и НИИ по заказу государства, но с "перестройкой" финансирование прекратилось. На сегодняшний день эксперименты успешно проводятся независимыми исследователями – энтузиастами. Финансирование осуществляется на личные средства коллективов граждан России. Одна из групп энтузиастов, под руководством Самсоненко Н.В., работает в здании «Инженерного корпуса» РУДН.

Ими был проведен ряд калибровочных тестов с электронагревательными приборами и реактором без топлива. В этом случае, как и следовало ожидать, выделяемая тепловая мощность равна подводимой электрической мощности.

Основная проблема – спекание порошка и локальный перегрев реактора, из-за чего нагревательная спираль перегорает и даже сам реактор может прогореть насквозь.

Но А.Г. Пархомову, удалось сделать длительно работающий реактор. Мощность нагревателя 300 Вт, КПД=300%.

Реакция синтеза 28Ni + 1H (ион) = 29Cu + Q согревает Землю изнутри!

Внутреннее ядро Земли содержит никель и водород, при температуре 5000К и давлении 1,36 Мбар, поэтому есть все условия для протекания реакции синтеза в недрах Земли, экспериментально воспроизведённой в реакторе Росси! В результате этой реакции получается медь, соединения которой находят в «черных курильщиках» зонах расширения Земли (срединно-океанических хребтах) в потоке богатом водородом.

Темный водород

В 2016 году учёные из США и Великобритании, создав при мгновенном сжатии давление 1,5 млн. атмосфер и температуру в несколько тысяч градусов, смогли получить третье промежуточное состояние водорода, при котором он одновременно имеет свойства и газа, и металла. Он получил название «тёмный водород», так как в этом состоянии он не пропускает видимый свет, в отличие от инфракрасного излучения. "Тёмный водород", в отличие от металлического, идеально вписывается в модель строения планет-гигантов. Он объясняет, почему их верхние слои атмосферы значительно теплее, чем должны быть, перенося энергию от ядра, а поскольку он обладает значительной электропроводностью, то играет ту же роль, что и внешнее ядро на Земле, формируя магнитное поле планеты!

Генерация водорода из глубин Черного моря

Бог одарил землю Крыма не только красивейшей и разнообразной природой, но и достаточными запасами различных ископаемых, в том числе и углеводородов. Но наш полуостров буквально "купается" в самом большом на планете водном хранилище природных газов, коим является Чёрное море.

Глубинные слои - ниже 150м, состоят из водородосодержащих соединений, основную часть которых составляет сероводород. По приблизительным оценкам, общее содержание сероводорода в Черном море может достигать 4.6 млрд. т, что, в свою очередь, служит потенциальным источником 270 млн. т водорода!

Запатентованы несколько способов разложения сероводорода с получением водорода и серы (H2S <=> H2 + S – Q), включающий контактирование сероводородсодержащего газа через слой твердого материала, способного разлагать его с выделением водорода и образованием серосодержащих соединений на поверхности материала, при давлении 15 атмосфер и температуре 400oС.

Наиболее перспективным, представляется разработка специальных гидрофобных мембран-фильтров, отделяющих водород от других газов прямо на глубине. Ведь мельчайшие из молекул легко просачиваются через металлы и даже в гранитных массивах живут колонии бактерий питающихся водородом!

Давайте помечтаем... Представим себе, что лет через десять на одном из мысов южного побережья Крыма, где морское дно резко понижается до глубин более 200 метров, будет построена небольшая станция. Из моря к ней протянутся рукава труб, на концах которых будут находиться сепараторы сероводорода. Водород после очистки поступит в сеть заправок автотранспорта и на когенераторную теплоэлектростанцию. Рядом с заводом разместиться ферма, где в водородной атмосфере будут выращивать анаэробные микроорганизмы, митоз которых происходит на порядок быстрее их обычных собратьев. Из их биомассы будут производить корм для скота и удобрения.

Мир неумолимо вступает в водородную эру!

Советник президента РФ академик РАН Сергей Глазьев подчеркивал: "Каждый из экономических циклов Кондратьева характеризуется своим энергоносителем: сначала дрова (органический углерод), уголь (углерод), потом нефть и мазут (тяжелые углеводороды), затем бензин и керосин (средние углеводороды), сейчас газ (легкие углеводороды), а основным энергоносителем следующего экономического цикла должен стать чистый водород!"

Применения водорода обширны, многогранны, энергетически выгодны, экологичны, и очень перспективны. Уже наши дети будут ездить на серийных автомобилях на водороде, использовать алмазные микропроцессоры, сделанные по водородной технологии, металлический водород совершит революцию в космонавтике, а развитие реакторов Росси - в энергетике!

Признание теории изначально гидридной Земли (В.Н.Ларина) приведёт к открытию ископаемых месторождений Н2, что сильно удешевит его получение. И не смотря на сопротивление "удушающих" Землю вредными выбросами нефтяных лоббистов, мы неизбежно вступаем в водородную эру!

Сывороткин В.Л., МГУ