Какой моторесурс дизельного двигателя. Самый надежный дизельный двигатель производства япония Номинальный и фактический ресурс мотора

Есть у японских производителей надежные дизельные двигатели. И какой же самый надежный дизельный двигатель из всех надежных в Японии?

Давайте рассмотрим наиболее распространенные современные дизельные двигатели японского автопрома.

Что из себя представляют эти дизеля, какие слабые и сильные стороны японских дизелей. Они сейчас доминируют в основном в Европе, но довольно часто стали появляться и в России.

Но, к сожалению у них тоже есть проблемы, когда их пробеги переваливают за сто тысяч километров пробега, и даже у некоторых до ста тысяч.

Осторожность поставок дизельных моторов из Японии обусловлена их капризному отношению к топливу. Их топливная система довольно слабая к применению нашего дизельного топлива.

Еще одна проблема, это наличие запасных частей. Не оригинальных зап.частей от надежных производителей практически нет. Китайские появляются, но качество их оставляет желать лучшего и совсем не соответствует японскому качеству.

Отсюда и продиктована их очень высокая цена, много выше чем на немецкие зап.части. В Европе много заводов, выпускающих запасные части достойного качества и по ценам, значительно ниже, чем оригинальные.

Самый надежный дизельный двигатель из Японии

Так всё же какой самый надежный дизельный двигатель из Японии? Давайте выстроим по ранжиру ТОП-5 самых лучших дизельных двигателей.

5 место

На пятое место смело можно поставить двигатель объемом 2,0 литра Субару (Subaru). Четырехцилиндровый, турбированный, оппозитный, 16-ти клапанный. Система впуска Common Rail.

Нужно сказать, это единственный в мире оппозитный дизельный двигатель.

Оппозитный двигатель, это когда взаимные пары поршней работают в горизонтальной плоскости. В такой компоновке не требуется тщательная баласировка коленвалов.

Слабые стороны этого двигателя, это двухмассовый маховик, он выходил из строя даже до пяти тысяч километров пробега. Растрескивание коленчатого вала, до 2009 года разрушались коленчатые валы и опоры вала.

Этот двигатель очень интересен по своей конструкции, с хорошими характеристиками, но отсутствие на такие двигатели зап.частей сводит на нет его преимущества. Поэтому ему в японском ряде дизелей отводим пятое почетное место.

4 место

На четвертое место воодрузим двигатель Mazda 2,0 MZR-CD. Этот дизель стали выпускать с 2002 года, и устанавливать на автомобиль Mazda 6, Mazda 6, MPV. Это был первый мотор Мазды с системой Common Rail.

Четыре цилиндра, 16 клапанов. Две версии — 121 л.с. и 136 л.с., причем оба развивали момент силы 310 Нм при 2000 об/мин.

В 2005 году пережил модернизацию, с усовершенствованной системой впрыска и новым ТНВД. Снижена степень сжатия и адаптация мотора с катализатором выброса вредных газов. Мощность стала 143 л.с.

Через два года вышла версия с мотором в 140 л.с., в 2011 году этот двигатель исчез из линейки устанавливаемых двигателей по неизвестным причинам.

Этот двигатель спокойно выхаживал 200 000 километров, после чего надо было менять турбину и двухмассовый маховик.

При покупке следует внимательно изучать его историю, а лучше снять поддон и посмотреть маслосборник.

3 место

Тоже маздовский двигатель, Mazda 2,2 MZF-CD. Тот же двигатель увеличенного, но увеличенного объема. Инженеры постарались устранить все косяки старого двухлитрового двигателя.

Кроме увеличенного объема, модернизрована система впрыска , установлена другая турбина. На этом моторе они поставили пьезофорсунки, изменили степень сжатия и кардинально подвергли изменениям сажевый фильтр из-за которого были все проблемы предыдущей модели двухлитрового двигателя.

Но всемирная борьба за экологию, как в Европе так и в Японии, добавляет гимороя всем двигателям, так и на этом устанавливается система, с добавлением мочевина в дизельную топливную смесь.

Это все снижает выхлоп до Евро5, но как всегда, у нас в России это прибавляет проблем всем без исключения современным дизельным двигателям. Это просто решается у нас, выкидывается сажевый фильтр и глушится клапан дожигания несгоревшего выхлопа.

В остальном двигатель надежный и неприхотливый

2 место

Двигатель Toyota 2.0/2.2 D-4D.

Первый двухлитровый Toyota 2.0 D-4D CD появился в 2006 году. Четырехцилиндровый, восьми-клапанный, чугунный блок, ременный привод ГРМ, 116 л.с. Двигателя шли с индексом «CD».

Жалобы на этот двигатель были очень редки, все они сводились только к форсункам и к системе рециркуляции выхлопных газов. В 2008 году был снят с производства, а взамен был пущен новый, с объемом 2,2 литра.

Toyota 2.0/2.2 D-4D AD

Уже стали делать цепным, на четыре цилиндра уже 16 клапанов. Блок стали делать алюминиевый с чугунными гильзами. Индекс этого двигателя стал «AD».

Двигателя выпускаются как 2,0 литров, так и 2,2.

Самые хорошие отзывы о таком двигателе, и хорошая отдача, и малый расход топлива. Но были и жалобы, основная из них, это окисление алюминиевой головки в месте прикосновения с прокладкой ГБЦ, примерно в период 150-200 тыс.км. пробега.

Замена прокладки головки блока не помогает, только шлифовка ГБЦ и блока, а эта процедура возможна только со снятием двигателя. И такой ремонт возможен только один раз, второй шлифовки головки и блока мотор не выдержит, глубина будет критичной с возможностью встречи клапанов с головкой. Поэтому, если мотор проходил 300-400 тысяч километров, с одной шлифовкой, его только на замену. Хотя это очень приличный ресурс.

Toyota в 2009 году решила эту проблему, с такими неисправностями они даже меня ли по гарантии моторы на новые за свой счет. Но проблема, очень редко, но встречается. В основном у тех, кто не слабо зажигает на самой сильной версии этой модели двигателя 2,2 литра.

Такие двигатели до сих пор выпускаются и устанавливаются на различные модели автомобилей: Raf4, Avensis, Corolla, Lexus IS и другие.

1 место

Дизельный мотор Honda 2.2 CDTi. Самый надежный малолитражный дизельный двигатель. Очень производительный и очень экономичный дизельный двигатель.

Четырехцилиндровый, 16-ти клапанный, с турбонаддувом переменной производительности, с системой впрыска Common Rail, гильзованный алюминиевый блок.

Форсунки применяются Bosch, а не капризные и дорогие японские Denso.

Предшественник этого двигателя был построен еще в 2003 году с маркировкой 2.2 i-CTDi. Он оказался очень удачным. Беспроблемный, динамичный и экономичный в потреблении топлива.

Современный рассматриваемый двигатель Honda 2.2 CDTi появился в 2008 году.

Типичных неисправностей конечно не миновал, но все они встречались крайне редко. Трещины выпускного коллектора, но они возникали в первых выпусках, японцы отреагировали и в последующих выпусках такого не наблюдалось.

Иногда встречались неисправности натяжителя цепи газораспределительного механизма. Так же иногда преждевременно появлялся люфт вала турбины.

Все эти неисправности возникали от чрезмерных постоянных нагрузок и плохого обслуживания.

Этот двигатель хондовцы устанавливали на моделях Honda Civic, Accord, CR-V и других.

Безусловно, этот двигатель обладает самым меньшим числом отказов и поломок по отношению ко всем остальным моторам японских автопроизводителей.

Ставим ему пять баллов из пяти, присваиваем ему Первое почетное место и желаем вам иметь на своем автомобиле подобный.

В середине 2000-х годов инженеры Тойота заканчивают разработку нового дизельного двигателя, в результате на конвейере автоконцерна запускается производство двигателей Тойота 1AD-FTV и 2AD-FTV. Эти силовые агрегаты, рабочим объемом 2 и 2,2 литра, соответственно, становятся самым массовым тойотовским дизелем конца 2000-х для автомобилей Toyota RAV4 и Toyota Corolla Verso, Avensis. В нашем обзоре мы рассмотрим особенности более редкого, по сравнению с двухлитровой версией, двигателя 2 AD-FTV (2,2 литра).

Характеристики и особенности конструкции

Двигатель 2AD-FTV - это четырехцилиндровый рядный силовой агрегат, имеющий по 4 клапана на цилиндр (с гидрокомпенсаторами), цепной привод механизма ГРМ, оборудованный турбиной системы VGT (изменяемая геометрия направляющего аппарата) с масляным охлаждением и системой питания Common Rail (DENSO). Отличительная особенность дизельного двигателя тойота 2,2 литра - наличие балансирного механизма, приводимого в движение шестерней коленчатого вала. В основу мотора легла новая для того времени, а теперь используемая большинством автопроизводителей, "одноразовая конструкция" - легкосплавный блок цилиндров с чугунными гильзами, не предусматривающая капитальный ремонт. Тем не менее, эти моторы считаются достаточно надежными и позволяют автомобилю выкатывать до 400-450 тыс. километров.


Форсунки Denso, которыми комплектуются дизели 2AD-FTV, зарекомендовали себя как очень надежный элемент топливной системы. Они не доставляют проблем до 200-250 тысяч км пробега, а после этого, в большинстве случаев, легко проходят восстановление-профилактику и продолжают исправно работать. Правда, и стоят форсунки этой фирмы немало - одна новая форсунка обойдется вам около 20 000 рублей. После модификации двигателя в 2009 году (новый двигатель получил маркировку 2AD-FHV) в топливной системе стали использоваться пьезоэлектрический форсунки, которые уже не поддаются восстановлению.

Типичные неисправности

Самая распространенная неисправность дизельных двигателей тойота 2,2 литра 2AD-FTV, выпущенных до 2009 года, - эрозия блока двигателя на стыке с ГБЦ в результате взаимодействия металла и охлаждающей жидкости. В результате на многих двигателях жидкость из системы охлаждения начинает попадать в масло, как следствие - дорогостоящий капитальный ремонт. Хотя мотор 2AD-FTV устанавливался на несколько моделей Тойота, проблемы с эрозией блока чаще всего встречались на Toyota Avensis 2-го поколения, часть автомобилей была отозвана производителем для проведения профилактики - шлифовки блока и замены прокладки. Наличие или отсутствие такой проблемы также напрямую зависит и от условий эксплуатации двигателя.


Конструктивно двигатели 2AD-FTV относятся к "прожорливым" в отношении масла силовым агрегатам, т.е. предполагают достаточно высокий расход масла, а это в свою очередь, влечет за собой целый ряд потенциально возможных и регулярно встречающихся неприятностей, связанных с повсеместным образованием нагара. Из-за этого сокращается ресурс клапана ЕГР, он требует регулярной чистки. При использовании некачественного масла нагар быстро образуется и на поршнях, что увеличивает риск серьезных повреждений механической части силового агрегата.

Также к типичным сложностям, возникающим в процессе эксплуатации дизельного двигателя Тойота 2,2 2 AD-FTV можно отнести:

В целом, двигатель 2AD-FTV нельзя отнести к "миллионникам", но нормальный для дизельного мотора ресурс этот силовой агрегат отрабатывает. В нашем интернет-магазине вы можете приобрести контрактный двигатель тойота 2,2 2AD-FTV 2008 года из Испании с подтвержденным оригинальным пробегом 92 тысячи км. Состояние двигателя отличное, автомобиль-донор поврежден пожаром со стороны багажника - моторный отсек и двигатель не затронут.

Странно, несмотря на то, что TOYOTA входит в тройку крупнейших мировых производителей автомобилей, ее продукция крайне различается по качеству между различными моделями двигателей. И если отдельные марки дизельных двигателей явно недоработаны, то другие могут считаться верхом надежности и совершенства. Такого разброса качества я не встречал, пожалуй, ни у одного другого японского автопроизводителя.

1N, 1NT - дизельный двигатель объемом 1,5 литра, предкамерный, с приводом распредвала и ТНВД ремнем. Устанавливается на самых маленьких микролитражках - Corsa, Corolla II, Tersel и так далее.
Конструктивных недоработок нет, кроме одного - маленький объем двигателя. К сожалению, этот недостаток является и основной бедой всех маленьких дизелей. Срок службы всех дизельных двигателей меньше 2,0 литра крайне низок. Ну не ходят такие дизеля долго, и все тут! Вся причина в очень быстром износе ЦПГ и резком падении компрессии. Хотя, если разобраться, и сами-то микролитражки тоже долго не ходят, сыпется все - подвеска, рулевое,...

Прочитав вышеперечисленное, вы, наверное, схватитесь за голову и заявите:"Да нафиг мне такие машины!" Смею вас уверить, что наши Жигули (не говоря о других марках) сыпятся намного чаще. Все познается в сравнении. Поэтому не сильно то слушайте меня, когда буду хаять японскую технику. Это сравнение с качественными автомобилями, а не с наборами запчастей "Сделай сам", которые бегают у нас по улицам под марками "Жигули", "Волга", "Москвич".

1C, 2C, 2CT - дизельные двигателя объемом 1,8 и 2,0 литра соответственно, предкамерные с приводом ТНВД и распредвала ремнем.
Слабые стороны - головка, турбина, быстрый износ поршневой и клапанов. Как ни странно, но это в основном не конструктивная недоработка самого двигателя. Причина кроется в конструктивной непродуманности установки данных двигателей на автомобиль.

При упоминании двигателя 2CT большинство мотористов в один голос заявят:"Да у него головки постоянно в трещинах!" Действительно, перегретые в трещинах головки довольно частое явление у этих двигателей. Однако, причина не в некачественном изготовлении головок.

Лет пять назад мы спорили с моим хорошим знакомым, топ-менеджером Владивостокского TOYOTA-сервиса, о причине этого явления на двигателях 2CT и 2LT. В тот момент он утверждал, что причина кроется в некачественных охлаждающих жидкостях, применяемых у нас. Возможно, доля истины в его утверждениях была. Однако, это не объясняло того факта, что у многих контрактных двигателей 2CT и особенно 2LT, прибывших из Японии, присутствовали трещины головки блока. В этом случае, пришлось бы утверждать, что и их охлаждающие жидкости некачественны.

Причина многочисленных перегревов данных двигателей кроется значительно глубже, а с другой стороны лежит на самой поверхности. Нагрев, и даже перегрев двигателя, не являются причиной трещин в головке блока. Причиной появления трещин является резкий перепад температур в области головки блока и, как следствие, - большие внутренние напряжения, возникающие в этих местах. При наличии достаточного количества охлаждающей жидкости местных перегревов не происходит.

В данном случае, кроме того, что эти двигателя крайне теплонапряженны, у них присутствует один существенный недостаток, который и является основной причиной образования трещин. Расширительные бачки для охлаждающей жидкости в обеих случаях стоят ниже уровня головки блока. В результате, при нагреве двигателя охлаждающая жидкость, расширяясь, вымещается в расширительный бачок. При охлаждении она должна под действием разряжения возвратиться в систему охлаждения двигателя. Однако, если клапан на заливной пробке радиатора будет хоть незначительно негерметичен, вместо охлаждающей жидкости в систему охлаждения попадет не тосол, а воздух из атмосферы. В результате, пузырьки воздуха окажутся в головке блока, как раз в верхней ее части, которая наиболее теплонапряженна, что и приведет к местному перегреву и образованию трещин. Ну а дальше процесс лавинообразно нарастает. Внутренние напряжения вызывают коробление самой головки, в результате, прокладка не способна герметизировать уплотнения, и пузырение все больше и больше возрастает.

А дальше происходит следующее. Как правило, на этих двигателях установлены турбины с водяным охлаждением. Так как двигатель перегревается, а водяная магистраль заполнена воздухом, происходит перегрев и турбины. В результате, масло, которое работает в тяжелых температурных условиях, c одной стороны разжижается - масляный клин в сопряжениях уменьшается, с другой стороны, коксуется в масляных подводящих каналах и, как следствие, происходит еще большее масляное голодание турбины (да и не только ее). Турбина, как правило, после таких экстремальных условий долго не ходит.

А выход-то из этих нелепых ситуаций довольно прост. Достаточно установить расширительный бачок выше уровня головки блока и она не будет завоздушиваться, а значит, и значительно снизится вероятность отказов вследствии трещин в головке. В однотипном двигателе LD20T-II на Ниссан-Ларго именно так и сделано. Расширительный бачок в виде грелки установлен над двигателем и проблема трещин головки блока практически снята.
Один из моих клиентов пришел к точно такому же выводу. Когда в очередной, третий раз, у него лопнула головка на Таун-Эйсе, он сварил из железа расширительный бачок, установил его за пассажирским сиденьем, - и с того времени проблемы исчезли. Даже в жару, при движении в гору критического перегрева не происходит.

Второй типичный дефект двигателя 2C, 2CT - это исчезновение компрессии в отдельных цилиндрах - чаще всего это 3-ий и 4-ый цилиндры. Основная причина - это негерметичность воздушных трубопроводов от воздушного фильтра к турбине или воздушному коллектору. Пыль, попадающая в эти щели, образует вместе с маслом, проникающим из трубки отсоса картерных газов, отличную абразивную смесь, которая изнашивает как цилиндро-поршневую группу, так и тарелку впускного клапана. В результате, тепловые зазоры во впускных клапанах исчезают, а следовательно исчезает и компрессия в двигателе.

Еще одной причиной исчезновения компрессии является неисправность системы рециркуляции выпускных газов. Сажа с маслом также является хорошим абразивом. В некоторых случаях впускные коллектора покрыты слоем вязкой сажи толщиной свыше одного сантиметра.

Особенность двигателей 2C и 2CT - это гораздо меньший износ двигателей, устанавливаемых на легковые автомобили по сравнению с их аналогами на автобусах. Значительно меньшие нагрузки объясняют этот фактор.
В последние годы на эти двигателя стали устанавливать ТНВД с электронным управлением (2C-E, 2CT-E). Несмотря на то, что при переходе на электронное управление ТНВД наблюдаются явные преимущества: уменьшение расхода топлива, снижение токсичности, более равномерная и тихая работа двигателя, имеются и явно отрицательные стороны. К сожалению, надо признать, что в подавляющем большинстве сервисов нет ни оборудования, позволяющего диагностировать и регулировать в полном объеме подобные ТНВД; ни специалистов, которые могли бы проводить эти работы; ни запчастей к данным аппаратурам, так как DENSO не поставляет большинство позиций по этим ТНВД.

Единственное, что радует, в последнее время произошел некоторый прорыв в информационном обеспечении по данному вопросу. Возможно, эти ТНВД в ближайшее время станут также ремонтопригодны, как и обычные механические.

3C, 3C-E, 3CT-E - более современные дизельные двигателя из того же ряда, что и предыдущие, но объемом 2,2 литра. На настоящий момент явных отрицательных сторон не отмечено. поскольку объем больше - мощность также ощутимо выше, что в результате отражается на меньшей нагруженности самого двигателя, так как устанавливаются они на автомобили, сопоставимые по массе с более старыми моделями.

L, 2L - двигатели старого образца объемом 2,2 и 2,5 литра выпускались до 1988 года включительно. Распредвал передавал усилие на клапана через коромысла. Очень древний, и хотя до сих пор еще иногда встречается, рассматривать его не стану, так как найти сейчас такой двигатель в хорошем состоянии - большая редкость.

2L, 2LT, 3L нового образца - выпускаются с конца 1988 года. Объем двигателя 2,5 и 2,8 литра соответственно. 2LT - турбованный. Распредвал нажимает на клапана непосредственно через стаканы. Несмотря на то, что название этого двигателя перешло от предыдущего, между ними нет практически ничего общего.
Надежность этих двигателей очень сильно различается. Если нетурбованные двигателя 2L и 3L довольно надежны, особенно в простейшей комплектации для Хайса, то 2LT имеет те же недостатки, что и 2CT: турбина, перегрев головки.

2LT-E - выпускается с 1988 года, до этого выпускался 2LTH-E. Механическая часть практически таже, что и у 2LT, за исключением коленвала, блока и системы датчиков с ТНВД. Соответственно, теже недостатки, что и у 2LT(по механической части) и 2CT-E (электронная часть и ТНВД).

5L - двигатель относительно новый и пока не могу дать никаких рекомендаций.

1KZ-T - трехлитровый дизель. Привод ТНВД - шестеренчатый, распредвала - ремнем. Управление ТНВД - механическое. Явных дефектов нет, единственное - тяжело найти запчасти и они очень дорогие в сравнении с 2LT. Однако, если двигателя 2LT для Сурфа и Раннера явно недостаточно, то с этим двигателем их не узнать, приемистость на уровне легкового автомобиля.

1KZ-TE - тот-же двигатель, что и 1KZT, но электронное управление ТНВД. Найти топливную аппаратуру б/у в хорошем состоянии практически невозможно, также как и новую плунжерную пару и другие запчасти для ТНВД. А новая аппаратура уж больно дорого стоит.

1HZ - шестицилиндровый двигатель, нетурбованный, предкамерный, объем 4,2 литра. Двигатель устанавливается на Land Cruser 80 и 100, а также на автобусе Коэстер.

Это один из лучших дизелей, из тех, что я встречал. Его надежность, долговечность и экономичность просто удивляют.
Лет семь назад делал ТНВД на этот двигатель. Была изношена плунжерная пара, двигатель перестал заводиться. Дефект, при нашем качестве топлива, довольно распространенный, удивляться было нечему. Когда уже устанавливал аппаратуру, разговорились с водителем. Он рассказал, что работает на этом Land Cruser с момента его покупки, за это время ничего с двигателем не делал, только четыре раза поменял ремень газораспределения. Я сначала не понял:"А зачем ремни-то так часто меняете?" Он мне:"Так ведь положено через каждые 100 тысяч километров менять, сейчас на ней 420 тысяч." Вот здесь я и утух. В голове сразу пробежали неприятные мысли об отсутствии компрессии в двигателе, тем более, что машина эксплуатировалась в леспромхозе, где кроме Камазов да Кразов ничто и не ездит. "Толку-то, что я отремонтировал аппаратуру, если не будет компрессии - двигатель все равно не заведется. А при таком пробеге и такой эксплуатации ее наверняка не будет!" Однако вслух все это говорить не стал. Каково-же было мое удивление, когда одев ремень газораспределения, стал вращать коленчатый вал. Вращаешь его по ходу движения, а он назад возвращается - компрессия как у нового. Тогда дизельного компрессометра у меня еще не было и усилие вращения было основным критерием состояния двигателя. После прокачки ТНВД и трубок двигатель завелся с полоборота даже с неточно установленным зажиганием. В тот раз я посчитал это случайностью - может двигатель попался такой неубиваемый, может водитель за ним следил от души. Однако, когда подобное стало встречаться регулярно, понял, что пробег в 700-800 тысяч километров для этого двигателя - не предел.

Проблемы у этого двигателя возможны только по причине, если сознательно убивать его всякой дрянью. Например:
- загибание шатунов из-за того, что заехали глубоко в воду и она попала через воздухопроводы в камеру сгорания (гидроудар);
- при износе плунжерной пары и плохом запуске начинают использовать эфир (разваливаются поршня);
- заливают в бак бензин случайно или для улучшения запуска (прогорают поршня, клапана);
- перегрев двигателя вследствие отсутствия охлаждающей жидкости;
и так далее.

Неделю назад ко мне снова подъехал один из старых клиентов на Land Cruser. Плунжерная пара в очередной раз изношена. Компрессия в среднем по 30. Пробег более миллиона километров (сам наездил). В двигателе один раз заменил несколько поршней без расточки блока, и то по своей глупости: когда в первый раз износилась плунжерная пара, и машина перестала заводиться на горячую, долгое время заводил с помощью эфира. Естественно, несколько поршней потрескалось. Больше ничего в двигателе не делал. Работает в областном охотхозяйстве и, естественно, ездит в основном по тайге. Судя по состоянию, если ничего экстраординарного не произойдет, - отъездит еще 200-300 тысяч без капиталки. Заводить в -35 градусов как на новом, конечно, не получится, но поездить на нем можно будет еще долго.

Кроме надежности, у 1HZ очень даже неплохая экономичность. Таскать такую махину, как Land Cruser, и не выходить в большинстве случаев за рамки 12 литров на 100 километров - это не часто встретишь, тем более двигатель 4,2 литра. Даже Toyota Surf, с его 2LT (объем всего 2,5 литра) редко когда этим может похвастаться, а ведь его габариты и масса значительно меньше.

  • Перепечатка разрешается только с разрешения автора и при условии размещения ссылки на источник

Автомобильная компания Toyota имеет в своей продуктовой линейке дизельные двигатели серии AD. Эти двигатели в основном выпускаются на европейский рынок объемом 2.0 литра: 1AD-FTV и 2.2 2AD-FTV.

Данные агрегаты были разработаны компанией Тойота специально для своих автомобилей малого и среднего класса, а также СУВов. Двигатель был впервые установлен в автомобилях Авенсис второго поколения после рестайлинговых моделей (с 2006 года выпуска) и на РАВ-4 третьего поколения.

Технические характеристики

ВНИМАНИЕ! Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год!

Версия ДВС 2AD-FTV 136 2AD-FTV 150
Система впрыска Common Rail Common Rail Common Rail Common Rail
Объём ДВС 1 995 см3 1 995 см3 2 231 см3 2 231 см3
Мощность ДВС 124 л.с. 126 л.с. 136 л.с 150 л.с.
Крутящий момент 310 НМ/1 600-2 400 300 Нм/1 800-2 400 310 Нм/2 000-2 800 310 Нм/2 000-3 100
Степень сжатия 15.8 16.8 16.8 16.8
Расход топлива 5.0 л/100 км 5.3 л/100 км 6.3 л/100 км 6.7 л/100 км
Выброс СО2, г/км 136 141 172 176
Заправочный объем 6.3 6.3 5.9 5.9
Диаметр цилиндра, мм 86 86 86 86
Ход поршня, мм 86 86 96 96

Номер двигателя данных моделей выбит со стороны выпускного коллектора на блоке ДВС, а именно: на выступающей части в месте, где состыковывается двигатель с коробкой передач.

Надежность мотора

Для создания этого двигателя использовали алюминиевый блок и чугунные гильзы. В более ранних поколениях применялись топливные форсунки common rail компании Denso и каталитический нейтрализатор. Далее стали использовать не ремонтопригодные пьезоэлектрические форсунки и сажевые фильтра. Данные двигатели получили модификацию 2AD-FHV. На всех модификациях устанавливается турбина.

В первое время эксплуатации этих двигателей возникли серьезные проблемы такие, как окисление блока цилиндров и попадание сажи во впускную систему двигателя, что привело к большому количеству отозванных машин по гарантии. В двигателях, выпускающихся после 2009 года, исправили данные недочеты. Но все равно принято считать эти двигатели ненадежными. Данные двигатели на автомобили устанавливались в основном с механической коробкой передач, только на версию 150-сильных ставили шестиступенчатый автомат. Цепь ГРМ меняется на интервале 200 000 -250 000 км. Ресурс данных моделей был заложен заводом изготовителем до 500 000 км, по факту он оказался значительно меньше.

Ремонтопригодность

Несмотря на то, что двигатель гильзованый, он не ремонтопригоден. По причине использования алюминиевого блока и открытой рубашки системы охлаждения. Не выдерживает нагрузки двухмассовый маховик и часто требует замены. Как уже говорилось выше, до 2009 года наблюдалась «болезнь» в виде окиси блока цилиндров на пробеге от 150 000 до 200 000 км. «Лечилась» данная проблема шлифовкой блока и заменой прокладки головки блока. Данную процедуру возможно было проделать только один раз, далее - замена блока или двигателя целиком.


Так же на первых модификациях стояли топливные форсунки Denso с ресурсом в 250 000 км и ремонтопригодностью. На топливной рампе двигателей модификации FTV устанавливается механический клапан аварийного сброса давления, который при поломке меняется в сборе с топливной рампой. Слив тосола осуществляется через водяную помпу системы охлаждения.

Одной из крупных «болячек» данных двигателей является сажеобразование в системе ЕГР, во впускном тракте и на поршневой группе - это все происходит из-за увеличенного «масложора» и приводит к прогоранию поршней и прокладки между блоком и головкой.

Данная проблема компанией Тойота считается гарантийной и возможна замена испорченных деталей по гарантии. Даже если ваш мотор не расходует масло, то процедуры по прочистке систем от сажи лучше проводить каждые 20 000 — 30 000 км. Среди владельцев дизельных двигателей при их эксплуатации часто возникает ошибка 1428, но она встречается только на двигателях 2AD-FHV и означает, что, есть какая-то проблема с датчиком дифференциального давления.

Отличаются между собой 1AD и 2AD следующим: в объеме и в двигателе модели 2AD-FTV используется система балансиров. Привод газораспределительного механизма цепной. Масло в моделях 1AD лучше заливать с дизельным допуском для дизельных моторов по системе API - CF по ACEA -B3/B4. Для модели 2AD - с допуском для дизельных моторов с сажевым фильтром C3/C4 по системе ACEA, по API - CH/CI/CJ. Использование моторного масла с присадками для сажевых фильтров позволит продлить ресурс работы этой запчасти.

Список автомобилей, на которые устанавливались двигатели Toyota 1AD-FTV, 2AD-FTV

Модель двигателя 1AD-FTV устанавливается в модели Тойоты:

  • - с 2006 по 2012 годы.
  • - с 2006 года по настоящее время.
  • Аурис - с 2006 по 2012 годы.
  • RAV4 - с 2013 года по настоящий момент.

Модель двигателя 2AD-FTV устанавливалась на модели Тойоты:


Применение

Двигатели серии GD представлены в 2015 году, как замена устаревших KD - самых массовых тойотовских дизелей последнего времени. Изначально они устанавливаются на модели семейств LC Prado и HiLux. Именно с этим мотором дизельные легковые тойоты возвращаются и на внутренний японский рынок.

Характеристики

Примечание. Масса двигателей, с учетом полной заправки рабочих жидкостей - 270-300 кг.

Предшествующая дизельная серия за полтора десятка лет выпуска уже устарела по целому ряду показателей - экономичности, экологии, удельным характеристикам, шумности... а под конец еще и "прославилась" в истории с трескающимися поршнями. Двигатели GD совершеннее по всем параметрам, однако ожидаемого улучшения динамических характеристик не произошло - паспортный прирост момента "растворился" где-то в эконормативах и настройках. Сразу заметно преимущество новых дизелей только в плане снижения вибраций и, главное, шума.

Механическая часть

Серия сохранила традиционный чугунный негильзованный блок цилиндров.

На топовых версиях (для семейства Prado) от коленчатого вала с помощью отдельной цепной передачи приводится балансирный механизм. В отличие от KD, он расположен в отдельном корпусе под блоком. На модификациях для семейства HiLux балансиры не используются.

Поршни - легкосплавные, полноразмерные, с развитой камерой сгорания. В канавке для верхнего компрессионного кольца установлена нирезистовая вставка, в головке проходит канал для охлаждения, на юбку поршня нанесено антифрикционное полимерное покрытие. На верхнюю часть днища также нанесено термоизолирующее покрытие (тойотовское обозначение - "SiRPA", по сути - пленка пористого анодного оксида алюминия, упрочненная поверх пергидрополисилазаном). Поршни соединяются с шатунами полностью плавающими пальцами.

Схема газораспределительного механизма - DOHC 16V: два распределительных вала в головке блока и четыре клапана на цилиндр. Привод "двухступенчатый" - от коленчатого вала первичной однорядной роликовой цепью (шаг 9,525 мм) приводится вал ТНВД, затем от него вторичной цепью (шаг 8,0 мм) приводятся оба распредвала. Натяжение цепи поддерживается подпружиненным гидронатяжителем со стопорным механизмом. От задней части распредвала приводится вакуумный насос. В приводе клапанов используются гидрокомпенсаторы клапанных зазоров и роликовые толкатели/рокеры.


Навесное оборудование приводится единым поликлиновым ремнем с автоматическим натяжителем.

Система смазки

Масляный насос трохоидного типа приводится шестеренной передачей от коленчатого вала. На лобовине двигателя установлен жидкостный маслорадиатор. В блоке цилиндров находятся масляные форсунки охлаждения и смазки поршней.

Система охлаждения

Система охлаждения выделяется разве что количеством компонентов, нуждающихся в охлаждении или подогреве. Привод помпы - общим ремнем навесных агрегатов, термостат - "холодный" (80-84°C) механический.


Система впуска

На серии GD применяются турбокомпрессоры с изменяемой геометрией направляющего аппарата (VGT или VNT) второго поколения (с электроприводом). Их преимущества - поддержание оптимального давления наддува в широком диапазоне оборотов, снижение противодавления при высокой частоте вращения, повышение мощности при низкой частоте вращения, отсутствие необходимости в перепускном механизме. Охлаждение турбокомпрессора - жидкостное.

При небольшой нагрузке и низкой частоте вращения привод перемещает управляющее кольцо, при этом поворачиваются шарнирно соединенные с ним лопатки, которые частично закрываются. В результате увеличивается скорость газов, поступающих на турбину, растет давление наддува и повышается крутящий момент двигателя.
- При высокой нагрузке и высокой частоте вращения лопатки перемещаются в открытое положение, благодаря чему поддерживается требуемое давление наддува и снижается сопротивление на выпуске.




. Для охлаждения наддувочного воздуха на автомобиле установлен фронтальный интеркулер.
. Во впускном тракте находится дроссельная заслонка с электроприводом. Применяется для снижения шума работы на холостом ходу или при замедлении, для плавной остановки двигателя при глушении.
. Во впускном коллекторе установлены заслонки изменения геометрии с пневмоприводом, перекрывающие один из впускных портов для формирования на входе в цилиндр вихря и улучшения процесса сгорания.


Топливная система / Управление

Топливная система типа Common Rail - топливо подается при помощи ТНВД в общий топливный коллектор (рампу) и впрыскивается в цилиндры через форсунки с электронным управлением. Давление впрыска составляет 35-220 МПа (на сегодня это рекордное для тойотовских дизелей значение). Производитель компонентов - Denso.


Впрыск может осуществляться несколько раз за цикл: два коротких пилотных (до ВМТ такта сжатия), продолжительный основной (в ВМТ такта сжатия и в начале такта расширения), добавочный (поздний впрыск на такте расширения).

Управление давлением топлива осуществляется дозированием подачи топлива на входе в ТНВД и дозированием слива из коллектора через клапан сброса давления.

В системе управления применяются следующие датчики:
- давления наддува
- давления топлива
- положения коленчатого вала (MRE-типа)
- положения распредвала (MRE-типа)
- массового расхода воздуха (MAF), совмещен с датчиком температуры воздуха на впуске
- положения дроссельной заслонки (на эффекте Холла)
- положения педали акселератора (на эффекте Холла)
- дифференциального давления - измеряет перепад давления на DPF, позволяя определить степень его заполнения сажей.
- температуры отработавших газов - термисторного типа, расположены до окислительного нейтрализатора, до DPF, после DPF и после SCR нейтрализатора.
- состава смеси (AFS), установлен после DPF
- NOx, установлен в центральной выпускной трубе

Топливная система / ТНВД



Топливный насос высокого давления - типа HP5S, состоит из кулачкового вала, плунжера, обратного клапана, подкачивающего насоса и дозирующего клапана. На более простых модификациях без DPF отсутствует дополнительная секция низкого давления.

При вращении кулачок через толкатель перемещает плунжер вверх. Если при этом дозирующий клапан закрыт, то давление нарастает и топливо из насоса поступает в рампу. ECM управляет моментом закрытия дозирующего клапана и таким образом обеспечивает заданный уровень давления в топливном коллекторе. Если плунжер не подпирается кулачком, то он возвращается вниз под действием пружины.

При позднем закрытии дозирующего клапана увеличивается обратный сброс топлива и уменьшается подача.

В системе может использоваться топливный фильтр высокого давления, предназначенный для дополнительной защиты от загрязнений ТНВД, коллектора и форсунок.

Топливная система / Коллектор

Топливная система / Форсунки

В соответствии с последними тенденциями дизелестроения, на серии GD вновь используются электромагнитные форсунки. Характеристики (код модели, индивидуальная коррекция подачи) указываются на корпусе форсунки в виде QR кода и обязательно программируются в блоке управления.




Работа форсунок несколько отличается от прежних CR Тойоты:
- В закрытом состоянии клапан удерживается пружиной. Давление в управляющей камере высокое. Давление топлива, воздействующее на иглу снизу, недостаточно для ее открытия.
- При подаче тока на обмотку клапан открывает канал, по которому топливо сбрасывается из управляющей камеры. Возникает перепад давления, благодаря которому открывается запорная игла форсунки и происходит впрыск топлива.
- При прекращении подачи тока клапан закрывается. Золотник опускается и управляющая камера заполняется топливом под давлением, которое воздействует сверху на иглу. Игла форсунки закрывается и впрыск прекращается. После выравнивания давления в управляющей камере золотник возвращается в верхнее положение под действием пружины.

В выпускной коллектор встроена дополнительная форсунка низкого давления, через которую топливо непосредственно от насоса подается на выпуск для повышения температуры DPF и сжигания накопленных сажевых частиц.

Системы снижения токсичности

В зависимости от рынка сбыта, предусмотрено несколько уровней сложности:
- EGR - Euro 2, для стран третьего мира
- EGR+DOC - Euro 4, для стран третьего мира
- EGR+DOC+DPF - Euro 5, для Австралии и рф
- EGR+DOC+DPF+SCR - Euro 6, для Европы и Японии

. EGR (система рециркуляции отработавших газов) - за счет перепуска некоторого количества газов на впуск снижает максимальную температуру в цилиндре и способствует уменьшению выбросов оксидов азота. Привод клапана EGR - электродвигателем постоянного тока с бесконтактным датчиком положения на эффекте Холла.

Чтобы избежать чрезмерного охлаждения поступающего в цилиндры воздуха при работе с малой нагрузкой, в жидкостном охладителе EGR установлен клапан, перепускающий отработавшие газы мимо радиатора.

. DOC (окислительный нейтрализатор) - первичная стадия очистки отработавших газов - окисляет углеводороды (CH) и оксид углерода (CO) до воды (H 2 O) и диоксида углерода (CO 2).

. DPF (сажевый фильтр) - служит для накопления и удаления/сжигания сажевых частиц.

Процесс пассивной регенерации сажевого фильтра может осуществляться сам по себе при условии достаточной температуры отработавших газов. Однако со временем количество сажи в фильтре увеличивается, его пропускная способность уменьшается и возникает необходимость в активной регенерации. Блок управления определяет засорение фильтра на основании анализа условий работы двигателя, задействует основные форсунки, форсунку подачи топлива на выпуск, свечи накаливания и управляет частотой вращения. Температура материала в сажевом фильтре повышается и частицы сажи сгорают.
Но если условия движения автомобиля не позволяют автоматически выполнить активную регенерацию в течение длительного времени, сажевые накопления могут превысить установленные пределы, после чего система включает индикатор DPF, предлагая водителю двигаться с постоянной скоростью более 60 км/ч для возможности выполнения активной регенерации. При превышении предельного уровня накоплений индикатор начнет мигать, предлагая водителю проследовать в сервис для выполнения регенерации в ручном режиме. В конце концов, во избежание повреждения DPF при дальнейшей эксплуатации, система включит аварийный режим с ограничением мощности двигателя.
На HiLux в качестве опции предлагается выключатель ручного режима регенерации.

. SCR - уменьшение содержания NOx в отработавших газах под нормы Euro 6 за счет впрыска раствора мочевины.
После впрыска раствора происходит испарение воды, а затем термолиз мочевины, в результате чего она распадается на изоциановую кислоту и аммиак.
CO(NH 2) 2 > NH 3 + HNCO
При повышенной температуре изоциановая кислота в процессе гидролиза разлагается на двуокись углерода и аммиак.
HNCO + H 2 O > NH 3 + CO 2
Аммиак накапливается в нейтрализаторе и вступает в реакцию с оксидами азота отработавших газов, в результате чего образуется чистый азот и вода.
NO + NO 2 + 2NH 3 > 2N 2 + 3H 2 O

Насос для подачи реагента одновременно выполняет функции собственно подачи мочевины в систему выпуска (под давлением около 0,5 МПа), подогрева (температура замерзания раствора около -11°С), фильтрации и контроля уровня реагента в баке.

При работе двигателя на холостом ходу и низкой скорости автомобиля, разрежение от вакуумного насоса через электропневмоклапан подводится к диафрагме, которая открывает каналы для перетекания жидкости внутри опоры. Это позволяет более "мягко" демпфировать вибрации от двигателя.
- Если двигатель уходит с режима холостого хода, ECM отключает электропневмоклапан, прекращая подачу разрежения к диафрагме. В этом состоянии жидкость циркулирует в опоре только по одному каналу с относительно большим сопротивлением.